2074 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2074 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2008 The Android Open Source Project
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  *  * Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  *  * Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in
 | |
|  *    the documentation and/or other materials provided with the
 | |
|  *    distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
|  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
|  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 | |
|  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 | |
|  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 | |
|  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 | |
|  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 | |
|  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 | |
|  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 | |
|  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 | |
|  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #include "resolv_cache.h"
 | |
| #include <resolv.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <time.h>
 | |
| #include "pthread.h"
 | |
| 
 | |
| #include <errno.h>
 | |
| #include <arpa/nameser.h>
 | |
| #include <sys/system_properties.h>
 | |
| #include <net/if.h>
 | |
| #include <netdb.h>
 | |
| #include <linux/if.h>
 | |
| 
 | |
| #include <arpa/inet.h>
 | |
| #include "resolv_private.h"
 | |
| #include "resolv_netid.h"
 | |
| #include "res_private.h"
 | |
| 
 | |
| /* This code implements a small and *simple* DNS resolver cache.
 | |
|  *
 | |
|  * It is only used to cache DNS answers for a time defined by the smallest TTL
 | |
|  * among the answer records in order to reduce DNS traffic. It is not supposed
 | |
|  * to be a full DNS cache, since we plan to implement that in the future in a
 | |
|  * dedicated process running on the system.
 | |
|  *
 | |
|  * Note that its design is kept simple very intentionally, i.e.:
 | |
|  *
 | |
|  *  - it takes raw DNS query packet data as input, and returns raw DNS
 | |
|  *    answer packet data as output
 | |
|  *
 | |
|  *    (this means that two similar queries that encode the DNS name
 | |
|  *     differently will be treated distinctly).
 | |
|  *
 | |
|  *    the smallest TTL value among the answer records are used as the time
 | |
|  *    to keep an answer in the cache.
 | |
|  *
 | |
|  *    this is bad, but we absolutely want to avoid parsing the answer packets
 | |
|  *    (and should be solved by the later full DNS cache process).
 | |
|  *
 | |
|  *  - the implementation is just a (query-data) => (answer-data) hash table
 | |
|  *    with a trivial least-recently-used expiration policy.
 | |
|  *
 | |
|  * Doing this keeps the code simple and avoids to deal with a lot of things
 | |
|  * that a full DNS cache is expected to do.
 | |
|  *
 | |
|  * The API is also very simple:
 | |
|  *
 | |
|  *   - the client calls _resolv_cache_get() to obtain a handle to the cache.
 | |
|  *     this will initialize the cache on first usage. the result can be NULL
 | |
|  *     if the cache is disabled.
 | |
|  *
 | |
|  *   - the client calls _resolv_cache_lookup() before performing a query
 | |
|  *
 | |
|  *     if the function returns RESOLV_CACHE_FOUND, a copy of the answer data
 | |
|  *     has been copied into the client-provided answer buffer.
 | |
|  *
 | |
|  *     if the function returns RESOLV_CACHE_NOTFOUND, the client should perform
 | |
|  *     a request normally, *then* call _resolv_cache_add() to add the received
 | |
|  *     answer to the cache.
 | |
|  *
 | |
|  *     if the function returns RESOLV_CACHE_UNSUPPORTED, the client should
 | |
|  *     perform a request normally, and *not* call _resolv_cache_add()
 | |
|  *
 | |
|  *     note that RESOLV_CACHE_UNSUPPORTED is also returned if the answer buffer
 | |
|  *     is too short to accomodate the cached result.
 | |
|  */
 | |
| 
 | |
| /* the name of an environment variable that will be checked the first time
 | |
|  * this code is called if its value is "0", then the resolver cache is
 | |
|  * disabled.
 | |
|  */
 | |
| #define  CONFIG_ENV  "BIONIC_DNSCACHE"
 | |
| 
 | |
| /* entries older than CONFIG_SECONDS seconds are always discarded.
 | |
|  */
 | |
| #define  CONFIG_SECONDS    (60*10)    /* 10 minutes */
 | |
| 
 | |
| /* default number of entries kept in the cache. This value has been
 | |
|  * determined by browsing through various sites and counting the number
 | |
|  * of corresponding requests. Keep in mind that our framework is currently
 | |
|  * performing two requests per name lookup (one for IPv4, the other for IPv6)
 | |
|  *
 | |
|  *    www.google.com      4
 | |
|  *    www.ysearch.com     6
 | |
|  *    www.amazon.com      8
 | |
|  *    www.nytimes.com     22
 | |
|  *    www.espn.com        28
 | |
|  *    www.msn.com         28
 | |
|  *    www.lemonde.fr      35
 | |
|  *
 | |
|  * (determined in 2009-2-17 from Paris, France, results may vary depending
 | |
|  *  on location)
 | |
|  *
 | |
|  * most high-level websites use lots of media/ad servers with different names
 | |
|  * but these are generally reused when browsing through the site.
