790 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			790 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (C) 2012 The Android Open Source Project
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * Redistribution and use in source and binary forms, with or without
 | 
						|
 * modification, are permitted provided that the following conditions
 | 
						|
 * are met:
 | 
						|
 *  * Redistributions of source code must retain the above copyright
 | 
						|
 *    notice, this list of conditions and the following disclaimer.
 | 
						|
 *  * Redistributions in binary form must reproduce the above copyright
 | 
						|
 *    notice, this list of conditions and the following disclaimer in
 | 
						|
 *    the documentation and/or other materials provided with the
 | 
						|
 *    distribution.
 | 
						|
 *
 | 
						|
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 | 
						|
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 | 
						|
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 | 
						|
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 | 
						|
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 | 
						|
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 | 
						|
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 | 
						|
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 | 
						|
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | 
						|
 * SUCH DAMAGE.
 | 
						|
 */
 | 
						|
 | 
						|
#include "linker_phdr.h"
 | 
						|
 | 
						|
#include <errno.h>
 | 
						|
#include <sys/mman.h>
 | 
						|
#include <sys/types.h>
 | 
						|
#include <sys/stat.h>
 | 
						|
#include <unistd.h>
 | 
						|
 | 
						|
#include "linker.h"
 | 
						|
#include "linker_debug.h"
 | 
						|
 | 
						|
static int GetTargetElfMachine() {
 | 
						|
#if defined(__arm__)
 | 
						|
  return EM_ARM;
 | 
						|
#elif defined(__aarch64__)
 | 
						|
  return EM_AARCH64;
 | 
						|
#elif defined(__i386__)
 | 
						|
  return EM_386;
 | 
						|
#elif defined(__mips__)
 | 
						|
  return EM_MIPS;
 | 
						|
#elif defined(__x86_64__)
 | 
						|
  return EM_X86_64;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
  TECHNICAL NOTE ON ELF LOADING.
 | 
						|
 | 
						|
  An ELF file's program header table contains one or more PT_LOAD
 | 
						|
  segments, which corresponds to portions of the file that need to
 | 
						|
  be mapped into the process' address space.
 | 
						|
 | 
						|
  Each loadable segment has the following important properties:
 | 
						|
 | 
						|
    p_offset  -> segment file offset
 | 
						|
    p_filesz  -> segment file size
 | 
						|
    p_memsz   -> segment memory size (always >= p_filesz)
 | 
						|
    p_vaddr   -> segment's virtual address
 | 
						|
    p_flags   -> segment flags (e.g. readable, writable, executable)
 | 
						|
 | 
						|
  We will ignore the p_paddr and p_align fields of ElfW(Phdr) for now.
 | 
						|
 | 
						|
  The loadable segments can be seen as a list of [p_vaddr ... p_vaddr+p_memsz)
 | 
						|
  ranges of virtual addresses. A few rules apply:
 | 
						|
 | 
						|
  - the virtual address ranges should not overlap.
 | 
						|
 | 
						|
  - if a segment's p_filesz is smaller than its p_memsz, the extra bytes
 | 
						|
    between them should always be initialized to 0.
 | 
						|
 | 
						|
  - ranges do not necessarily start or end at page boundaries. Two distinct
 | 
						|
    segments can have their start and end on the same page. In this case, the
 | 
						|
    page inherits the mapping flags of the latter segment.
 | 
						|
 | 
						|
  Finally, the real load addrs of each segment is not p_vaddr. Instead the
 | 
						|
  loader decides where to load the first segment, then will load all others
 | 
						|
  relative to the first one to respect the initial range layout.
 | 
						|
 | 
						|
  For example, consider the following list:
 | 
						|
 | 
						|
    [ offset:0,      filesz:0x4000, memsz:0x4000, vaddr:0x30000 ],
 | 
						|
    [ offset:0x4000, filesz:0x2000, memsz:0x8000, vaddr:0x40000 ],
 | 
						|
 | 
						|
  This corresponds to two segments that cover these virtual address ranges:
 | 
						|
 | 
						|
       0x30000...0x34000
 | 
						|
       0x40000...0x48000
 | 
						|
 | 
						|
  If the loader decides to load the first segment at address 0xa0000000
 | 
						|
  then the segments' load address ranges will be:
 | 
						|
 | 
						|
       0xa0030000...0xa0034000
 | 
						|
       0xa0040000...0xa0048000
 | 
						|
 | 
						|
  In other words, all segments must be loaded at an address that has the same
 | 
						|
  constant offset from their p_vaddr value. This offset is computed as the
 | 
						|
  difference between the first segment's load address, and its p_vaddr value.
