bionic/libc/bionic/pthread-timers.c
Elliott Hughes 470631ed79 Give the timer_create SIGEV_THREAD helper threads sensible names.
Bug: 6609676
Change-Id: I286b197c75beee4d9930b0973f2d7dd47c14e91c
2012-06-06 10:32:56 -07:00

607 lines
18 KiB
C

/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "pthread_internal.h"
#include <errno.h>
#include <linux/time.h>
#include <stdio.h>
#include <string.h>
// Normal (i.e. non-SIGEV_THREAD) timers are created directly by the kernel
// and are passed as is to/from the caller.
//
// This file also implements the support required for SIGEV_THREAD ("POSIX interval")
// timers. See the following pages for additional details:
//
// www.opengroup.org/onlinepubs/000095399/functions/timer_create.html
// www.opengroup.org/onlinepubs/000095399/functions/timer_settime.html
// www.opengroup.org/onlinepubs/000095399/functions/xsh_chap02_04.html#tag_02_04_01
//
// The Linux kernel doesn't support these, so we need to implement them in the
// C library. We use a very basic scheme where each timer is associated to a
// thread that will loop, waiting for timeouts or messages from the program
// corresponding to calls to timer_settime() and timer_delete().
//
// Note also an important thing: Posix mandates that in the case of fork(),
// the timers of the child process should be disarmed, but not deleted.
// this is implemented by providing a fork() wrapper (see bionic/fork.c) which
// stops all timers before the fork, and only re-start them in case of error
// or in the parent process.
//
// This stop/start is implemented by the __timer_table_start_stop() function
// below.
//
// A SIGEV_THREAD timer ID will always have its TIMER_ID_WRAP_BIT
// set to 1. In this implementation, this is always bit 31, which is
// guaranteed to never be used by kernel-provided timer ids
//
// (See code in <kernel>/lib/idr.c, used to manage IDs, to see why.)
#define TIMER_ID_WRAP_BIT 0x80000000
#define TIMER_ID_WRAP(id) ((timer_t)((id) | TIMER_ID_WRAP_BIT))
#define TIMER_ID_UNWRAP(id) ((timer_t)((id) & ~TIMER_ID_WRAP_BIT))
#define TIMER_ID_IS_WRAPPED(id) (((id) & TIMER_ID_WRAP_BIT) != 0)
/* this value is used internally to indicate a 'free' or 'zombie'
* thr_timer structure. Here, 'zombie' means that timer_delete()
* has been called, but that the corresponding thread hasn't
* exited yet.
*/
#define TIMER_ID_NONE ((timer_t)0xffffffff)
/* True iff a timer id is valid */
#define TIMER_ID_IS_VALID(id) ((id) != TIMER_ID_NONE)
/* the maximum value of overrun counters */
#define DELAYTIMER_MAX 0x7fffffff
#define __likely(x) __builtin_expect(!!(x),1)
#define __unlikely(x) __builtin_expect(!!(x),0)
typedef struct thr_timer thr_timer_t;
typedef struct thr_timer_table thr_timer_table_t;
/* The Posix spec says the function receives an unsigned parameter, but
* it's really a 'union sigval' a.k.a. sigval_t */
typedef void (*thr_timer_func_t)( sigval_t );
struct thr_timer {
thr_timer_t* next; /* next in free list */
timer_t id; /* TIMER_ID_NONE iff free or dying */
clockid_t clock;
pthread_t thread;
pthread_attr_t attributes;
thr_timer_func_t callback;
sigval_t value;
/* the following are used to communicate between
* the timer thread and the timer_XXX() functions
*/
pthread_mutex_t mutex; /* lock */
pthread_cond_t cond; /* signal a state change to thread */
int volatile done; /* set by timer_delete */
int volatile stopped; /* set by _start_stop() */
struct timespec volatile expires; /* next expiration time, or 0 */
struct timespec volatile period; /* reload value, or 0 */
int volatile overruns; /* current number of overruns */
};
#define MAX_THREAD_TIMERS 32
struct thr_timer_table {
pthread_mutex_t lock;
thr_timer_t* free_timer;
thr_timer_t timers[ MAX_THREAD_TIMERS ];
};
/** GLOBAL TABLE OF THREAD TIMERS
**/
static void
thr_timer_table_init( thr_timer_table_t* t )
{
int nn;
memset(t, 0, sizeof *t);