 | |
|  *
 | |
|  * As such, a value of 64 should be relatively comfortable at the moment.
 | |
|  *
 | |
|  * ******************************************
 | |
|  * * NOTE - this has changed.
 | |
|  * * 1) we've added IPv6 support so each dns query results in 2 responses
 | |
|  * * 2) we've made this a system-wide cache, so the cost is less (it's not
 | |
|  * *    duplicated in each process) and the need is greater (more processes
 | |
|  * *    making different requests).
 | |
|  * * Upping by 2x for IPv6
 | |
|  * * Upping by another 5x for the centralized nature
 | |
|  * *****************************************
 | |
|  */
 | |
| #define  CONFIG_MAX_ENTRIES    64 * 2 * 5
 | |
| /* name of the system property that can be used to set the cache size */
 | |
| 
 | |
| /****************************************************************************/
 | |
| /****************************************************************************/
 | |
| /*****                                                                  *****/
 | |
| /*****                                                                  *****/
 | |
| /*****                                                                  *****/
 | |
| /****************************************************************************/
 | |
| /****************************************************************************/
 | |
| 
 | |
| /* set to 1 to debug cache operations */
 | |
| #define  DEBUG       0
 | |
| 
 | |
| /* set to 1 to debug query data */
 | |
| #define  DEBUG_DATA  0
 | |
| 
 | |
| #undef XLOG
 | |
| #if DEBUG
 | |
| #  include "private/libc_logging.h"
 | |
| #  define XLOG(...)  __libc_format_log(ANDROID_LOG_DEBUG,"libc",__VA_ARGS__)
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdarg.h>
 | |
| 
 | |
| /** BOUNDED BUFFER FORMATTING
 | |
|  **/
 | |
| 
 | |
| /* technical note:
 | |
|  *
 | |
|  *   the following debugging routines are used to append data to a bounded
 | |
|  *   buffer they take two parameters that are:
 | |
|  *
 | |
|  *   - p : a pointer to the current cursor position in the buffer
 | |
|  *         this value is initially set to the buffer's address.
 | |
|  *
 | |
|  *   - end : the address of the buffer's limit, i.e. of the first byte
 | |
|  *           after the buffer. this address should never be touched.
 | |
|  *
 | |
|  *           IMPORTANT: it is assumed that end > buffer_address, i.e.
 | |
|  *                      that the buffer is at least one byte.
 | |
|  *
 | |
|  *   the _bprint_() functions return the new value of 'p' after the data
 | |
|  *   has been appended, and also ensure the following:
 | |
|  *
 | |
|  *   - the returned value will never be strictly greater than 'end'
 | |
|  *
 | |
|  *   - a return value equal to 'end' means that truncation occured
 | |
|  *     (in which case, end[-1] will be set to 0)
 | |
|  *
 | |
|  *   - after returning from a _bprint_() function, the content of the buffer
 | |
|  *     is always 0-terminated, even in the event of truncation.
 | |
|  *
 | |
|  *  these conventions allow you to call _bprint_ functions multiple times and
 | |
|  *  only check for truncation at the end of the sequence, as in:
 | |
|  *
 | |
|  *     char  buff[1000], *p = buff, *end = p + sizeof(buff);
 | |
|  *
 | |
|  *     p = _bprint_c(p, end, '"');
 | |
|  *     p = _bprint_s(p, end, my_string);
 | |
|  *     p = _bprint_c(p, end, '"');
 | |
|  *
 | |
|  *     if (p >= end) {
 | |
|  *        // buffer was too small
 | |
|  *     }
 | |
|  *
 | |
|  *     printf( "%s", buff );
 | |
|  */
 | |
| 
 | |
| /* add a char to a bounded buffer */
 | |
| static char*
 | |
| _bprint_c( char*  p, char*  end, int  c )
 | |
| {
 | |
|     if (p < end) {
 | |
|         if (p+1 == end)
 | |
|             *p++ = 0;
 | |
|         else {
 | |