 | 
						|
 | 
						|
  However, in practice, segments do _not_ start at page boundaries. Since we
 | 
						|
  can only memory-map at page boundaries, this means that the bias is
 | 
						|
  computed as:
 | 
						|
 | 
						|
       load_bias = phdr0_load_address - PAGE_START(phdr0->p_vaddr)
 | 
						|
 | 
						|
  (NOTE: The value must be used as a 32-bit unsigned integer, to deal with
 | 
						|
          possible wrap around UINT32_MAX for possible large p_vaddr values).
 | 
						|
 | 
						|
  And that the phdr0_load_address must start at a page boundary, with
 | 
						|
  the segment's real content starting at:
 | 
						|
 | 
						|
       phdr0_load_address + PAGE_OFFSET(phdr0->p_vaddr)
 | 
						|
 | 
						|
  Note that ELF requires the following condition to make the mmap()-ing work:
 | 
						|
 | 
						|
      PAGE_OFFSET(phdr0->p_vaddr) == PAGE_OFFSET(phdr0->p_offset)
 | 
						|
 | 
						|
  The load_bias must be added to any p_vaddr value read from the ELF file to
 | 
						|
  determine the corresponding memory address.
 | 
						|
 | 
						|
 **/
 | 
						|
 | 
						|
#define MAYBE_MAP_FLAG(x, from, to)  (((x) & (from)) ? (to) : 0)
 | 
						|
#define PFLAGS_TO_PROT(x)            (MAYBE_MAP_FLAG((x), PF_X, PROT_EXEC) | \
 | 
						|
                                      MAYBE_MAP_FLAG((x), PF_R, PROT_READ) | \
 | 
						|
                                      MAYBE_MAP_FLAG((x), PF_W, PROT_WRITE))
 | 
						|
 | 
						|
ElfReader::ElfReader(const char* name, int fd, off64_t file_offset)
 | 
						|
    : name_(name), fd_(fd), file_offset_(file_offset),
 | 
						|
      phdr_num_(0), phdr_mmap_(nullptr), phdr_table_(nullptr), phdr_size_(0),
 | 
						|
      load_start_(nullptr), load_size_(0), load_bias_(0),
 | 
						|
      loaded_phdr_(nullptr) {
 | 
						|
}
 | 
						|
 | 
						|
ElfReader::~ElfReader() {
 | 
						|
  if (phdr_mmap_ != nullptr) {
 | 
						|
    munmap(phdr_mmap_, phdr_size_);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool ElfReader::Load(const android_dlextinfo* extinfo) {
 | 
						|
  return ReadElfHeader() &&
 | 
						|
         VerifyElfHeader() &&
 | 
						|
         ReadProgramHeader() &&
 | 
						|
         ReserveAddressSpace(extinfo) &&
 | 
						|
         LoadSegments() &&
 | 
						|
         FindPhdr();
 | 
						|
}
 | 
						|
 | 
						|
bool ElfReader::ReadElfHeader() {
 | 
						|
  ssize_t rc = TEMP_FAILURE_RETRY(pread64(fd_, &header_, sizeof(header_), file_offset_));
 | 
						|
  if (rc < 0) {
 | 
						|
    DL_ERR("can't read file \"%s\": %s", name_, strerror(errno));
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (rc != sizeof(header_)) {
 | 
						|
    DL_ERR("\"%s\" is too small to be an ELF executable: only found %zd bytes", name_,
 | 
						|
           static_cast<size_t>(rc));
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ElfReader::VerifyElfHeader() {
 | 
						|
  if (memcmp(header_.e_ident, ELFMAG, SELFMAG) != 0) {
 | 
						|
    DL_ERR("\"%s\" has bad ELF magic", name_);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to give a clear diagnostic for ELF class mismatches, since they're
 | 
						|
  // an easy mistake to make during the 32-bit/64-bit transition period.
 | 
						|
  int elf_class = header_.e_ident[EI_CLASS];
 | 
						|
#if defined(__LP64__)
 | 
						|
  if (elf_class != ELFCLASS64) {
 | 
						|
    if (elf_class == ELFCLASS32) {
 | 
						|
      DL_ERR("\"%s\" is 32-bit instead of 64-bit", name_);
 | 
						|
    } else {
 | 
						|
      DL_ERR("\"%s\" has unknown ELF class: %d", name_, elf_class);
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
#else
 | 
						|
  if (elf_class != ELFCLASS32) {
 | 
						|
    if (elf_class == ELFCLASS64) {
 | 
						|
      DL_ERR("\"%s\" is 64-bit instead of 32-bit", name_);
 | 
						|
    } else {
 | 
						|
      DL_ERR("\"%s\" has unknown ELF class: %d", name_, elf_class);
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  if (header_.e_ident[EI_DATA] != ELFDATA2LSB) {
 | 
						|
    DL_ERR("\"%s\" not little-endian: %d", name_, header_.e_ident[EI_DATA]);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (header_.e_type != ET_DYN) {
 | 
						|
    DL_ERR("\"%s\" has unexpected e_type: %d", name_, header_.e_type);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (header_.e_version != EV_CURRENT) {
 | 
						|
    DL_ERR("\"%s\" has unexpected e_version: %d", name_, header_.e_version);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (header_.e_machine != GetTargetElfMachine()) {
 | 
						|
    DL_ERR("\"%s\" has unexpected e_machine: %d", name_, header_.e_machine);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Loads the program header table from an ELF file into a read-only private
 | 
						|
// anonymous mmap-ed block.
