510 lines
17 KiB
C++
510 lines
17 KiB
C++
|
|
||
|
/********************************************************************************************/
|
||
|
/* */
|
||
|
/* HSO3.hpp header file */
|
||
|
/* */
|
||
|
/* This file is not currently part of the Boost library. It is simply an example of the use */
|
||
|
/* quaternions can be put to. Hopefully it will be useful too. */
|
||
|
/* */
|
||
|
/* This file provides tools to convert between quaternions and R^3 rotation matrices. */
|
||
|
/* */
|
||
|
/********************************************************************************************/
|
||
|
|
||
|
// (C) Copyright Hubert Holin 2001.
|
||
|
// Distributed under the Boost Software License, Version 1.0. (See
|
||
|
// accompanying file LICENSE_1_0.txt or copy at
|
||
|
// http://www.boost.org/LICENSE_1_0.txt)
|
||
|
|
||
|
#ifndef TEST_HSO3_HPP
|
||
|
#define TEST_HSO3_HPP
|
||
|
|
||
|
#include <algorithm>
|
||
|
|
||
|
#if defined(__GNUC__) && (__GNUC__ < 3)
|
||
|
#include <boost/limits.hpp>
|
||
|
#else
|
||
|
#include <limits>
|
||
|
#endif
|
||
|
|
||
|
#include <stdexcept>
|
||
|
#include <string>
|
||
|
|
||
|
#include <boost/math/quaternion.hpp>
|
||
|
|
||
|
|
||
|
#if defined(__GNUC__) && (__GNUC__ < 3)
|
||
|
// gcc 2.x ignores function scope using declarations, put them here instead:
|
||
|
using namespace ::std;
|
||
|
using namespace ::boost::math;
|
||
|
#endif
|
||
|
|
||
|
template<typename TYPE_FLOAT>
|
||
|
struct R3_matrix
|
||
|
{
|
||
|
TYPE_FLOAT a11, a12, a13;
|
||
|
TYPE_FLOAT a21, a22, a23;
|
||
|
TYPE_FLOAT a31, a32, a33;
|
||
|
};
|
||
|
|
||
|
|
||
|
// Note: the input quaternion need not be of norm 1 for the following function
|
||
|
|
||
|
template<typename TYPE_FLOAT>
|
||
|
R3_matrix<TYPE_FLOAT> quaternion_to_R3_rotation(::boost::math::quaternion<TYPE_FLOAT> const & q)
|
||
|
{
|
||
|
using ::std::numeric_limits;
|
||
|
|
||
|
TYPE_FLOAT a = q.R_component_1();
|
||
|
TYPE_FLOAT b = q.R_component_2();
|
||
|
TYPE_FLOAT c = q.R_component_3();
|
||
|
TYPE_FLOAT d = q.R_component_4();
|
||
|
|
||
|
TYPE_FLOAT aa = a*a;
|
||
|
TYPE_FLOAT ab = a*b;
|
||
|
TYPE_FLOAT ac = a*c;
|
||
|
TYPE_FLOAT ad = a*d;
|
||
|
TYPE_FLOAT bb = b*b;
|
||
|
TYPE_FLOAT bc = b*c;
|
||
|
TYPE_FLOAT bd = b*d;
|
||
|
TYPE_FLOAT cc = c*c;
|
||
|
TYPE_FLOAT cd = c*d;
|
||
|
TYPE_FLOAT dd = d*d;
|
||
|
|
||
|
TYPE_FLOAT norme_carre = aa+bb+cc+dd;
|
||
|
|
||
|
if (norme_carre <= numeric_limits<TYPE_FLOAT>::epsilon())
|
||
|
{
|
||
|
::std::string error_reporting("Argument to quaternion_to_R3_rotation is too small!");
|
||
|
::std::underflow_error bad_argument(error_reporting);
|
||
|
|
||
|
throw(bad_argument);
|
||
|
}
|
||
|
|
||
|
R3_matrix<TYPE_FLOAT> out_matrix;
|
||
|
|
||
|
out_matrix.a11 = (aa+bb-cc-dd)/norme_carre;
|
||
|
out_matrix.a12 = 2*(-ad+bc)/norme_carre;
|
||
|
out_matrix.a13 = 2*(ac+bd)/norme_carre;
|
||
|
out_matrix.a21 = 2*(ad+bc)/norme_carre;