|             *p++ = (char) c;
 | |
|             *p   = 0;
 | |
|         }
 | |
|     }
 | |
|     return p;
 | |
| }
 | |
| 
 | |
| /* add a sequence of bytes to a bounded buffer */
 | |
| static char*
 | |
| _bprint_b( char*  p, char*  end, const char*  buf, int  len )
 | |
| {
 | |
|     int  avail = end - p;
 | |
| 
 | |
|     if (avail <= 0 || len <= 0)
 | |
|         return p;
 | |
| 
 | |
|     if (avail > len)
 | |
|         avail = len;
 | |
| 
 | |
|     memcpy( p, buf, avail );
 | |
|     p += avail;
 | |
| 
 | |
|     if (p < end)
 | |
|         p[0] = 0;
 | |
|     else
 | |
|         end[-1] = 0;
 | |
| 
 | |
|     return p;
 | |
| }
 | |
| 
 | |
| /* add a string to a bounded buffer */
 | |
| static char*
 | |
| _bprint_s( char*  p, char*  end, const char*  str )
 | |
| {
 | |
|     return _bprint_b(p, end, str, strlen(str));
 | |
| }
 | |
| 
 | |
| /* add a formatted string to a bounded buffer */
 | |
| static char*
 | |
| _bprint( char*  p, char*  end, const char*  format, ... )
 | |
| {
 | |
|     int      avail, n;
 | |
|     va_list  args;
 | |
| 
 | |
|     avail = end - p;
 | |
| 
 | |
|     if (avail <= 0)
 | |
|         return p;
 | |
| 
 | |
|     va_start(args, format);
 | |
|     n = vsnprintf( p, avail, format, args);
 | |
|     va_end(args);
 | |
| 
 | |
|     /* certain C libraries return -1 in case of truncation */
 | |
|     if (n < 0 || n > avail)
 | |
|         n = avail;
 | |
| 
 | |
|     p += n;
 | |
|     /* certain C libraries do not zero-terminate in case of truncation */
 | |
|     if (p == end)
 | |
|         p[-1] = 0;
 | |
| 
 | |
|     return p;
 | |
| }
 | |
| 
 | |
| /* add a hex value to a bounded buffer, up to 8 digits */
 | |
| static char*
 | |
| _bprint_hex( char*  p, char*  end, unsigned  value, int  numDigits )
 | |
| {
 | |
|     char   text[sizeof(unsigned)*2];
 | |
|     int    nn = 0;
 | |
| 
 | |
|     while (numDigits-- > 0) {
 | |
|         text[nn++] = "0123456789abcdef"[(value >> (numDigits*4)) & 15];
 | |
|     }
 | |
|     return _bprint_b(p, end, text, nn);
 | |
| }
 | |
| 
 | |
| /* add the hexadecimal dump of some memory area to a bounded buffer */
 | |
| static char*
 | |
| _bprint_hexdump( char*  p, char*  end, const uint8_t*  data, int  datalen )
 | |
| {
 | |
|     int   lineSize = 16;
 | |
| 
 | |
|     while (datalen > 0) {
 | |
|         int  avail = datalen;
 | |
|         int  nn;
 | |
| 
 | |
|         if (avail > lineSize)
 | |
|             avail = lineSize;
 | |
| 
 | |
|         for (nn = 0; nn < avail; nn++) {
 | |
|             if (nn > 0)
 | |
|                 p = _bprint_c(p, end, ' ');
 | |
|             p = _bprint_hex(p, end, data[nn], 2);
 | |
|         }
 | |
|         for ( ; nn < lineSize; nn++ ) {
 | |
|             p = _bprint_s(p, end, "   ");
 | |
|         }
 | |
|         p = _bprint_s(p, end, "  ");
 | |
| 
 | |
|         for (nn = 0; nn < avail; nn++) {
 | |
|             int  c = data[nn];
 | |
| 
 | |
|             if (c < 32 || c > 127)
 | |
|                 c = '.';
 | |
| 
 | |
|             p = _bprint_c(p, end, c);
 | |
|         }
 | |
|         p = _bprint_c(p, end, '\n');
 | |
| 
 | |
|         data    += avail;
 | |
|         datalen -= avail;
 | |
|     }
 | |
|     return p;
 | |
| }
 | |
| 
 | |
| /* dump the content of a query of packet to the log */
 | |
| static void
 | |
| XLOG_BYTES( const void*  base, int  len )
 | |
| {
 | |
|     char  buff[1024];
 | |
|     char*  p = buff, *end = p + sizeof(buff);
 | |
| 
 | |
|     p = _bprint_hexdump(p, end, base, len);
 | |
|     XLOG("%s",buff);
 | |
| }
 | |
| 
 | |
| #else /* !DEBUG */
 | |
| #  define  XLOG(...)        ((void)0)
 | |
| #  define  XLOG_BYTES(a,b)  ((void)0)
 | |
| #endif
 | |
| 
 | |
| static time_t
 | |
| _time_now( void )
 | |
| {
 | |
|     struct timeval  tv;