 | 
						|
bool ElfReader::ReadProgramHeader() {
 | 
						|
  phdr_num_ = header_.e_phnum;
 | 
						|
 | 
						|
  // Like the kernel, we only accept program header tables that
 | 
						|
  // are smaller than 64KiB.
 | 
						|
  if (phdr_num_ < 1 || phdr_num_ > 65536/sizeof(ElfW(Phdr))) {
 | 
						|
    DL_ERR("\"%s\" has invalid e_phnum: %zd", name_, phdr_num_);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  ElfW(Addr) page_min = PAGE_START(header_.e_phoff);
 | 
						|
  ElfW(Addr) page_max = PAGE_END(header_.e_phoff + (phdr_num_ * sizeof(ElfW(Phdr))));
 | 
						|
  ElfW(Addr) page_offset = PAGE_OFFSET(header_.e_phoff);
 | 
						|
 | 
						|
  phdr_size_ = page_max - page_min;
 | 
						|
 | 
						|
  void* mmap_result = mmap64(nullptr, phdr_size_, PROT_READ, MAP_PRIVATE, fd_, file_offset_ + page_min);
 | 
						|
  if (mmap_result == MAP_FAILED) {
 | 
						|
    DL_ERR("\"%s\" phdr mmap failed: %s", name_, strerror(errno));
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  phdr_mmap_ = mmap_result;
 | 
						|
  phdr_table_ = reinterpret_cast<ElfW(Phdr)*>(reinterpret_cast<char*>(mmap_result) + page_offset);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/* Returns the size of the extent of all the possibly non-contiguous
 | 
						|
 * loadable segments in an ELF program header table. This corresponds
 | 
						|
 * to the page-aligned size in bytes that needs to be reserved in the
 | 
						|
 * process' address space. If there are no loadable segments, 0 is
 | 
						|
 * returned.
 | 
						|
 *
 | 
						|
 * If out_min_vaddr or out_max_vaddr are not null, they will be
 | 
						|
 * set to the minimum and maximum addresses of pages to be reserved,
 | 
						|
 * or 0 if there is nothing to load.
 | 
						|
 */
 | 
						|
size_t phdr_table_get_load_size(const ElfW(Phdr)* phdr_table, size_t phdr_count,
 | 
						|
                                ElfW(Addr)* out_min_vaddr,
 | 
						|
                                ElfW(Addr)* out_max_vaddr) {
 | 
						|
  ElfW(Addr) min_vaddr = UINTPTR_MAX;
 | 
						|
  ElfW(Addr) max_vaddr = 0;
 | 
						|
 | 
						|
  bool found_pt_load = false;
 | 
						|
  for (size_t i = 0; i < phdr_count; ++i) {
 | 
						|
    const ElfW(Phdr)* phdr = &phdr_table[i];
 | 
						|
 | 
						|
    if (phdr->p_type != PT_LOAD) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    found_pt_load = true;
 | 
						|
 | 
						|
    if (phdr->p_vaddr < min_vaddr) {
 | 
						|
      min_vaddr = phdr->p_vaddr;
 | 
						|
    }
 | 
						|
 | 
						|
    if (phdr->p_vaddr + phdr->p_memsz > max_vaddr) {
 | 
						|
      max_vaddr = phdr->p_vaddr + phdr->p_memsz;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!found_pt_load) {
 | 
						|
    min_vaddr = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  min_vaddr = PAGE_START(min_vaddr);
 | 
						|
  max_vaddr = PAGE_END(max_vaddr);
 | 
						|
 | 
						|
  if (out_min_vaddr != nullptr) {
 | 
						|
    *out_min_vaddr = min_vaddr;
 | 
						|
  }
 | 
						|
  if (out_max_vaddr != nullptr) {
 | 
						|
    *out_max_vaddr = max_vaddr;
 | 
						|
  }
 | 
						|
  return max_vaddr - min_vaddr;
 | 
						|
}
 | 
						|
 | 
						|
// Reserve a virtual address range big enough to hold all loadable
 | 
						|
// segments of a program header table. This is done by creating a
 | 
						|
// private anonymous mmap() with PROT_NONE.
