9ac60bf82b
This is needed to make L work correctly, and bionic tests pass again, after applying the equivalent of commit00aaea3645
there. It makes the preexisting code that uses __sync implementations much more useful, although we should no longer be exercising that code in AOSP. Specifically fixes: We were invoking __has_extension and __has_builtin for GCC compilations. They're clang specific. Restructured the tests. The __sync implementation was not defining the LOCK_FREE macros. ATOMIC_VAR_INIT was using named field initializations. These are a C, not C++, feature, that is not supported by g++ 4.6. The stdatomic bionic test still failed with 4.6 and glibc with our questionable LOCK_FREE macro implementation. Don't run that piece with 4.6. In L, this is a prerequisite for fixing: Bug:16880454 Bug:16513433 Change-Id: I9b61e42307f96a114dce7552b6ead4ad1c544eab (cherry picked from commit32429606bf
)
249 lines
8.4 KiB
C++
249 lines
8.4 KiB
C++
/*
|
|
* Copyright (C) 2014 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <stdatomic.h>
|
|
#include <gtest/gtest.h>
|
|
#include <pthread.h>
|
|
#include <stdint.h>
|
|
|
|
TEST(stdatomic, LOCK_FREE) {
|
|
ASSERT_TRUE(ATOMIC_BOOL_LOCK_FREE);
|
|
ASSERT_TRUE(ATOMIC_CHAR16_T_LOCK_FREE);
|
|
ASSERT_TRUE(ATOMIC_CHAR32_T_LOCK_FREE);
|
|
ASSERT_TRUE(ATOMIC_CHAR_LOCK_FREE);
|
|
ASSERT_TRUE(ATOMIC_INT_LOCK_FREE);
|
|
ASSERT_TRUE(ATOMIC_LLONG_LOCK_FREE);
|
|
ASSERT_TRUE(ATOMIC_LONG_LOCK_FREE);
|
|
ASSERT_TRUE(ATOMIC_POINTER_LOCK_FREE);
|
|
ASSERT_TRUE(ATOMIC_SHORT_LOCK_FREE);
|
|
ASSERT_TRUE(ATOMIC_WCHAR_T_LOCK_FREE);
|
|
}
|
|
|
|
TEST(stdatomic, init) {
|
|
atomic_int v = ATOMIC_VAR_INIT(123);
|
|
ASSERT_EQ(123, atomic_load(&v));
|
|
|
|
atomic_init(&v, 456);
|
|
ASSERT_EQ(456, atomic_load(&v));
|
|
|
|
atomic_flag f = ATOMIC_FLAG_INIT;
|
|
ASSERT_FALSE(atomic_flag_test_and_set(&f));
|
|
}
|
|
|
|
TEST(stdatomic, atomic_thread_fence) {
|
|
atomic_thread_fence(memory_order_relaxed);
|
|
atomic_thread_fence(memory_order_consume);
|
|
atomic_thread_fence(memory_order_acquire);
|
|
atomic_thread_fence(memory_order_release);
|
|
atomic_thread_fence(memory_order_acq_rel);
|
|
atomic_thread_fence(memory_order_seq_cst);
|
|
}
|
|
|
|
TEST(stdatomic, atomic_signal_fence) {
|
|
atomic_signal_fence(memory_order_relaxed);
|
|
atomic_signal_fence(memory_order_consume);
|
|
atomic_signal_fence(memory_order_acquire);
|
|
atomic_signal_fence(memory_order_release);
|
|
atomic_signal_fence(memory_order_acq_rel);
|
|
atomic_signal_fence(memory_order_seq_cst);
|
|
}
|
|
|
|
TEST(stdatomic, atomic_is_lock_free) {
|
|
atomic_char small;
|
|
ASSERT_TRUE(atomic_is_lock_free(&small));
|
|
#if defined(__clang__) || __GNUC_PREREQ(4, 7)
|
|
// Otherwise stdatomic.h doesn't handle this.
|
|
atomic_intmax_t big;
|
|
// atomic_intmax_t(size = 64) is not lock free on mips32.
