bionic/libc/bionic/pthread_rwlock.cpp
Yabin Cui b584572213 Add test for pthread types alignment check.
Bug: 19249079
Change-Id: I83c4f0d11ec5d82a346ae0057d02a92bb1d519e8
2015-03-20 17:42:09 -07:00

349 lines
13 KiB
C++

/*
* Copyright (C) 2010 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <errno.h>
#include <stdatomic.h>
#include "pthread_internal.h"
#include "private/bionic_futex.h"
#include "private/bionic_time_conversions.h"
/* Technical note:
*
* Possible states of a read/write lock:
*
* - no readers and no writer (unlocked)
* - one or more readers sharing the lock at the same time (read-locked)
* - one writer holding the lock (write-lock)
*
* Additionally:
* - trying to get the write-lock while there are any readers blocks
* - trying to get the read-lock while there is a writer blocks
* - a single thread can acquire the lock multiple times in read mode
*
* - Posix states that behavior is undefined (may deadlock) if a thread tries
* to acquire the lock
* - in write mode while already holding the lock (whether in read or write mode)
* - in read mode while already holding the lock in write mode.
* - This implementation will return EDEADLK in "write after write" and "read after
* write" cases and will deadlock in write after read case.
*
* TODO: As it stands now, pending_readers and pending_writers could be merged into a
* a single waiters variable. Keeping them separate adds a bit of clarity and keeps
* the door open for a writer-biased implementation.
*
*/
#define RWLOCKATTR_DEFAULT 0
#define RWLOCKATTR_SHARED_MASK 0x0010
int pthread_rwlockattr_init(pthread_rwlockattr_t* attr) {
*attr = PTHREAD_PROCESS_PRIVATE;
return 0;
}
int pthread_rwlockattr_destroy(pthread_rwlockattr_t* attr) {
*attr = -1;
return 0;
}
int pthread_rwlockattr_setpshared(pthread_rwlockattr_t* attr, int pshared) {
switch (pshared) {
case PTHREAD_PROCESS_PRIVATE:
case PTHREAD_PROCESS_SHARED:
*attr = pshared;
return 0;
default:
return EINVAL;
}
}
int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t* attr, int* pshared) {
*pshared = *attr;
return 0;
}
struct pthread_rwlock_internal_t {
atomic_int state; // 0=unlock, -1=writer lock, +n=reader lock
atomic_int writer_thread_id;
atomic_uint pending_readers;
atomic_uint pending_writers;
int32_t attr;
bool process_shared() const {
return attr == PTHREAD_PROCESS_SHARED;
}
#if defined(__LP64__)
char __reserved[36];
#else
char __reserved[20];
#endif
};
static_assert(sizeof(pthread_rwlock_t) == sizeof(pthread_rwlock_internal_t),
"pthread_rwlock_t should actually be pthread_rwlock_internal_t in implementation.");
// For binary compatibility with old version of pthread_rwlock_t, we can't use more strict
// alignment than 4-byte alignment.