 | 
						|
bool ElfReader::ReserveAddressSpace(const android_dlextinfo* extinfo) {
 | 
						|
  ElfW(Addr) min_vaddr;
 | 
						|
  load_size_ = phdr_table_get_load_size(phdr_table_, phdr_num_, &min_vaddr);
 | 
						|
  if (load_size_ == 0) {
 | 
						|
    DL_ERR("\"%s\" has no loadable segments", name_);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  uint8_t* addr = reinterpret_cast<uint8_t*>(min_vaddr);
 | 
						|
  void* start;
 | 
						|
  size_t reserved_size = 0;
 | 
						|
  bool reserved_hint = true;
 | 
						|
 | 
						|
  if (extinfo != nullptr) {
 | 
						|
    if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS) {
 | 
						|
      reserved_size = extinfo->reserved_size;
 | 
						|
      reserved_hint = false;
 | 
						|
    } else if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS_HINT) {
 | 
						|
      reserved_size = extinfo->reserved_size;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (load_size_ > reserved_size) {
 | 
						|
    if (!reserved_hint) {
 | 
						|
      DL_ERR("reserved address space %zd smaller than %zd bytes needed for \"%s\"",
 | 
						|
             reserved_size - load_size_, load_size_, name_);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    int mmap_flags = MAP_PRIVATE | MAP_ANONYMOUS;
 | 
						|
    start = mmap(addr, load_size_, PROT_NONE, mmap_flags, -1, 0);
 | 
						|
    if (start == MAP_FAILED) {
 | 
						|
      DL_ERR("couldn't reserve %zd bytes of address space for \"%s\"", load_size_, name_);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    start = extinfo->reserved_addr;
 | 
						|
  }
 | 
						|
 | 
						|
  load_start_ = start;
 | 
						|
  load_bias_ = reinterpret_cast<uint8_t*>(start) - addr;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ElfReader::LoadSegments() {
 | 
						|
  for (size_t i = 0; i < phdr_num_; ++i) {
 | 
						|
    const ElfW(Phdr)* phdr = &phdr_table_[i];
 | 
						|
 | 
						|
    if (phdr->p_type != PT_LOAD) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Segment addresses in memory.
 | 
						|
    ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_;
 | 
						|
    ElfW(Addr) seg_end   = seg_start + phdr->p_memsz;
 | 
						|
 | 
						|
    ElfW(Addr) seg_page_start = PAGE_START(seg_start);
 | 
						|
    ElfW(Addr) seg_page_end   = PAGE_END(seg_end);
 | 
						|
 | 
						|
    ElfW(Addr) seg_file_end   = seg_start + phdr->p_filesz;
 | 
						|
 | 
						|
    // File offsets.
 | 
						|
    ElfW(Addr) file_start = phdr->p_offset;
 | 
						|
    ElfW(Addr) file_end   = file_start + phdr->p_filesz;
 | 
						|
 | 
						|
    ElfW(Addr) file_page_start = PAGE_START(file_start);
 | 
						|
    ElfW(Addr) file_length = file_end - file_page_start;
 | 
						|
 | 
						|
    if (file_length != 0) {
 | 
						|
      void* seg_addr = mmap64(reinterpret_cast<void*>(seg_page_start),
 | 
						|
                            file_length,
 | 
						|
                            PFLAGS_TO_PROT(phdr->p_flags),
 | 
						|
                            MAP_FIXED|MAP_PRIVATE,
 | 
						|
                            fd_,
 | 
						|
                            file_offset_ + file_page_start);
 | 
						|
      if (seg_addr == MAP_FAILED) {
 | 
						|
        DL_ERR("couldn't map \"%s\" segment %zd: %s", name_, i, strerror(errno));
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // if the segment is writable, and does not end on a page boundary,
 | 
						|
    // zero-fill it until the page limit.
 | 
						|
    if ((phdr->p_flags & PF_W) != 0 && PAGE_OFFSET(seg_file_end) > 0) {
 | 
						|
      memset(reinterpret_cast<void*>(seg_file_end), 0, PAGE_SIZE - PAGE_OFFSET(seg_file_end));
 | 
						|
    }
 | 
						|
 | 
						|
    seg_file_end = PAGE_END(seg_file_end);
 | 
						|
 | 
						|
    // seg_file_end is now the first page address after the file
 | 
						|
    // content. If seg_end is larger, we need to zero anything
 | 
						|
    // between them. This is done by using a private anonymous
 | 
						|
    // map for all extra pages.