|
||
|
out_matrix.a22 = (aa-bb+cc-dd)/norme_carre;
|
||
|
out_matrix.a23 = 2*(-ab+cd)/norme_carre;
|
||
|
out_matrix.a31 = 2*(-ac+bd)/norme_carre;
|
||
|
out_matrix.a32 = 2*(ab+cd)/norme_carre;
|
||
|
out_matrix.a33 = (aa-bb-cc+dd)/norme_carre;
|
||
|
|
||
|
return(out_matrix);
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename TYPE_FLOAT>
|
||
|
void find_invariant_vector( R3_matrix<TYPE_FLOAT> const & rot,
|
||
|
TYPE_FLOAT & x,
|
||
|
TYPE_FLOAT & y,
|
||
|
TYPE_FLOAT & z)
|
||
|
{
|
||
|
using ::std::sqrt;
|
||
|
|
||
|
using ::std::numeric_limits;
|
||
|
|
||
|
TYPE_FLOAT b11 = rot.a11 - static_cast<TYPE_FLOAT>(1);
|
||
|
TYPE_FLOAT b12 = rot.a12;
|
||
|
TYPE_FLOAT b13 = rot.a13;
|
||
|
TYPE_FLOAT b21 = rot.a21;
|
||
|
TYPE_FLOAT b22 = rot.a22 - static_cast<TYPE_FLOAT>(1);
|
||
|
TYPE_FLOAT b23 = rot.a23;
|
||
|
TYPE_FLOAT b31 = rot.a31;
|
||
|
TYPE_FLOAT b32 = rot.a32;
|
||
|
TYPE_FLOAT b33 = rot.a33 - static_cast<TYPE_FLOAT>(1);
|
||
|
|
||
|
TYPE_FLOAT minors[9] =
|
||
|
{
|
||
|
b11*b22-b12*b21,
|
||
|
b11*b23-b13*b21,
|
||
|
b12*b23-b13*b22,
|
||
|
b11*b32-b12*b31,
|
||
|
b11*b33-b13*b31,
|
||
|
b12*b33-b13*b32,
|
||
|
b21*b32-b22*b31,
|
||
|
b21*b33-b23*b31,
|
||
|
b22*b33-b23*b32
|
||
|
};
|
||
|
|
||
|
TYPE_FLOAT * where = ::std::max_element(minors, minors+9);
|
||
|
|
||
|
TYPE_FLOAT det = *where;
|
||
|
|
||
|
if (det <= numeric_limits<TYPE_FLOAT>::epsilon())
|
||
|
{
|
||
|
::std::string error_reporting("Underflow error in find_invariant_vector!");
|
||
|
::std::underflow_error processing_error(error_reporting);
|
||
|
|
||
|
throw(processing_error);
|
||
|
}
|
||
|
|
||
|
switch (where-minors)
|
||
|
{
|
||
|
case 0:
|
||
|
|
||
|
z = static_cast<TYPE_FLOAT>(1);
|
||
|
|
||
|
x = (-b13*b22+b12*b23)/det;
|
||
|
y = (-b11*b23+b13*b21)/det;
|
||
|
|
||
|
break;
|
||
|
|
||
|
case 1:
|
||
|
|
||
|
y = static_cast<TYPE_FLOAT>(1);
|
||
|
|
||
|
x = (-b12*b23+b13*b22)/det;
|
||
|
z = (-b11*b22+b12*b21)/det;
|
||
|
|
||
|
break;
|
||
|
|
||
|
case 2:
|
||
|
|
||
|
x = static_cast<TYPE_FLOAT>(1);
|
||
|
|
||
|
y = (-b11*b23+b13*b21)/det;
|
||
|
z = (-b12*b21+b11*b22)/det;
|
||
|
|
||
|
break;
|
||
|
|
||
|
case 3:
|
||
|
|
||
|
z = static_cast<TYPE_FLOAT>(1);
|
||
|
|
||
|
x = (-b13*b32+b12*b33)/det;
|
||
|
y = (-b11*b33+b13*b31)/det;
|
||
|
|
||
|
break;
|
||
|
|
||
|
case 4:
|
||
|
|
||
|
y = static_cast<TYPE_FLOAT>(1);
|
||
|
|
||
|
x = (-b12*b33+b13*b32)/det;
|
||
|
z = (-b11*b32+b12*b31)/det;
|
||
|
|
||
|
break;
|
||
|
|
||
|
case 5:
|
||
|
|
||
|
x = static_cast<TYPE_FLOAT>(1);
|
||
|
|
||
|
y = (-b11*b33+b13*b31)/det;
|
||
|
z = (-b12*b31+b11*b32)/det;
|
||
|
|
||
|
break;
|
||
|
|
||
|
case 6:
|
||
|
|
||
|
z = static_cast<TYPE_FLOAT>(1);
|
||
|
|
||
|
x = (-b23*b32+b22*b33)/det;
|
||
|
y = (-b21*b33+b23*b31)/det;
|
||
|
|
||
|
break;
|
||
|
|
||
|
case 7:
|
||
|
|
||
|
y = static_cast<TYPE_FLOAT>(1);
|
||
|
|
||
|
x = (-b22*b33+b23*b32)/det;