static_assert(alignof(pthread_rwlock_t) == 4,
"pthread_rwlock_t should fulfill the alignment requirement of pthread_rwlock_internal_t.");
static inline pthread_rwlock_internal_t* __get_internal_rwlock(pthread_rwlock_t* rwlock_interface) {
return reinterpret_cast<pthread_rwlock_internal_t*>(rwlock_interface);
}
int pthread_rwlock_init(pthread_rwlock_t* rwlock_interface, const pthread_rwlockattr_t* attr) {
pthread_rwlock_internal_t* rwlock = __get_internal_rwlock(rwlock_interface);
if (__predict_true(attr == NULL)) {
rwlock->attr = 0;
} else {
switch (*attr) {
case PTHREAD_PROCESS_SHARED:
case PTHREAD_PROCESS_PRIVATE:
rwlock->attr= *attr;
break;
default:
return EINVAL;
}
}
atomic_init(&rwlock->state, 0);
atomic_init(&rwlock->writer_thread_id, 0);
atomic_init(&rwlock->pending_readers, 0);
atomic_init(&rwlock->pending_writers, 0);
return 0;
}
int pthread_rwlock_destroy(pthread_rwlock_t* rwlock_interface) {
pthread_rwlock_internal_t* rwlock = __get_internal_rwlock(rwlock_interface);
if (atomic_load_explicit(&rwlock->state, memory_order_relaxed) != 0) {
return EBUSY;
}
return 0;
}
static int __pthread_rwlock_timedrdlock(pthread_rwlock_internal_t* rwlock,
const timespec* abs_timeout_or_null) {
if (__predict_false(__get_thread()->tid == atomic_load_explicit(&rwlock->writer_thread_id,
memory_order_relaxed))) {
return EDEADLK;
}
while (true) {
int old_state = atomic_load_explicit(&rwlock->state, memory_order_relaxed);
if (__predict_true(old_state >= 0)) {
if (atomic_compare_exchange_weak_explicit(&rwlock->state, &old_state, old_state + 1,
memory_order_acquire, memory_order_relaxed)) {
return 0;
}
} else {
timespec ts;
timespec* rel_timeout = NULL;
if (abs_timeout_or_null != NULL) {
rel_timeout = &ts;
if (!timespec_from_absolute_timespec(*rel_timeout, *abs_timeout_or_null, CLOCK_REALTIME)) {
return ETIMEDOUT;
}
}
// To avoid losing wake ups, the pending_readers increment should be observed before
// futex_wait by all threads. A seq_cst fence instead of a seq_cst operation is used
// here. Because only a seq_cst fence can ensure sequential consistency for non-atomic
// operations in futex_wait.
atomic_fetch_add_explicit(&rwlock->pending_readers, 1, memory_order_relaxed);
atomic_thread_fence(memory_order_seq_cst);
int ret = __futex_wait_ex(&rwlock->state, rwlock->process_shared(), old_state,
rel_timeout);
atomic_fetch_sub_explicit(&rwlock->pending_readers, 1, memory_order_relaxed);
if (ret == -ETIMEDOUT) {
return ETIMEDOUT;
}
}
}
}
static int __pthread_rwlock_timedwrlock(pthread_rwlock_internal_t* rwlock,
const timespec* abs_timeout_or_null) {
if (__predict_false(__get_thread()->tid == atomic_load_explicit(&rwlock->writer_thread_id,
memory_order_relaxed))) {
return EDEADLK;
}
while (true) {
int old_state = atomic_load_explicit(&rwlock->state, memory_order_relaxed);
if (__predict_true(old_state == 0)) {
if (atomic_compare_exchange_weak_explicit(&rwlock->state, &old_state, -1,
memory_order_acquire, memory_order_relaxed)) {
// writer_thread_id is protected by rwlock and can only be modified in rwlock write
// owner thread. Other threads may read it for EDEADLK error checking, atomic operation
// is safe enough for it.
atomic_store_explicit(&rwlock->writer_thread_id, __get_thread()->tid, memory_order_relaxed);
return 0;
}
} else {
timespec ts;
timespec* rel_timeout = NULL;
if (abs_timeout_or_null != NULL) {
rel_timeout = &ts;
if (!timespec_from_absolute_timespec(*rel_timeout, *abs_timeout_or_null, CLOCK_REALTIME)) {
return ETIMEDOUT;
}
}
// To avoid losing wake ups, the pending_writers increment should be observed before
// futex_wait by all threads. A seq_cst fence instead of a seq_cst operation is used
// here. Because only a seq_cst fence can ensure sequential consistency for non-atomic
// operations in futex_wait.