pthread_mutex_init( &t->lock, NULL );
for (nn = 0; nn < MAX_THREAD_TIMERS; nn++)
t->timers[nn].id = TIMER_ID_NONE;
t->free_timer = &t->timers[0];
for (nn = 1; nn < MAX_THREAD_TIMERS; nn++)
t->timers[nn-1].next = &t->timers[nn];
}
static thr_timer_t*
thr_timer_table_alloc( thr_timer_table_t* t )
{
thr_timer_t* timer;
if (t == NULL)
return NULL;
pthread_mutex_lock(&t->lock);
timer = t->free_timer;
if (timer != NULL) {
t->free_timer = timer->next;
timer->next = NULL;
timer->id = TIMER_ID_WRAP((timer - t->timers));
}
pthread_mutex_unlock(&t->lock);
return timer;
}
static void
thr_timer_table_free( thr_timer_table_t* t, thr_timer_t* timer )
{
pthread_mutex_lock( &t->lock );
timer->id = TIMER_ID_NONE;
timer->thread = 0;
timer->next = t->free_timer;
t->free_timer = timer;
pthread_mutex_unlock( &t->lock );
}
static void thr_timer_table_start_stop(thr_timer_table_t* t, int stop) {
if (t == NULL) {
return;
}
pthread_mutex_lock(&t->lock);
for (int nn = 0; nn < MAX_THREAD_TIMERS; ++nn) {
thr_timer_t* timer = &t->timers[nn];
if (TIMER_ID_IS_VALID(timer->id)) {
// Tell the thread to start/stop.
pthread_mutex_lock(&timer->mutex);
timer->stopped = stop;
pthread_cond_signal( &timer->cond );
pthread_mutex_unlock(&timer->mutex);
}
}
pthread_mutex_unlock(&t->lock);
}
/* convert a timer_id into the corresponding thr_timer_t* pointer
* returns NULL if the id is not wrapped or is invalid/free
*/
static thr_timer_t*
thr_timer_table_from_id( thr_timer_table_t* t,
timer_t id,
int remove )
{
unsigned index;
thr_timer_t* timer;
if (t == NULL || !TIMER_ID_IS_WRAPPED(id))
return NULL;
index = (unsigned) TIMER_ID_UNWRAP(id);
if (index >= MAX_THREAD_TIMERS)
return NULL;
pthread_mutex_lock(&t->lock);
timer = &t->timers[index];
if (!TIMER_ID_IS_VALID(timer->id)) {
timer = NULL;
} else {
/* if we're removing this timer, clear the id
* right now to prevent another thread to
* use the same id after the unlock */
if (remove)
timer->id = TIMER_ID_NONE;
}
pthread_mutex_unlock(&t->lock);
return timer;
}
/* the static timer table - we only create it if the process
* really wants to use SIGEV_THREAD timers, which should be
* pretty infrequent
*/
static pthread_once_t __timer_table_once = PTHREAD_ONCE_INIT;
static thr_timer_table_t* __timer_table;
static void __timer_table_init(void) {
__timer_table = calloc(1, sizeof(*__timer_table));
if (__timer_table != NULL) {
thr_timer_table_init(__timer_table);
}
}
static thr_timer_table_t* __timer_table_get(void) {
pthread_once(&__timer_table_once, __timer_table_init);
return __timer_table;
}
/** POSIX THREAD TIMERS CLEANUP ON FORK
**
** this should be called from the 'fork()' wrapper to stop/start
** all active thread timers. this is used to implement a Posix
** requirements: the timers of fork child processes must be
** disarmed but not deleted.
**/
__LIBC_HIDDEN__ void __timer_table_start_stop(int stop) {
// We access __timer_table directly so we don't create it if it doesn't yet exist.
thr_timer_table_start_stop(__timer_table, stop);
}
static thr_timer_t*
thr_timer_from_id( timer_t id )
{
thr_timer_table_t* table = __timer_table_get();
thr_timer_t* timer = thr_timer_table_from_id( table, id, 0 );
return timer;
}
static __inline__ void
thr_timer_lock( thr_timer_t* t )
{
pthread_mutex_lock(&t->mutex);
}
static __inline__ void
thr_timer_unlock( thr_timer_t* t )
{
pthread_mutex_unlock(&t->mutex);
}
/** POSIX TIMERS APIs */
extern int __timer_create(clockid_t, struct sigevent*, timer_t*);
extern int __timer_delete(timer_t);
extern int __timer_gettime(timer_t, struct itimerspec*);
extern int __timer_settime(timer_t, int, const struct itimerspec*, struct itimerspec*);
extern int __timer_getoverrun(timer_t);
static void* timer_thread_start(void*);
int timer_create(clockid_t clock_id, struct sigevent* evp, timer_t* timer_id) {
// If not a SIGEV_THREAD timer, the kernel can handle it without our help.