 | |
| 
 | |
|     gettimeofday( &tv, NULL );
 | |
|     return tv.tv_sec;
 | |
| }
 | |
| 
 | |
| /* reminder: the general format of a DNS packet is the following:
 | |
|  *
 | |
|  *    HEADER  (12 bytes)
 | |
|  *    QUESTION  (variable)
 | |
|  *    ANSWER (variable)
 | |
|  *    AUTHORITY (variable)
 | |
|  *    ADDITIONNAL (variable)
 | |
|  *
 | |
|  * the HEADER is made of:
 | |
|  *
 | |
|  *   ID     : 16 : 16-bit unique query identification field
 | |
|  *
 | |
|  *   QR     :  1 : set to 0 for queries, and 1 for responses
 | |
|  *   Opcode :  4 : set to 0 for queries
 | |
|  *   AA     :  1 : set to 0 for queries
 | |
|  *   TC     :  1 : truncation flag, will be set to 0 in queries
 | |
|  *   RD     :  1 : recursion desired
 | |
|  *
 | |
|  *   RA     :  1 : recursion available (0 in queries)
 | |
|  *   Z      :  3 : three reserved zero bits
 | |
|  *   RCODE  :  4 : response code (always 0=NOERROR in queries)
 | |
|  *
 | |
|  *   QDCount: 16 : question count
 | |
|  *   ANCount: 16 : Answer count (0 in queries)
 | |
|  *   NSCount: 16: Authority Record count (0 in queries)
 | |
|  *   ARCount: 16: Additionnal Record count (0 in queries)
 | |
|  *
 | |
|  * the QUESTION is made of QDCount Question Record (QRs)
 | |
|  * the ANSWER is made of ANCount RRs
 | |
|  * the AUTHORITY is made of NSCount RRs
 | |
|  * the ADDITIONNAL is made of ARCount RRs
 | |
|  *
 | |
|  * Each Question Record (QR) is made of:
 | |
|  *
 | |
|  *   QNAME   : variable : Query DNS NAME
 | |
|  *   TYPE    : 16       : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
 | |
|  *   CLASS   : 16       : class of query (IN=1)
 | |
|  *
 | |
|  * Each Resource Record (RR) is made of:
 | |
|  *
 | |
|  *   NAME    : variable : DNS NAME
 | |
|  *   TYPE    : 16       : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
 | |
|  *   CLASS   : 16       : class of query (IN=1)
 | |
|  *   TTL     : 32       : seconds to cache this RR (0=none)
 | |
|  *   RDLENGTH: 16       : size of RDDATA in bytes
 | |
|  *   RDDATA  : variable : RR data (depends on TYPE)
 | |
|  *
 | |
|  * Each QNAME contains a domain name encoded as a sequence of 'labels'
 | |
|  * terminated by a zero. Each label has the following format:
 | |
|  *
 | |
|  *    LEN  : 8     : lenght of label (MUST be < 64)
 | |
|  *    NAME : 8*LEN : label length (must exclude dots)
 | |
|  *
 | |
|  * A value of 0 in the encoding is interpreted as the 'root' domain and
 | |
|  * terminates the encoding. So 'www.android.com' will be encoded as:
 | |
|  *
 | |
|  *   <3>www<7>android<3>com<0>
 | |
|  *
 | |
|  * Where <n> represents the byte with value 'n'
 | |
|  *
 | |
|  * Each NAME reflects the QNAME of the question, but has a slightly more
 | |
|  * complex encoding in order to provide message compression. This is achieved
 | |
|  * by using a 2-byte pointer, with format:
 | |
|  *
 | |
|  *    TYPE   : 2  : 0b11 to indicate a pointer, 0b01 and 0b10 are reserved
 | |
|  *    OFFSET : 14 : offset to another part of the DNS packet
 | |
|  *
 | |
|  * The offset is relative to the start of the DNS packet and must point
 | |
|  * A pointer terminates the encoding.
 | |
|  *
 | |
|  * The NAME can be encoded in one of the following formats:
 | |
|  *
 | |
|  *   - a sequence of simple labels terminated by 0 (like QNAMEs)
 | |
|  *   - a single pointer
 | |
|  *   - a sequence of simple labels terminated by a pointer
 | |
|  *
 | |
|  * A pointer shall always point to either a pointer of a sequence of
 | |
|  * labels (which can themselves be terminated by either a 0 or a pointer)
 | |
|  *
 | |
|  * The expanded length of a given domain name should not exceed 255 bytes.
 | |
|  *
 | |
|  * NOTE: we don't parse the answer packets, so don't need to deal with NAME
 | |
|  *       records, only QNAMEs.