|
|
#if defined(__mips__) && !defined(__LP64__)
|
|
ASSERT_FALSE(atomic_is_lock_free(&big));
|
|
#else
|
|
ASSERT_TRUE(atomic_is_lock_free(&big));
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
TEST(stdatomic, atomic_flag) {
|
|
atomic_flag f = ATOMIC_FLAG_INIT;
|
|
ASSERT_FALSE(atomic_flag_test_and_set(&f));
|
|
ASSERT_TRUE(atomic_flag_test_and_set(&f));
|
|
|
|
atomic_flag_clear(&f);
|
|
|
|
ASSERT_FALSE(atomic_flag_test_and_set_explicit(&f, memory_order_relaxed));
|
|
ASSERT_TRUE(atomic_flag_test_and_set_explicit(&f, memory_order_relaxed));
|
|
|
|
atomic_flag_clear_explicit(&f, memory_order_relaxed);
|
|
ASSERT_FALSE(atomic_flag_test_and_set_explicit(&f, memory_order_relaxed));
|
|
}
|
|
|
|
TEST(stdatomic, atomic_store) {
|
|
atomic_int i;
|
|
atomic_store(&i, 123);
|
|
ASSERT_EQ(123, atomic_load(&i));
|
|
atomic_store_explicit(&i, 123, memory_order_relaxed);
|
|
ASSERT_EQ(123, atomic_load_explicit(&i, memory_order_relaxed));
|
|
}
|
|
|
|
TEST(stdatomic, atomic_exchange) {
|
|
atomic_int i;
|
|
atomic_store(&i, 123);
|
|
ASSERT_EQ(123, atomic_exchange(&i, 456));
|
|
ASSERT_EQ(456, atomic_exchange_explicit(&i, 123, memory_order_relaxed));
|
|
}
|
|
|
|
TEST(stdatomic, atomic_compare_exchange) {
|
|
atomic_int i;
|
|
int expected;
|
|
|
|
atomic_store(&i, 123);
|
|
expected = 123;
|
|
ASSERT_TRUE(atomic_compare_exchange_strong(&i, &expected, 456));
|
|
ASSERT_FALSE(atomic_compare_exchange_strong(&i, &expected, 456));
|
|
ASSERT_EQ(456, expected);
|
|
|
|
atomic_store(&i, 123);
|
|
expected = 123;
|
|
ASSERT_TRUE(atomic_compare_exchange_strong_explicit(&i, &expected, 456, memory_order_relaxed, memory_order_relaxed));
|
|
ASSERT_FALSE(atomic_compare_exchange_strong_explicit(&i, &expected, 456, memory_order_relaxed, memory_order_relaxed));
|
|
ASSERT_EQ(456, expected);
|
|
|
|
atomic_store(&i, 123);
|
|
expected = 123;
|
|
ASSERT_TRUE(atomic_compare_exchange_weak(&i, &expected, 456));
|
|
ASSERT_FALSE(atomic_compare_exchange_weak(&i, &expected, 456));
|
|
ASSERT_EQ(456, expected);
|
|
|
|
atomic_store(&i, 123);
|
|
expected = 123;
|
|
ASSERT_TRUE(atomic_compare_exchange_weak_explicit(&i, &expected, 456, memory_order_relaxed, memory_order_relaxed));
|
|
ASSERT_FALSE(atomic_compare_exchange_weak_explicit(&i, &expected, 456, memory_order_relaxed, memory_order_relaxed));
|
|
ASSERT_EQ(456, expected);
|
|
}
|
|
|
|
TEST(stdatomic, atomic_fetch_add) {
|
|
atomic_int i = ATOMIC_VAR_INIT(123);
|
|
ASSERT_EQ(123, atomic_fetch_add(&i, 1));
|
|
ASSERT_EQ(124, atomic_fetch_add_explicit(&i, 1, memory_order_relaxed));
|
|
ASSERT_EQ(125, atomic_load(&i));
|
|
}
|
|
|
|
TEST(stdatomic, atomic_fetch_sub) {
|
|
atomic_int i = ATOMIC_VAR_INIT(123);
|
|
ASSERT_EQ(123, atomic_fetch_sub(&i, 1));
|
|
ASSERT_EQ(122, atomic_fetch_sub_explicit(&i, 1, memory_order_relaxed));
|
|
ASSERT_EQ(121, atomic_load(&i));
|
|
}
|
|
|
|
TEST(stdatomic, atomic_fetch_or) {
|
|
atomic_int i = ATOMIC_VAR_INIT(0x100);
|
|
ASSERT_EQ(0x100, atomic_fetch_or(&i, 0x020));
|
|
ASSERT_EQ(0x120, atomic_fetch_or_explicit(&i, 0x003, memory_order_relaxed));
|
|
ASSERT_EQ(0x123, atomic_load(&i));
|
|
}
|
|
|
|
TEST(stdatomic, atomic_fetch_xor) {
|
|
atomic_int i = ATOMIC_VAR_INIT(0x100);
|
|
ASSERT_EQ(0x100, atomic_fetch_xor(&i, 0x120));
|
|
ASSERT_EQ(0x020, atomic_fetch_xor_explicit(&i, 0x103, memory_order_relaxed));
|
|
ASSERT_EQ(0x123, atomic_load(&i));
|
|
}
|
|
|
|
TEST(stdatomic, atomic_fetch_and) {
|
|
atomic_int i = ATOMIC_VAR_INIT(0x123);
|
|
ASSERT_EQ(0x123, atomic_fetch_and(&i, 0x00f));
|
|
ASSERT_EQ(0x003, atomic_fetch_and_explicit(&i, 0x2, memory_order_relaxed));
|
|
ASSERT_EQ(0x002, atomic_load(&i));
|
|
}
|
|
|
|
// And a rudimentary test of acquire-release memory ordering:
|
|
|
|
constexpr static uint_least32_t BIG = 10000000ul; // Assumed even below.