 | 
						|
    if (seg_page_end > seg_file_end) {
 | 
						|
      void* zeromap = mmap(reinterpret_cast<void*>(seg_file_end),
 | 
						|
                           seg_page_end - seg_file_end,
 | 
						|
                           PFLAGS_TO_PROT(phdr->p_flags),
 | 
						|
                           MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE,
 | 
						|
                           -1,
 | 
						|
                           0);
 | 
						|
      if (zeromap == MAP_FAILED) {
 | 
						|
        DL_ERR("couldn't zero fill \"%s\" gap: %s", name_, strerror(errno));
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/* Used internally. Used to set the protection bits of all loaded segments
 | 
						|
 * with optional extra flags (i.e. really PROT_WRITE). Used by
 | 
						|
 * phdr_table_protect_segments and phdr_table_unprotect_segments.
 | 
						|
 */
 | 
						|
static int _phdr_table_set_load_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count,
 | 
						|
                                     ElfW(Addr) load_bias, int extra_prot_flags) {
 | 
						|
  const ElfW(Phdr)* phdr = phdr_table;
 | 
						|
  const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
 | 
						|
 | 
						|
  for (; phdr < phdr_limit; phdr++) {
 | 
						|
    if (phdr->p_type != PT_LOAD || (phdr->p_flags & PF_W) != 0) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
 | 
						|
    ElfW(Addr) seg_page_end   = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
 | 
						|
 | 
						|
    int ret = mprotect(reinterpret_cast<void*>(seg_page_start),
 | 
						|
                       seg_page_end - seg_page_start,
 | 
						|
                       PFLAGS_TO_PROT(phdr->p_flags) | extra_prot_flags);
 | 
						|
    if (ret < 0) {
 | 
						|
      return -1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Restore the original protection modes for all loadable segments.
 | 
						|
 * You should only call this after phdr_table_unprotect_segments and
 | 
						|
 * applying all relocations.
 | 
						|
 *
 | 
						|
 * Input:
 | 
						|
 *   phdr_table  -> program header table
 | 
						|
 *   phdr_count  -> number of entries in tables
 | 
						|
 *   load_bias   -> load bias
 | 
						|
 * Return:
 | 
						|
 *   0 on error, -1 on failure (error code in errno).
 | 
						|
 */
 | 
						|
int phdr_table_protect_segments(const ElfW(Phdr)* phdr_table, size_t phdr_count, ElfW(Addr) load_bias) {
 | 
						|
  return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, 0);
 | 
						|
}
 | 
						|
 | 
						|
/* Change the protection of all loaded segments in memory to writable.
 | 
						|
 * This is useful before performing relocations. Once completed, you
 | 
						|
 * will have to call phdr_table_protect_segments to restore the original
 | 
						|
 * protection flags on all segments.
 | 
						|
 *
 | 
						|
 * Note that some writable segments can also have their content turned
 | 
						|
 * to read-only by calling phdr_table_protect_gnu_relro. This is no
 | 
						|
 * performed here.
 | 
						|
 *
 | 
						|
 * Input:
 | 
						|
 *   phdr_table  -> program header table
 | 
						|
 *   phdr_count  -> number of entries in tables
 | 
						|
 *   load_bias   -> load bias
 | 
						|
 * Return:
 | 
						|
 *   0 on error, -1 on failure (error code in errno).
 | 
						|
 */
 | 
						|
int phdr_table_unprotect_segments(const ElfW(Phdr)* phdr_table, size_t phdr_count, ElfW(Addr) load_bias) {
 | 
						|
  return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, PROT_WRITE);
 | 
						|
}
 | 
						|
 | 
						|
/* Used internally by phdr_table_protect_gnu_relro and
 | 
						|
 * phdr_table_unprotect_gnu_relro.
 | 
						|
 */
 | 
						|
static int _phdr_table_set_gnu_relro_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count,
 | 
						|
                                          ElfW(Addr) load_bias, int prot_flags) {
 | 
						|
  const ElfW(Phdr)* phdr = phdr_table;
 | 
						|
  const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
 | 
						|
 | 
						|
  for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
 | 
						|
    if (phdr->p_type != PT_GNU_RELRO) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Tricky: what happens when the relro segment does not start
 | 
						|
    // or end at page boundaries? We're going to be over-protective
 | 
						|
    // here and put every page touched by the segment as read-only.
 | 
						|
 | 
						|
    // This seems to match Ian Lance Taylor's description of the
 | 
						|
    // feature at http://www.airs.com/blog/archives/189.