 | |
|  */
 | |
| 
 | |
| #define  DNS_HEADER_SIZE  12
 | |
| 
 | |
| #define  DNS_TYPE_A   "\00\01"   /* big-endian decimal 1 */
 | |
| #define  DNS_TYPE_PTR "\00\014"  /* big-endian decimal 12 */
 | |
| #define  DNS_TYPE_MX  "\00\017"  /* big-endian decimal 15 */
 | |
| #define  DNS_TYPE_AAAA "\00\034" /* big-endian decimal 28 */
 | |
| #define  DNS_TYPE_ALL "\00\0377" /* big-endian decimal 255 */
 | |
| 
 | |
| #define  DNS_CLASS_IN "\00\01"   /* big-endian decimal 1 */
 | |
| 
 | |
| typedef struct {
 | |
|     const uint8_t*  base;
 | |
|     const uint8_t*  end;
 | |
|     const uint8_t*  cursor;
 | |
| } DnsPacket;
 | |
| 
 | |
| static void
 | |
| _dnsPacket_init( DnsPacket*  packet, const uint8_t*  buff, int  bufflen )
 | |
| {
 | |
|     packet->base   = buff;
 | |
|     packet->end    = buff + bufflen;
 | |
|     packet->cursor = buff;
 | |
| }
 | |
| 
 | |
| static void
 | |
| _dnsPacket_rewind( DnsPacket*  packet )
 | |
| {
 | |
|     packet->cursor = packet->base;
 | |
| }
 | |
| 
 | |
| static void
 | |
| _dnsPacket_skip( DnsPacket*  packet, int  count )
 | |
| {
 | |
|     const uint8_t*  p = packet->cursor + count;
 | |
| 
 | |
|     if (p > packet->end)
 | |
|         p = packet->end;
 | |
| 
 | |
|     packet->cursor = p;
 | |
| }
 | |
| 
 | |
| static int
 | |
| _dnsPacket_readInt16( DnsPacket*  packet )
 | |
| {
 | |
|     const uint8_t*  p = packet->cursor;
 | |
| 
 | |
|     if (p+2 > packet->end)
 | |
|         return -1;
 | |
| 
 | |
|     packet->cursor = p+2;
 | |
|     return (p[0]<< 8) | p[1];
 | |
| }
 | |
| 
 | |
| /** QUERY CHECKING
 | |
|  **/
 | |
| 
 | |
| /* check bytes in a dns packet. returns 1 on success, 0 on failure.
 | |
|  * the cursor is only advanced in the case of success
 | |
|  */
 | |
| static int
 | |
| _dnsPacket_checkBytes( DnsPacket*  packet, int  numBytes, const void*  bytes )
 | |
| {
 | |
|     const uint8_t*  p = packet->cursor;
 | |
| 
 | |
|     if (p + numBytes > packet->end)
 | |
|         return 0;
 | |
| 
 | |
|     if (memcmp(p, bytes, numBytes) != 0)
 | |
|         return 0;
 | |
| 
 | |
|     packet->cursor = p + numBytes;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* parse and skip a given QNAME stored in a query packet,
 | |
|  * from the current cursor position. returns 1 on success,
 | |
|  * or 0 for malformed data.
 | |
|  */
 | |
| static int
 | |
| _dnsPacket_checkQName( DnsPacket*  packet )
 | |
| {
 | |
|     const uint8_t*  p   = packet->cursor;
 | |
|     const uint8_t*  end = packet->end;
 | |
| 
 | |
|     for (;;) {
 | |
|         int  c;
 | |
| 
 | |
|         if (p >= end)
 | |
|             break;
 | |
| 
 | |
|         c = *p++;
 | |
| 
 | |
|         if (c == 0) {
 | |
|             packet->cursor = p;
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         /* we don't expect label compression in QNAMEs */
 | |
|         if (c >= 64)
 | |
|             break;
 | |
| 
 | |
|         p += c;
 | |
|         /* we rely on the bound check at the start
 | |
|          * of the loop here */
 | |
|     }
 | |
|     /* malformed data */
 | |
|     XLOG("malformed QNAME");
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* parse and skip a given QR stored in a packet.