|
|
|
|
struct three_atomics {
|
|
atomic_uint_least32_t x;
|
|
char a[123]; // Everything in different cache lines,
|
|
// increase chance of compiler getting alignment wrong.
|
|
atomic_uint_least32_t y;
|
|
char b[4013];
|
|
atomic_uint_least32_t z;
|
|
};
|
|
|
|
// Very simple acquire/release memory ordering sanity check.
|
|
static void* writer(void* arg) {
|
|
three_atomics* a = reinterpret_cast<three_atomics*>(arg);
|
|
for (uint_least32_t i = 0; i <= BIG; i+=2) {
|
|
atomic_store_explicit(&a->x, i, memory_order_relaxed);
|
|
atomic_store_explicit(&a->z, i, memory_order_relaxed);
|
|
atomic_store_explicit(&a->y, i, memory_order_release);
|
|
atomic_store_explicit(&a->x, i+1, memory_order_relaxed);
|
|
atomic_store_explicit(&a->z, i+1, memory_order_relaxed);
|
|
atomic_store_explicit(&a->y, i+1, memory_order_release);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void* reader(void* arg) {
|
|
three_atomics* a = reinterpret_cast<three_atomics*>(arg);
|
|
uint_least32_t xval = 0, yval = 0, zval = 0;
|
|
size_t repeat = 0;
|
|
size_t repeat_limit = 1000;
|
|
while (yval != BIG + 1) {
|
|
yval = atomic_load_explicit(&a->y, memory_order_acquire);
|
|
zval = atomic_load_explicit(&a->z, memory_order_relaxed);
|
|
xval = atomic_load_explicit(&a->x, memory_order_relaxed);
|
|
// If we see a given value of y, the immediately preceding
|
|
// stores to z and x, or later ones, should also be visible.
|
|
if (zval < yval) {
|
|
// Cant just ASSERT, since we are in a non-void function.
|
|
ADD_FAILURE() << "acquire-release ordering violation: "
|
|
<< zval << " < " << yval << ", " << xval << "\n";
|
|
return 0; // Only report once.
|
|
}
|
|
if (xval < yval) {
|
|
// Cant just ASSERT, since we are in a non-void function.
|
|
ADD_FAILURE() << "acquire-release ordering violation: "
|
|
<< xval << " < " << yval << ", " << zval << "\n";
|
|
return 0; // Only report once.
|
|
}
|
|
if (repeat < repeat_limit) ++repeat;
|
|
}
|
|
// The following assertion is not technically guaranteed to hold.
|
|
// But if it fails to hold, this test was useless, and we have a
|
|
// serious scheduling issue that we should probably know about.
|
|
EXPECT_EQ(repeat, repeat_limit);
|
|
return 0;
|
|
}
|
|
|
|
TEST(stdatomic, ordering) {
|
|
// Run a memory ordering sanity test.
|
|
void* result;
|
|
three_atomics a;
|
|
atomic_init(&a.x, 0ul);
|
|
atomic_init(&a.y, 0ul);
|
|
atomic_init(&a.z, 0ul);
|
|
pthread_t t1,t2;
|
|
ASSERT_EQ(0, pthread_create(&t1, 0, reader, &a));
|
|
ASSERT_EQ(0, pthread_create(&t2, 0, writer, &a));
|
|
ASSERT_EQ(0, pthread_join(t1, &result));
|
|
EXPECT_EQ(0, result);
|
|
ASSERT_EQ(0, pthread_join(t2, &result));
|
|
EXPECT_EQ(0, result);
|
|
EXPECT_EQ(atomic_load_explicit(&a.x, memory_order_consume), BIG + 1);
|
|
EXPECT_EQ(atomic_load_explicit(&a.y, memory_order_seq_cst), BIG + 1);
|
|
EXPECT_EQ(atomic_load(&a.z), BIG + 1);
|
|
}
|