if (__likely(evp == NULL || evp->sigev_notify != SIGEV_THREAD)) {
return __timer_create(clock_id, evp, timer_id);
}
// Check arguments.
if (evp->sigev_notify_function == NULL) {
errno = EINVAL;
return -1;
}
// Check that the clock id is supported by the kernel.
struct timespec dummy;
if (clock_gettime(clock_id, &dummy) < 0 && errno == EINVAL) {
return -1;
}
// Create a new timer and its thread.
// TODO: use a single global thread for all timers.
thr_timer_table_t* table = __timer_table_get();
thr_timer_t* timer = thr_timer_table_alloc(table);
if (timer == NULL) {
errno = ENOMEM;
return -1;
}
// Copy the thread attributes.
if (evp->sigev_notify_attributes == NULL) {
pthread_attr_init(&timer->attributes);
} else {
timer->attributes = ((pthread_attr_t*) evp->sigev_notify_attributes)[0];
}
// Posix says that the default is PTHREAD_CREATE_DETACHED and
// that PTHREAD_CREATE_JOINABLE has undefined behavior.
// So simply always use DETACHED :-)
pthread_attr_setdetachstate(&timer->attributes, PTHREAD_CREATE_DETACHED);
timer->callback = evp->sigev_notify_function;
timer->value = evp->sigev_value;
timer->clock = clock_id;
pthread_mutex_init(&timer->mutex, NULL);
pthread_cond_init(&timer->cond, NULL);
timer->done = 0;
timer->stopped = 0;
timer->expires.tv_sec = timer->expires.tv_nsec = 0;
timer->period.tv_sec = timer->period.tv_nsec = 0;
timer->overruns = 0;
// Create the thread.
int rc = pthread_create(&timer->thread, &timer->attributes, timer_thread_start, timer);
if (rc != 0) {
thr_timer_table_free(table, timer);
errno = rc;
return -1;
}
*timer_id = timer->id;
return 0;
}
int
timer_delete( timer_t id )
{
if ( __likely(!TIMER_ID_IS_WRAPPED(id)) )
return __timer_delete( id );
else
{
thr_timer_table_t* table = __timer_table_get();
thr_timer_t* timer = thr_timer_table_from_id(table, id, 1);
if (timer == NULL) {
errno = EINVAL;
return -1;
}
/* tell the timer's thread to stop */
thr_timer_lock(timer);
timer->done = 1;
pthread_cond_signal( &timer->cond );
thr_timer_unlock(timer);
/* NOTE: the thread will call __timer_table_free() to free the
* timer object. the '1' parameter to thr_timer_table_from_id
* above ensured that the object and its timer_id cannot be
* reused before that.