 | 
						|
 | 
						|
    //    Extract:
 | 
						|
    //       Note that the current dynamic linker code will only work
 | 
						|
    //       correctly if the PT_GNU_RELRO segment starts on a page
 | 
						|
    //       boundary. This is because the dynamic linker rounds the
 | 
						|
    //       p_vaddr field down to the previous page boundary. If
 | 
						|
    //       there is anything on the page which should not be read-only,
 | 
						|
    //       the program is likely to fail at runtime. So in effect the
 | 
						|
    //       linker must only emit a PT_GNU_RELRO segment if it ensures
 | 
						|
    //       that it starts on a page boundary.
 | 
						|
    ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
 | 
						|
    ElfW(Addr) seg_page_end   = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
 | 
						|
 | 
						|
    int ret = mprotect(reinterpret_cast<void*>(seg_page_start),
 | 
						|
                       seg_page_end - seg_page_start,
 | 
						|
                       prot_flags);
 | 
						|
    if (ret < 0) {
 | 
						|
      return -1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Apply GNU relro protection if specified by the program header. This will
 | 
						|
 * turn some of the pages of a writable PT_LOAD segment to read-only, as
 | 
						|
 * specified by one or more PT_GNU_RELRO segments. This must be always
 | 
						|
 * performed after relocations.
 | 
						|
 *
 | 
						|
 * The areas typically covered are .got and .data.rel.ro, these are
 | 
						|
 * read-only from the program's POV, but contain absolute addresses
 | 
						|
 * that need to be relocated before use.
 | 
						|
 *
 | 
						|
 * Input:
 | 
						|
 *   phdr_table  -> program header table
 | 
						|
 *   phdr_count  -> number of entries in tables
 | 
						|
 *   load_bias   -> load bias
 | 
						|
 * Return:
 | 
						|
 *   0 on error, -1 on failure (error code in errno).
 | 
						|
 */
 | 
						|
int phdr_table_protect_gnu_relro(const ElfW(Phdr)* phdr_table, size_t phdr_count, ElfW(Addr) load_bias) {
 | 
						|
  return _phdr_table_set_gnu_relro_prot(phdr_table, phdr_count, load_bias, PROT_READ);
 | 
						|
}
 | 
						|
 | 
						|
/* Serialize the GNU relro segments to the given file descriptor. This can be
 | 
						|
 * performed after relocations to allow another process to later share the
 | 
						|
 * relocated segment, if it was loaded at the same address.
 | 
						|
 *
 | 
						|
 * Input:
 | 
						|
 *   phdr_table  -> program header table
 | 
						|
 *   phdr_count  -> number of entries in tables
 | 
						|
 *   load_bias   -> load bias
 | 
						|
 *   fd          -> writable file descriptor to use
 | 
						|
 * Return:
 | 
						|
 *   0 on error, -1 on failure (error code in errno).
 | 
						|
 */
 | 
						|
int phdr_table_serialize_gnu_relro(const ElfW(Phdr)* phdr_table, size_t phdr_count, ElfW(Addr) load_bias,
 | 
						|
                                   int fd) {
 | 
						|
  const ElfW(Phdr)* phdr = phdr_table;
 | 
						|
  const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
 | 
						|
  ssize_t file_offset = 0;
 | 
						|
 | 
						|
  for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
 | 
						|
    if (phdr->p_type != PT_GNU_RELRO) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
 | 
						|
    ElfW(Addr) seg_page_end   = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
 | 
						|
    ssize_t size = seg_page_end - seg_page_start;
 | 
						|
 | 
						|
    ssize_t written = TEMP_FAILURE_RETRY(write(fd, reinterpret_cast<void*>(seg_page_start), size));
 | 
						|
    if (written != size) {
 | 
						|
      return -1;
 | 
						|
    }
 | 
						|
    void* map = mmap(reinterpret_cast<void*>(seg_page_start), size, PROT_READ,
 | 
						|
                     MAP_PRIVATE|MAP_FIXED, fd, file_offset);
 | 
						|
    if (map == MAP_FAILED) {
 | 
						|
      return -1;
 | 
						|
    }
 | 
						|
    file_offset += size;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Where possible, replace the GNU relro segments with mappings of the given
 | 
						|
 * file descriptor. This can be performed after relocations to allow a file
 | 
						|
 * previously created by phdr_table_serialize_gnu_relro in another process to
 | 
						|
 * replace the dirty relocated pages, saving memory, if it was loaded at the
 | 
						|
 * same address. We have to compare the data before we map over it, since some
 | 
						|
 * parts of the relro segment may not be identical due to other libraries in
 | 
						|
 * the process being loaded at different addresses.