|
||
|
z = (-b21*b32+b22*b31)/det;
|
||
|
|
||
|
break;
|
||
|
|
||
|
case 8:
|
||
|
|
||
|
x = static_cast<TYPE_FLOAT>(1);
|
||
|
|
||
|
y = (-b21*b33+b23*b31)/det;
|
||
|
z = (-b22*b31+b21*b32)/det;
|
||
|
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
|
||
|
::std::string error_reporting("Impossible condition in find_invariant_vector");
|
||
|
::std::logic_error processing_error(error_reporting);
|
||
|
|
||
|
throw(processing_error);
|
||
|
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
TYPE_FLOAT vecnorm = sqrt(x*x+y*y+z*z);
|
||
|
|
||
|
if (vecnorm <= numeric_limits<TYPE_FLOAT>::epsilon())
|
||
|
{
|
||
|
::std::string error_reporting("Overflow error in find_invariant_vector!");
|
||
|
::std::overflow_error processing_error(error_reporting);
|
||
|
|
||
|
throw(processing_error);
|
||
|
}
|
||
|
|
||
|
x /= vecnorm;
|
||
|
y /= vecnorm;
|
||
|
z /= vecnorm;
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename TYPE_FLOAT>
|
||
|
void find_orthogonal_vector( TYPE_FLOAT x,
|
||
|
TYPE_FLOAT y,
|
||
|
TYPE_FLOAT z,
|
||
|
TYPE_FLOAT & u,
|
||
|
TYPE_FLOAT & v,
|
||
|
TYPE_FLOAT & w)
|
||
|
{
|
||
|
using ::std::abs;
|
||
|
using ::std::sqrt;
|
||
|
|
||
|
using ::std::numeric_limits;
|
||
|
|
||
|
TYPE_FLOAT vecnormsqr = x*x+y*y+z*z;
|
||
|
|
||
|
if (vecnormsqr <= numeric_limits<TYPE_FLOAT>::epsilon())
|
||
|
{
|
||
|
::std::string error_reporting("Underflow error in find_orthogonal_vector!");
|
||
|
::std::underflow_error processing_error(error_reporting);
|
||
|
|
||
|
throw(processing_error);
|
||
|
}
|
||
|
|
||
|
TYPE_FLOAT lambda;
|
||
|
|
||
|
TYPE_FLOAT components[3] =
|
||
|
{
|
||
|
abs(x),
|
||
|
abs(y),
|
||
|
abs(z)
|
||
|
};
|
||
|
|
||
|
TYPE_FLOAT * where = ::std::min_element(components, components+3);
|
||
|
|
||
|
switch (where-components)
|
||
|
{
|
||
|
case 0:
|
||
|
|
||
|
if (*where <= numeric_limits<TYPE_FLOAT>::epsilon())
|
||
|
{
|
||
|
v =
|
||
|
w = static_cast<TYPE_FLOAT>(0);
|
||
|
u = static_cast<TYPE_FLOAT>(1);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
lambda = -x/vecnormsqr;
|
||
|
|
||
|
u = static_cast<TYPE_FLOAT>(1) + lambda*x;
|
||
|
v = lambda*y;
|
||
|
w = lambda*z;
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
|
||
|
case 1:
|
||
|
|
||
|
if (*where <= numeric_limits<TYPE_FLOAT>::epsilon())
|
||
|
{
|
||
|
u =
|
||
|
w = static_cast<TYPE_FLOAT>(0);
|
||
|
v = static_cast<TYPE_FLOAT>(1);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
lambda = -y/vecnormsqr;
|
||
|
|
||
|
u = lambda*x;
|
||
|
v = static_cast<TYPE_FLOAT>(1) + lambda*y;
|
||
|
w = lambda*z;
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
|
||
|
case 2:
|
||
|
|
||
|
if (*where <= numeric_limits<TYPE_FLOAT>::epsilon())
|
||
|
{
|
||
|
u =
|
||
|
v = static_cast<TYPE_FLOAT>(0);
|
||
|
w = static_cast<TYPE_FLOAT>(1);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
lambda = -z/vecnormsqr;
|
||
|