atomic_fetch_add_explicit(&rwlock->pending_writers, 1, memory_order_relaxed);
atomic_thread_fence(memory_order_seq_cst);
int ret = __futex_wait_ex(&rwlock->state, rwlock->process_shared(), old_state,
rel_timeout);
atomic_fetch_sub_explicit(&rwlock->pending_writers, 1, memory_order_relaxed);
if (ret == -ETIMEDOUT) {
return ETIMEDOUT;
}
}
}
}
int pthread_rwlock_rdlock(pthread_rwlock_t* rwlock_interface) {
pthread_rwlock_internal_t* rwlock = __get_internal_rwlock(rwlock_interface);
return __pthread_rwlock_timedrdlock(rwlock, NULL);
}
int pthread_rwlock_timedrdlock(pthread_rwlock_t* rwlock_interface, const timespec* abs_timeout) {
pthread_rwlock_internal_t* rwlock = __get_internal_rwlock(rwlock_interface);
return __pthread_rwlock_timedrdlock(rwlock, abs_timeout);
}
int pthread_rwlock_tryrdlock(pthread_rwlock_t* rwlock_interface) {
pthread_rwlock_internal_t* rwlock = __get_internal_rwlock(rwlock_interface);
int old_state = atomic_load_explicit(&rwlock->state, memory_order_relaxed);
while (old_state >= 0 && !atomic_compare_exchange_weak_explicit(&rwlock->state, &old_state,
old_state + 1, memory_order_acquire, memory_order_relaxed)) {
}
return (old_state >= 0) ? 0 : EBUSY;
}
int pthread_rwlock_wrlock(pthread_rwlock_t* rwlock_interface) {
pthread_rwlock_internal_t* rwlock = __get_internal_rwlock(rwlock_interface);
return __pthread_rwlock_timedwrlock(rwlock, NULL);
}
int pthread_rwlock_timedwrlock(pthread_rwlock_t* rwlock_interface, const timespec* abs_timeout) {
pthread_rwlock_internal_t* rwlock = __get_internal_rwlock(rwlock_interface);
return __pthread_rwlock_timedwrlock(rwlock, abs_timeout);
}
int pthread_rwlock_trywrlock(pthread_rwlock_t* rwlock_interface) {
pthread_rwlock_internal_t* rwlock = __get_internal_rwlock(rwlock_interface);
int old_state = atomic_load_explicit(&rwlock->state, memory_order_relaxed);
while (old_state == 0 && !atomic_compare_exchange_weak_explicit(&rwlock->state, &old_state, -1,
memory_order_acquire, memory_order_relaxed)) {
}
if (old_state == 0) {
atomic_store_explicit(&rwlock->writer_thread_id, __get_thread()->tid, memory_order_relaxed);
return 0;
}
return EBUSY;
}
int pthread_rwlock_unlock(pthread_rwlock_t* rwlock_interface) {
pthread_rwlock_internal_t* rwlock = __get_internal_rwlock(rwlock_interface);
int old_state = atomic_load_explicit(&rwlock->state, memory_order_relaxed);
if (__predict_false(old_state == 0)) {
return EPERM;
} else if (old_state == -1) {
if (atomic_load_explicit(&rwlock->writer_thread_id, memory_order_relaxed) != __get_thread()->tid) {
return EPERM;
}
// We're no longer the owner.
atomic_store_explicit(&rwlock->writer_thread_id, 0, memory_order_relaxed);
// Change state from -1 to 0.
atomic_store_explicit(&rwlock->state, 0, memory_order_release);
} else { // old_state > 0
// Reduce state by 1.
while (old_state > 0 && !atomic_compare_exchange_weak_explicit(&rwlock->state, &old_state,
old_state - 1, memory_order_release, memory_order_relaxed)) {
}
if (old_state <= 0) {
return EPERM;
} else if (old_state > 1) {
return 0;
}
// old_state = 1, which means the last reader calling unlock. It has to wake up waiters.
}
// If having waiters, wake up them.
// To avoid losing wake ups, the update of state should be observed before reading
// pending_readers/pending_writers by all threads. Use read locking as an example:
// read locking thread unlocking thread
// pending_readers++; state = 0;
// seq_cst fence seq_cst fence
// read state for futex_wait read pending_readers for futex_wake
//
// So when locking and unlocking threads are running in parallel, we will not get
// in a situation that the locking thread reads state as negative and needs to wait,
// while the unlocking thread reads pending_readers as zero and doesn't need to wake up waiters.
atomic_thread_fence(memory_order_seq_cst);
if (__predict_false(atomic_load_explicit(&rwlock->pending_readers, memory_order_relaxed) > 0 ||
atomic_load_explicit(&rwlock->pending_writers, memory_order_relaxed) > 0)) {
__futex_wake_ex(&rwlock->state, rwlock->process_shared(), INT_MAX);
}
return 0;
}