 | 
						|
 *
 | 
						|
 * Input:
 | 
						|
 *   phdr_table  -> program header table
 | 
						|
 *   phdr_count  -> number of entries in tables
 | 
						|
 *   load_bias   -> load bias
 | 
						|
 *   fd          -> readable file descriptor to use
 | 
						|
 * Return:
 | 
						|
 *   0 on error, -1 on failure (error code in errno).
 | 
						|
 */
 | 
						|
int phdr_table_map_gnu_relro(const ElfW(Phdr)* phdr_table, size_t phdr_count, ElfW(Addr) load_bias,
 | 
						|
                             int fd) {
 | 
						|
  // Map the file at a temporary location so we can compare its contents.
 | 
						|
  struct stat file_stat;
 | 
						|
  if (TEMP_FAILURE_RETRY(fstat(fd, &file_stat)) != 0) {
 | 
						|
    return -1;
 | 
						|
  }
 | 
						|
  off_t file_size = file_stat.st_size;
 | 
						|
  void* temp_mapping = nullptr;
 | 
						|
  if (file_size > 0) {
 | 
						|
    temp_mapping = mmap(nullptr, file_size, PROT_READ, MAP_PRIVATE, fd, 0);
 | 
						|
    if (temp_mapping == MAP_FAILED) {
 | 
						|
      return -1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  size_t file_offset = 0;
 | 
						|
 | 
						|
  // Iterate over the relro segments and compare/remap the pages.
 | 
						|
  const ElfW(Phdr)* phdr = phdr_table;
 | 
						|
  const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
 | 
						|
 | 
						|
  for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
 | 
						|
    if (phdr->p_type != PT_GNU_RELRO) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
 | 
						|
    ElfW(Addr) seg_page_end   = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
 | 
						|
 | 
						|
    char* file_base = static_cast<char*>(temp_mapping) + file_offset;
 | 
						|
    char* mem_base = reinterpret_cast<char*>(seg_page_start);
 | 
						|
    size_t match_offset = 0;
 | 
						|
    size_t size = seg_page_end - seg_page_start;
 | 
						|
 | 
						|
    if (file_size - file_offset < size) {
 | 
						|
      // File is too short to compare to this segment. The contents are likely
 | 
						|
      // different as well (it's probably for a different library version) so
 | 
						|
      // just don't bother checking.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    while (match_offset < size) {
 | 
						|
      // Skip over dissimilar pages.
 | 
						|
      while (match_offset < size &&
 | 
						|
             memcmp(mem_base + match_offset, file_base + match_offset, PAGE_SIZE) != 0) {
 | 
						|
        match_offset += PAGE_SIZE;
 | 
						|
      }
 | 
						|
 | 
						|
      // Count similar pages.
 | 
						|
      size_t mismatch_offset = match_offset;
 | 
						|
      while (mismatch_offset < size &&
 | 
						|
             memcmp(mem_base + mismatch_offset, file_base + mismatch_offset, PAGE_SIZE) == 0) {
 | 
						|
        mismatch_offset += PAGE_SIZE;
 | 
						|
      }
 | 
						|
 | 
						|
      // Map over similar pages.
 | 
						|
      if (mismatch_offset > match_offset) {
 | 
						|
        void* map = mmap(mem_base + match_offset, mismatch_offset - match_offset,
 | 
						|
                         PROT_READ, MAP_PRIVATE|MAP_FIXED, fd, match_offset);
 | 
						|
        if (map == MAP_FAILED) {
 | 
						|
          munmap(temp_mapping, file_size);
 | 
						|
          return -1;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      match_offset = mismatch_offset;
 | 
						|
    }
 | 
						|
 | 
						|
    // Add to the base file offset in case there are multiple relro segments.
 | 
						|
    file_offset += size;
 | 
						|
  }
 | 
						|
  munmap(temp_mapping, file_size);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#if defined(__arm__)
 | 
						|
 | 
						|
#  ifndef PT_ARM_EXIDX
 | 
						|
#    define PT_ARM_EXIDX    0x70000001      /* .ARM.exidx segment */
 | 
						|
#  endif
 | 
						|
 | 
						|
/* Return the address and size of the .ARM.exidx section in memory,
 | 
						|
 * if present.
 | 
						|
 *
 | 
						|
 * Input:
 | 
						|
 *   phdr_table  -> program header table
 | 
						|
 *   phdr_count  -> number of entries in tables
 | 
						|
 *   load_bias   -> load bias
 | 
						|
 * Output:
 | 
						|
 *   arm_exidx       -> address of table in memory (null on failure).
 | 
						|
 *   arm_exidx_count -> number of items in table (0 on failure).