|
||
|
u = lambda*x;
|
||
|
v = lambda*y;
|
||
|
w = static_cast<TYPE_FLOAT>(1) + lambda*z;
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
|
||
|
::std::string error_reporting("Impossible condition in find_invariant_vector");
|
||
|
::std::logic_error processing_error(error_reporting);
|
||
|
|
||
|
throw(processing_error);
|
||
|
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
TYPE_FLOAT vecnorm = sqrt(u*u+v*v+w*w);
|
||
|
|
||
|
if (vecnorm <= numeric_limits<TYPE_FLOAT>::epsilon())
|
||
|
{
|
||
|
::std::string error_reporting("Underflow error in find_orthogonal_vector!");
|
||
|
::std::underflow_error processing_error(error_reporting);
|
||
|
|
||
|
throw(processing_error);
|
||
|
}
|
||
|
|
||
|
u /= vecnorm;
|
||
|
v /= vecnorm;
|
||
|
w /= vecnorm;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Note: we want [[v, v, w], [r, s, t], [x, y, z]] to be a direct orthogonal basis
|
||
|
// of R^3. It might not be orthonormal, however, and we do not check if the
|
||
|
// two input vectors are colinear or not.
|
||
|
|
||
|
template<typename TYPE_FLOAT>
|
||
|
void find_vector_for_BOD(TYPE_FLOAT x,
|
||
|
TYPE_FLOAT y,
|
||
|
TYPE_FLOAT z,
|
||
|
TYPE_FLOAT u,
|
||
|
TYPE_FLOAT v,
|
||
|
TYPE_FLOAT w,
|
||
|
TYPE_FLOAT & r,
|
||
|
TYPE_FLOAT & s,
|
||
|
TYPE_FLOAT & t)
|
||
|
{
|
||
|
r = +y*w-z*v;
|
||
|
s = -x*w+z*u;
|
||
|
t = +x*v-y*u;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
template<typename TYPE_FLOAT>
|
||
|
inline bool is_R3_rotation_matrix(R3_matrix<TYPE_FLOAT> const & mat)
|
||
|
{
|
||
|
using ::std::abs;
|
||
|
|
||
|
using ::std::numeric_limits;
|
||
|
|
||
|
return (
|
||
|
!(
|
||
|
(abs(mat.a11*mat.a11+mat.a21*mat.a21+mat.a31*mat.a31 - static_cast<TYPE_FLOAT>(1)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
|
||
|
(abs(mat.a11*mat.a12+mat.a21*mat.a22+mat.a31*mat.a32 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
|
||
|
(abs(mat.a11*mat.a13+mat.a21*mat.a23+mat.a31*mat.a33 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
|
||
|
//(abs(mat.a11*mat.a12+mat.a21*mat.a22+mat.a31*mat.a32 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
|
||
|
(abs(mat.a12*mat.a12+mat.a22*mat.a22+mat.a32*mat.a32 - static_cast<TYPE_FLOAT>(1)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
|
||
|
(abs(mat.a12*mat.a13+mat.a22*mat.a23+mat.a32*mat.a33 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
|
||
|
//(abs(mat.a11*mat.a13+mat.a21*mat.a23+mat.a31*mat.a33 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
|
||
|
//(abs(mat.a12*mat.a13+mat.a22*mat.a23+mat.a32*mat.a33 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
|
||
|
(abs(mat.a13*mat.a13+mat.a23*mat.a23+mat.a33*mat.a33 - static_cast<TYPE_FLOAT>(1)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())
|
||
|
)
|
||
|
);
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename TYPE_FLOAT>
|
||
|
::boost::math::quaternion<TYPE_FLOAT> R3_rotation_to_quaternion( R3_matrix<TYPE_FLOAT> const & rot,