*/
return 0;
}
}
/* return the relative time until the next expiration, or 0 if
* the timer is disarmed */
static void
timer_gettime_internal( thr_timer_t* timer,
struct itimerspec* spec)
{
struct timespec diff;
diff = timer->expires;
if (!timespec_is_zero(&diff))
{
struct timespec now;
clock_gettime( timer->clock, &now );
timespec_sub(&diff, &now);
/* in case of overrun, return 0 */
if (timespec_cmp0(&diff) < 0) {
timespec_zero(&diff);
}
}
spec->it_value = diff;
spec->it_interval = timer->period;
}
int
timer_gettime( timer_t id, struct itimerspec* ospec )
{
if (ospec == NULL) {
errno = EINVAL;
return -1;
}
if ( __likely(!TIMER_ID_IS_WRAPPED(id)) ) {
return __timer_gettime( id, ospec );
} else {
thr_timer_t* timer = thr_timer_from_id(id);
if (timer == NULL) {
errno = EINVAL;
return -1;
}
thr_timer_lock(timer);
timer_gettime_internal( timer, ospec );
thr_timer_unlock(timer);
}
return 0;
}
int
timer_settime( timer_t id,
int flags,
const struct itimerspec* spec,
struct itimerspec* ospec )
{
if (spec == NULL) {
errno = EINVAL;
return -1;
}
if ( __likely(!TIMER_ID_IS_WRAPPED(id)) ) {
return __timer_settime( id, flags, spec, ospec );
} else {
thr_timer_t* timer = thr_timer_from_id(id);
struct timespec expires, now;
if (timer == NULL) {
errno = EINVAL;
return -1;
}
thr_timer_lock(timer);
/* return current timer value if ospec isn't NULL */
if (ospec != NULL) {
timer_gettime_internal(timer, ospec );
}
/* compute next expiration time. note that if the
* new it_interval is 0, we should disarm the timer
*/
expires = spec->it_value;
if (!timespec_is_zero(&expires)) {
clock_gettime( timer->clock, &now );
if (!(flags & TIMER_ABSTIME)) {
timespec_add(&expires, &now);
} else {
if (timespec_cmp(&expires, &now) < 0)
expires = now;
}
}
timer->expires = expires;
timer->period = spec->it_interval;
thr_timer_unlock( timer );
/* signal the change to the thread */
pthread_cond_signal( &timer->cond );
}
return 0;
}
int
timer_getoverrun(timer_t id)
{
if ( __likely(!TIMER_ID_IS_WRAPPED(id)) ) {
return __timer_getoverrun( id );
} else {
thr_timer_t* timer = thr_timer_from_id(id);
int result;
if (timer == NULL) {
errno = EINVAL;
return -1;
}
thr_timer_lock(timer);
result = timer->overruns;
thr_timer_unlock(timer);
return result;
}
}
static void* timer_thread_start(void* arg) {
thr_timer_t* timer = arg;
thr_timer_lock(timer);
// Give this thread a meaningful name.
char name[32];
snprintf(name, sizeof(name), "POSIX interval timer 0x%08x", timer->id);
pthread_setname_np(pthread_self(), name);
// We loop until timer->done is set in timer_delete().
while (!timer->done) {
struct timespec expires = timer->expires;
struct timespec period = timer->period;
// If the timer is stopped or disarmed, wait indefinitely
// for a state change from timer_settime/_delete/_start_stop.
if (timer->stopped || timespec_is_zero(&expires)) {
pthread_cond_wait(&timer->cond, &timer->mutex);
continue;
}
// Otherwise, we need to do a timed wait until either a
// state change of the timer expiration time.
struct timespec now;
clock_gettime(timer->clock, &now);
if (timespec_cmp(&expires, &now) > 0) {
// Cool, there was no overrun, so compute the
// relative timeout as 'expires - now', then wait.
struct timespec diff = expires;
timespec_sub(&diff, &now);
int ret = __pthread_cond_timedwait_relative(&timer->cond, &timer->mutex, &diff);
// If we didn't time out, it means that a state change
// occurred, so loop to take care of it.
if (ret != ETIMEDOUT) {
continue;
}
} else {
// Overrun was detected before we could wait!
if (!timespec_is_zero(&period)) {
// For periodic timers, compute total overrun count.
do {
timespec_add(&expires, &period);
if (timer->overruns < DELAYTIMER_MAX) {
timer->overruns += 1;
}
} while (timespec_cmp(&expires, &now) < 0);
// Backtrack the last one, because we're going to
// add the same value just a bit later.
timespec_sub(&expires, &period);
} else {
// For non-periodic timers, things are simple.
timer->overruns = 1;
}
}
// If we get here, a timeout was detected.
// First reload/disarm the timer as needed.
if (!timespec_is_zero(&period)) {
timespec_add(&expires, &period);
} else {
timespec_zero(&expires);
}
timer->expires = expires;
// Now call the timer callback function. Release the
// lock to allow the function to modify the timer setting
// or call timer_getoverrun().
// NOTE: at this point we trust the callback not to be a
// total moron and pthread_kill() the timer thread
thr_timer_unlock(timer);
timer->callback(timer->value);
thr_timer_lock(timer);
// Now clear the overruns counter. it only makes sense
// within the callback.
timer->overruns = 0;
}
thr_timer_unlock(timer);
// Free the timer object.
thr_timer_table_free(__timer_table_get(), timer);
return NULL;
}