 | 
						|
 * Return:
 | 
						|
 *   0 on error, -1 on failure (_no_ error code in errno)
 | 
						|
 */
 | 
						|
int phdr_table_get_arm_exidx(const ElfW(Phdr)* phdr_table, size_t phdr_count,
 | 
						|
                             ElfW(Addr) load_bias,
 | 
						|
                             ElfW(Addr)** arm_exidx, unsigned* arm_exidx_count) {
 | 
						|
  const ElfW(Phdr)* phdr = phdr_table;
 | 
						|
  const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
 | 
						|
 | 
						|
  for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
 | 
						|
    if (phdr->p_type != PT_ARM_EXIDX) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    *arm_exidx = reinterpret_cast<ElfW(Addr)*>(load_bias + phdr->p_vaddr);
 | 
						|
    *arm_exidx_count = (unsigned)(phdr->p_memsz / 8);
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  *arm_exidx = nullptr;
 | 
						|
  *arm_exidx_count = 0;
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* Return the address and size of the ELF file's .dynamic section in memory,
 | 
						|
 * or null if missing.
 | 
						|
 *
 | 
						|
 * Input:
 | 
						|
 *   phdr_table  -> program header table
 | 
						|
 *   phdr_count  -> number of entries in tables
 | 
						|
 *   load_bias   -> load bias
 | 
						|
 * Output:
 | 
						|
 *   dynamic       -> address of table in memory (null on failure).
 | 
						|
 *   dynamic_flags -> protection flags for section (unset on failure)
 | 
						|
 * Return:
 | 
						|
 *   void
 | 
						|
 */
 | 
						|
void phdr_table_get_dynamic_section(const ElfW(Phdr)* phdr_table, size_t phdr_count,
 | 
						|
                                    ElfW(Addr) load_bias, ElfW(Dyn)** dynamic,
 | 
						|
                                    ElfW(Word)* dynamic_flags) {
 | 
						|
  *dynamic = nullptr;
 | 
						|
  for (const ElfW(Phdr)* phdr = phdr_table, *phdr_limit = phdr + phdr_count; phdr < phdr_limit; phdr++) {
 | 
						|
    if (phdr->p_type == PT_DYNAMIC) {
 | 
						|
      *dynamic = reinterpret_cast<ElfW(Dyn)*>(load_bias + phdr->p_vaddr);
 | 
						|
      if (dynamic_flags) {
 | 
						|
        *dynamic_flags = phdr->p_flags;
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Sets loaded_phdr_ to the address of the program header table as it appears
 | 
						|
// in the loaded segments in memory. This is in contrast with phdr_table_,
 | 
						|
// which is temporary and will be released before the library is relocated.
 | 
						|
bool ElfReader::FindPhdr() {
 | 
						|
  const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_;
 | 
						|
 | 
						|
  // If there is a PT_PHDR, use it directly.
 | 
						|
  for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
 | 
						|
    if (phdr->p_type == PT_PHDR) {
 | 
						|
      return CheckPhdr(load_bias_ + phdr->p_vaddr);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, check the first loadable segment. If its file offset
 | 
						|
  // is 0, it starts with the ELF header, and we can trivially find the
 | 
						|
  // loaded program header from it.
 | 
						|
  for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
 | 
						|
    if (phdr->p_type == PT_LOAD) {
 | 
						|
      if (phdr->p_offset == 0) {
 | 
						|
        ElfW(Addr)  elf_addr = load_bias_ + phdr->p_vaddr;
 | 
						|
        const ElfW(Ehdr)* ehdr = reinterpret_cast<const ElfW(Ehdr)*>(elf_addr);
 | 
						|
        ElfW(Addr)  offset = ehdr->e_phoff;
 | 
						|
        return CheckPhdr((ElfW(Addr))ehdr + offset);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DL_ERR("can't find loaded phdr for \"%s\"", name_);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Ensures that our program header is actually within a loadable
 | 
						|
// segment. This should help catch badly-formed ELF files that
 | 
						|
// would cause the linker to crash later when trying to access it.
 | 
						|
bool ElfReader::CheckPhdr(ElfW(Addr) loaded) {
 | 
						|
  const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_;
 | 
						|
  ElfW(Addr) loaded_end = loaded + (phdr_num_ * sizeof(ElfW(Phdr)));
 | 
						|
  for (ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
 | 
						|
    if (phdr->p_type != PT_LOAD) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_;
 | 
						|
    ElfW(Addr) seg_end = phdr->p_filesz + seg_start;
 | 
						|
    if (seg_start <= loaded && loaded_end <= seg_end) {
 | 
						|
      loaded_phdr_ = reinterpret_cast<const ElfW(Phdr)*>(loaded);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DL_ERR("\"%s\" loaded phdr %p not in loadable segment", name_, reinterpret_cast<void*>(loaded));
 | 
						|
  return false;
 | 
						|
}
 |