 | |
|  * returns 1 on success, and 0 on failure
 | |
|  */
 | |
| static int
 | |
| _dnsPacket_checkQR( DnsPacket*  packet )
 | |
| {
 | |
|     if (!_dnsPacket_checkQName(packet))
 | |
|         return 0;
 | |
| 
 | |
|     /* TYPE must be one of the things we support */
 | |
|     if (!_dnsPacket_checkBytes(packet, 2, DNS_TYPE_A) &&
 | |
|         !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_PTR) &&
 | |
|         !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_MX) &&
 | |
|         !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_AAAA) &&
 | |
|         !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_ALL))
 | |
|     {
 | |
|         XLOG("unsupported TYPE");
 | |
|         return 0;
 | |
|     }
 | |
|     /* CLASS must be IN */
 | |
|     if (!_dnsPacket_checkBytes(packet, 2, DNS_CLASS_IN)) {
 | |
|         XLOG("unsupported CLASS");
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* check the header of a DNS Query packet, return 1 if it is one
 | |
|  * type of query we can cache, or 0 otherwise
 | |
|  */
 | |
| static int
 | |
| _dnsPacket_checkQuery( DnsPacket*  packet )
 | |
| {
 | |
|     const uint8_t*  p = packet->base;
 | |
|     int             qdCount, anCount, dnCount, arCount;
 | |
| 
 | |
|     if (p + DNS_HEADER_SIZE > packet->end) {
 | |
|         XLOG("query packet too small");
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* QR must be set to 0, opcode must be 0 and AA must be 0 */
 | |
|     /* RA, Z, and RCODE must be 0 */
 | |
|     if ((p[2] & 0xFC) != 0 || p[3] != 0) {
 | |
|         XLOG("query packet flags unsupported");
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* Note that we ignore the TC and RD bits here for the
 | |
|      * following reasons:
 | |
|      *
 | |
|      * - there is no point for a query packet sent to a server
 | |
|      *   to have the TC bit set, but the implementation might
 | |
|      *   set the bit in the query buffer for its own needs
 | |
|      *   between a _resolv_cache_lookup and a
 | |
|      *   _resolv_cache_add. We should not freak out if this
 | |
|      *   is the case.
 | |
|      *
 | |
|      * - we consider that the result from a RD=0 or a RD=1
 | |
|      *   query might be different, hence that the RD bit
 | |
|      *   should be used to differentiate cached result.
 | |
|      *
 | |
|      *   this implies that RD is checked when hashing or
 | |
|      *   comparing query packets, but not TC
 | |
|      */
 | |
| 
 | |
|     /* ANCOUNT, DNCOUNT and ARCOUNT must be 0 */
 | |
|     qdCount = (p[4] << 8) | p[5];
 | |
|     anCount = (p[6] << 8) | p[7];
 | |
|     dnCount = (p[8] << 8) | p[9];
 | |
|     arCount = (p[10]<< 8) | p[11];
 | |
| 
 | |
|     if (anCount != 0 || dnCount != 0 || arCount != 0) {
 | |
|         XLOG("query packet contains non-query records");
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (qdCount == 0) {
 | |
|         XLOG("query packet doesn't contain query record");
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* Check QDCOUNT QRs */
 | |
|     packet->cursor = p + DNS_HEADER_SIZE;
 | |
| 
 | |
|     for (;qdCount > 0; qdCount--)
 | |
|         if (!_dnsPacket_checkQR(packet))
 | |
|             return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /** QUERY DEBUGGING
 | |
|  **/
 | |
| #if DEBUG
 | |
| static char*
 | |
| _dnsPacket_bprintQName(DnsPacket*  packet, char*  bp, char*  bend)
 | |
| {
 | |
|     const uint8_t*  p   = packet->cursor;
 | |
|     const uint8_t*  end = packet->end;
 | |
|     int             first = 1;
 | |
| 
 | |
|     for (;;) {
 | |
|         int  c;
 | |
| 
 | |
|         if (p >= end)
 | |
|             break;
 | |
| 
 | |
|         c = *p++;
 | |
| 
 | |
|         if (c == 0) {
 | |
|             packet->cursor = p;
 | |
|             return bp;
 | |
|         }
 | |
| 
 | |
|         /* we don't expect label compression in QNAMEs */
 | |
|         if (c >= 64)
 | |
|             break;
 | |
| 
 | |
|         if (first)
 | |
|             first = 0;
 | |
|         else
 | |
|             bp = _bprint_c(bp, bend, '.');
 | |
| 
 | |
|         bp = _bprint_b(bp, bend, (const char*)p, c);
 | |
| 
 | |
|         p += c;
 | |
|         /* we rely on the bound check at the start
 | |
|          * of the loop here */
 | |
|     }
 | |
|     /* malformed data */
 | |