|
||
|
::boost::math::quaternion<TYPE_FLOAT> const * hint = 0)
|
||
|
{
|
||
|
using ::boost::math::abs;
|
||
|
|
||
|
using ::std::abs;
|
||
|
using ::std::sqrt;
|
||
|
|
||
|
using ::std::numeric_limits;
|
||
|
|
||
|
if (!is_R3_rotation_matrix(rot))
|
||
|
{
|
||
|
::std::string error_reporting("Argument to R3_rotation_to_quaternion is not an R^3 rotation matrix!");
|
||
|
::std::range_error bad_argument(error_reporting);
|
||
|
|
||
|
throw(bad_argument);
|
||
|
}
|
||
|
|
||
|
::boost::math::quaternion<TYPE_FLOAT> q;
|
||
|
|
||
|
if (
|
||
|
(abs(rot.a11 - static_cast<TYPE_FLOAT>(1)) <= numeric_limits<TYPE_FLOAT>::epsilon())&&
|
||
|
(abs(rot.a22 - static_cast<TYPE_FLOAT>(1)) <= numeric_limits<TYPE_FLOAT>::epsilon())&&
|
||
|
(abs(rot.a33 - static_cast<TYPE_FLOAT>(1)) <= numeric_limits<TYPE_FLOAT>::epsilon())
|
||
|
)
|
||
|
{
|
||
|
q = ::boost::math::quaternion<TYPE_FLOAT>(1);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
TYPE_FLOAT cos_theta = (rot.a11+rot.a22+rot.a33-static_cast<TYPE_FLOAT>(1))/static_cast<TYPE_FLOAT>(2);
|
||
|
TYPE_FLOAT stuff = (cos_theta+static_cast<TYPE_FLOAT>(1))/static_cast<TYPE_FLOAT>(2);
|
||
|
TYPE_FLOAT cos_theta_sur_2 = sqrt(stuff);
|
||
|
TYPE_FLOAT sin_theta_sur_2 = sqrt(1-stuff);
|
||
|
|
||
|
TYPE_FLOAT x;
|
||
|
TYPE_FLOAT y;
|
||
|
TYPE_FLOAT z;
|
||
|
|
||
|
find_invariant_vector(rot, x, y, z);
|
||
|
|
||
|
TYPE_FLOAT u;
|
||
|
TYPE_FLOAT v;
|
||
|
TYPE_FLOAT w;
|
||
|
|
||
|
find_orthogonal_vector(x, y, z, u, v, w);
|
||
|
|
||
|
TYPE_FLOAT r;
|
||
|
TYPE_FLOAT s;
|
||
|
TYPE_FLOAT t;
|
||
|
|
||
|
find_vector_for_BOD(x, y, z, u, v, w, r, s, t);
|
||
|
|
||
|
TYPE_FLOAT ru = rot.a11*u+rot.a12*v+rot.a13*w;
|
||
|
TYPE_FLOAT rv = rot.a21*u+rot.a22*v+rot.a23*w;
|
||
|
TYPE_FLOAT rw = rot.a31*u+rot.a32*v+rot.a33*w;
|
||
|
|
||
|
TYPE_FLOAT angle_sign_determinator = r*ru+s*rv+t*rw;
|
||
|
|
||
|
if (angle_sign_determinator > +numeric_limits<TYPE_FLOAT>::epsilon())
|
||
|
{
|
||
|
q = ::boost::math::quaternion<TYPE_FLOAT>(cos_theta_sur_2, +x*sin_theta_sur_2, +y*sin_theta_sur_2, +z*sin_theta_sur_2);
|
||
|
}
|
||
|
else if (angle_sign_determinator < -numeric_limits<TYPE_FLOAT>::epsilon())
|
||
|
{
|
||
|
q = ::boost::math::quaternion<TYPE_FLOAT>(cos_theta_sur_2, -x*sin_theta_sur_2, -y*sin_theta_sur_2, -z*sin_theta_sur_2);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
TYPE_FLOAT desambiguator = u*ru+v*rv+w*rw;
|
||
|
|
||
|
if (desambiguator >= static_cast<TYPE_FLOAT>(1))
|
||
|
{
|
||
|
q = ::boost::math::quaternion<TYPE_FLOAT>(0, +x, +y, +z);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
q = ::boost::math::quaternion<TYPE_FLOAT>(0, -x, -y, -z);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ((hint != 0) && (abs(*hint+q) < abs(*hint-q)))
|
||
|
{
|
||
|
return(-q);
|
||
|
}
|
||
|
|
||
|
return(q);
|
||
|
}
|
||
|
|
||
|
#endif /* TEST_HSO3_HPP */
|
||
|
|