bionic/libm/src/s_fma.c
2009-03-03 19:28:35 -08:00

203 lines
5.4 KiB
C

/*-
* Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
/* __FBSDID("$FreeBSD: src/lib/msun/src/s_fma.c,v 1.4 2005/03/18 02:27:59 das Exp $"); */
#include <fenv.h>
#include <float.h>
#include <math.h>
/*
* Fused multiply-add: Compute x * y + z with a single rounding error.
*
* We use scaling to avoid overflow/underflow, along with the
* canonical precision-doubling technique adapted from:
*
* Dekker, T. A Floating-Point Technique for Extending the
* Available Precision. Numer. Math. 18, 224-242 (1971).
*
* This algorithm is sensitive to the rounding precision. FPUs such
* as the i387 must be set in double-precision mode if variables are
* to be stored in FP registers in order to avoid incorrect results.
* This is the default on FreeBSD, but not on many other systems.
*
* Hardware instructions should be used on architectures that support it,
* since this implementation will likely be several times slower.
*/
#if LDBL_MANT_DIG != 113
double
fma(double x, double y, double z)
{
static const double split = 0x1p27 + 1.0;
double xs, ys, zs;
double c, cc, hx, hy, p, q, tx, ty;
double r, rr, s;
int oround;
int ex, ey, ez;
int spread;
if (z == 0.0)
return (x * y);
if (x == 0.0 || y == 0.0)
return (x * y + z);
/* Results of frexp() are undefined for these cases. */
if (!isfinite(x) || !isfinite(y) || !isfinite(z))
return (x * y + z);
xs = frexp(x, &ex);
ys = frexp(y, &ey);
zs = frexp(z, &ez);
oround = fegetround();
spread = ex + ey - ez;
/*
* If x * y and z are many orders of magnitude apart, the scaling
* will overflow, so we handle these cases specially. Rounding
* modes other than FE_TONEAREST are painful.
*/
if (spread > DBL_MANT_DIG * 2) {
fenv_t env;
feraiseexcept(FE_INEXACT);
switch(oround) {
case FE_TONEAREST:
return (x * y);
case FE_TOWARDZERO:
if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
return (x * y);
feholdexcept(&env);
r = x * y;
if (!fetestexcept(FE_INEXACT))
r = nextafter(r, 0);
feupdateenv(&env);
return (r);
case FE_DOWNWARD:
if (z > 0.0)
return (x * y);
feholdexcept(&env);
r = x * y;
if (!fetestexcept(FE_INEXACT))
r = nextafter(r, -INFINITY);
feupdateenv(&env);
return (r);
default: /* FE_UPWARD */
if (z < 0.0)
return (x * y);
feholdexcept(&env);
r = x * y;
if (!fetestexcept(FE_INEXACT))
r = nextafter(r, INFINITY);
feupdateenv(&env);
return (r);
}
}
if (spread < -DBL_MANT_DIG) {
feraiseexcept(FE_INEXACT);
if (!isnormal(z))
feraiseexcept(FE_UNDERFLOW);
switch (oround) {
case FE_TONEAREST:
return (z);
case FE_TOWARDZERO:
if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
return (z);
else
return (nextafter(z, 0));
case FE_DOWNWARD:
if (x > 0.0 ^ y < 0.0)
return (z);
else
return (nextafter(z, -INFINITY));
default: /* FE_UPWARD */
if (x > 0.0 ^ y < 0.0)
return (nextafter(z, INFINITY));
else
return (z);
}
}
/*
* Use Dekker's algorithm to perform the multiplication and
* subsequent addition in twice the machine precision.
* Arrange so that x * y = c + cc, and x * y + z = r + rr.
*/
fesetround(FE_TONEAREST);
p = xs * split;
hx = xs - p;
hx += p;
tx = xs - hx;
p = ys * split;
hy = ys - p;
hy += p;
ty = ys - hy;
p = hx * hy;
q = hx * ty + tx * hy;
c = p + q;
cc = p - c + q + tx * ty;
zs = ldexp(zs, -spread);
r = c + zs;
s = r - c;
rr = (c - (r - s)) + (zs - s) + cc;
spread = ex + ey;
if (spread + ilogb(r) > -1023) {
fesetround(oround);
r = r + rr;
} else {
/*
* The result is subnormal, so we round before scaling to
* avoid double rounding.
*/
p = ldexp(copysign(0x1p-1022, r), -spread);
c = r + p;
s = c - r;
cc = (r - (c - s)) + (p - s) + rr;
fesetround(oround);
r = (c + cc) - p;
}
return (ldexp(r, spread));
}
#else /* LDBL_MANT_DIG == 113 */
/*
* 113 bits of precision is more than twice the precision of a double,
* so it is enough to represent the intermediate product exactly.
*/
double
fma(double x, double y, double z)
{
return ((long double)x * y + z);
}
#endif /* LDBL_MANT_DIG != 113 */
#if (LDBL_MANT_DIG == 53)
__weak_reference(fma, fmal);
#endif