|     bp = _bprint_s(bp, bend, "<MALFORMED>");
 | |
|     return bp;
 | |
| }
 | |
| 
 | |
| static char*
 | |
| _dnsPacket_bprintQR(DnsPacket*  packet, char*  p, char*  end)
 | |
| {
 | |
| #define  QQ(x)   { DNS_TYPE_##x, #x }
 | |
|     static const struct {
 | |
|         const char*  typeBytes;
 | |
|         const char*  typeString;
 | |
|     } qTypes[] =
 | |
|     {
 | |
|         QQ(A), QQ(PTR), QQ(MX), QQ(AAAA), QQ(ALL),
 | |
|         { NULL, NULL }
 | |
|     };
 | |
|     int          nn;
 | |
|     const char*  typeString = NULL;
 | |
| 
 | |
|     /* dump QNAME */
 | |
|     p = _dnsPacket_bprintQName(packet, p, end);
 | |
| 
 | |
|     /* dump TYPE */
 | |
|     p = _bprint_s(p, end, " (");
 | |
| 
 | |
|     for (nn = 0; qTypes[nn].typeBytes != NULL; nn++) {
 | |
|         if (_dnsPacket_checkBytes(packet, 2, qTypes[nn].typeBytes)) {
 | |
|             typeString = qTypes[nn].typeString;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (typeString != NULL)
 | |
|         p = _bprint_s(p, end, typeString);
 | |
|     else {
 | |
|         int  typeCode = _dnsPacket_readInt16(packet);
 | |
|         p = _bprint(p, end, "UNKNOWN-%d", typeCode);
 | |
|     }
 | |
| 
 | |
|     p = _bprint_c(p, end, ')');
 | |
| 
 | |
|     /* skip CLASS */
 | |
|     _dnsPacket_skip(packet, 2);
 | |
|     return p;
 | |
| }
 | |
| 
 | |
| /* this function assumes the packet has already been checked */
 | |
| static char*
 | |
| _dnsPacket_bprintQuery( DnsPacket*  packet, char*  p, char*  end )
 | |
| {
 | |
|     int   qdCount;
 | |
| 
 | |
|     if (packet->base[2] & 0x1) {
 | |
|         p = _bprint_s(p, end, "RECURSIVE ");
 | |
|     }
 | |
| 
 | |
|     _dnsPacket_skip(packet, 4);
 | |
|     qdCount = _dnsPacket_readInt16(packet);
 | |
|     _dnsPacket_skip(packet, 6);
 | |
| 
 | |
|     for ( ; qdCount > 0; qdCount-- ) {
 | |
|         p = _dnsPacket_bprintQR(packet, p, end);
 | |
|     }
 | |
|     return p;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /** QUERY HASHING SUPPORT
 | |
|  **
 | |
|  ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKET HAS ALREADY
 | |
|  ** BEEN SUCCESFULLY CHECKED.
 | |
|  **/
 | |
| 
 | |
| /* use 32-bit FNV hash function */
 | |
| #define  FNV_MULT   16777619U
 | |
| #define  FNV_BASIS  2166136261U
 | |
| 
 | |
| static unsigned
 | |
| _dnsPacket_hashBytes( DnsPacket*  packet, int  numBytes, unsigned  hash )
 | |
| {
 | |
|     const uint8_t*  p   = packet->cursor;
 | |
|     const uint8_t*  end = packet->end;
 | |
| 
 | |
|     while (numBytes > 0 && p < end) {
 | |
|         hash = hash*FNV_MULT ^ *p++;
 | |
|     }
 | |
|     packet->cursor = p;
 | |
|     return hash;
 | |
| }
 | |
| 
 | |
| 
 | |
| static unsigned
 | |
| _dnsPacket_hashQName( DnsPacket*  packet, unsigned  hash )
 | |
| {
 | |
|     const uint8_t*  p   = packet->cursor;
 | |
|     const uint8_t*  end = packet->end;
 | |
| 
 | |
|     for (;;) {
 | |
|         int  c;
 | |
| 
 | |
|         if (p >= end) {  /* should not happen */
 | |
|             XLOG("%s: INTERNAL_ERROR: read-overflow !!\n", __FUNCTION__);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         c = *p++;
 | |
| 
 | |
|         if (c == 0)
 | |
|             break;
 | |
| 
 | |
|         if (c >= 64) {
 | |
|             XLOG("%s: INTERNAL_ERROR: malformed domain !!\n", __FUNCTION__);
 | |
|             break;
 | |
|         }
 | |
|         if (p + c >= end) {
 | |
|             XLOG("%s: INTERNAL_ERROR: simple label read-overflow !!\n",
 | |
|                     __FUNCTION__);
 | |
|             break;
 | |
|         }
 | |
|         while (c > 0) {
 | |
|             hash = hash*FNV_MULT ^ *p++;
 | |
|             c   -= 1;
 | |
|         }
 | |
|     }
 | |
|     packet->cursor = p;
 | |
|     return hash;
 | |
| }
 | |
| 
 | |
| static unsigned
 | |
| _dnsPacket_hashQR( DnsPacket*  packet, unsigned  hash )
 | |
| {
 | |
|     hash = _dnsPacket_hashQName(packet, hash);
 | |
|     hash = _dnsPacket_hashBytes(packet, 4, hash); /* TYPE and CLASS */
 | |
|     return hash;
 | |
| }
 | |
| 
 | |
| static unsigned
 | |
| _dnsPacket_hashQuery( DnsPacket*  packet )
 | |
| {
 | |
|     unsigned  hash = FNV_BASIS;
 | |
|     int       count;
 | |
|     _dnsPacket_rewind(packet);
 | |
| 
 | |
|     /* we ignore the TC bit for reasons explained in
 | |
|      * _dnsPacket_checkQuery().
 | |
|      *
 | |
|      * however we hash the RD bit to differentiate
 | |
|      * between answers for recursive and non-recursive
 | |
|      * queries.
 | |
|      */
 | |
|     hash = hash*FNV_MULT ^ (packet->base[2] & 1);
 | |
| 
 | |
|     /* assume: other flags are 0 */
 | |
|     _dnsPacket_skip(packet, 4);
 | |
| 
 | |
|     /* read QDCOUNT */
 | |
|     count = _dnsPacket_readInt16(packet);
 | |
| 
 | |
|     /* assume: ANcount, NScount, ARcount are 0 */
 | |
|     _dnsPacket_skip(packet, 6);
 | |
| 
 | |
|     /* hash QDCOUNT QRs */
 | |
|     for ( ; count > 0; count-- )
 | |
|         hash = _dnsPacket_hashQR(packet, hash);
 | |
| 
 | |
|     return hash;
 | |
| }
 | |
| 
 | |
| 
 | |
| /** QUERY COMPARISON
 | |
|  **
 | |
|  ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKETS HAVE ALREADY
 | |
|  ** BEEN SUCCESFULLY CHECKED.
 | |
|  **/
 | |
| 
 | |
| static int
 | |
| _dnsPacket_isEqualDomainName( DnsPacket*  pack1, DnsPacket*  pack2 )
 | |
| {
 | |
|     const uint8_t*  p1   = pack1->cursor;
 | |
|     const uint8_t*  end1 = pack1->end;
 | |
|     const uint8_t*  p2   = pack2->cursor;
 | |
|     const uint8_t*  end2 = pack2->end;
 | |
| 
 | |
|     for (;;) {
 | |
|         int  c1, c2;
 | |
| 
 | |
|         if (p1 >= end1 || p2 >= end2) {
 | |
|             XLOG("%s: INTERNAL_ERROR: read-overflow !!\n", __FUNCTION__);
 | |
|             break;
 | |
|         }
 | |
|         c1 = *p1++;
 | |
|         c2 = *p2++;
 | |
|         if (c1 != c2)
 | |
|             break;
 | |
| 
 | |
|         if (c1 == 0) {
 | |
|             pack1->cursor = p1;
 | |
|             pack2->cursor = p2;
 | |
|             return 1;
 | |
|         }
 | |
|         if (c1 >= 64) {
 | |
|             XLOG("%s: INTERNAL_ERROR: malformed domain !!\n", __FUNCTION__);
 | |
|             break;
 | |
|         }
 | |
|         if ((p1+c1 > end1) || (p2+c1 > end2)) {
 | |
|             XLOG("%s: INTERNAL_ERROR: simple label read-overflow !!\n",
 | |
|                     __FUNCTION__);
 | |
|             break;
 | |
|         }
 | |
|         if (memcmp(p1, p2, c1) != 0)
 | |
|             break;
 | |
|         p1 += c1;
 | |
|         p2 += c1;
 | |
|         /* we rely on the bound checks at the start of the loop */
 | |
|     }
 | |
|     /* not the same, or one is malformed */
 | |
|     XLOG("different DN");
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| _dnsPacket_isEqualBytes( DnsPacket*  pack1, DnsPacket*  pack2, int  numBytes )
 | |
| {
 | |
|     const uint8_t*  p1 = pack1->cursor;
 | |
|     const uint8_t*  p2 = pack2->cursor;
 | |
| 
 | |
|     if ( p1 + numBytes > pack1->end || p2 + numBytes > pack2->end )
 | |
|         return 0;
 | |
| 
 | |
|     if ( memcmp(p1, p2, numBytes) != 0 )
 | |
|         return 0;
 | |
| 
 | |
|     pack1->cursor += numBytes;
 | |
|     pack2->cursor += numBytes;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| _dnsPacket_isEqualQR( DnsPacket*  pack1, DnsPacket*  pack2 )
 | |
| {
 | |
|     /* compare domain name encoding + TYPE + CLASS */
 | |
|     if ( !_dnsPacket_isEqualDomainName(pack1, pack2) ||
 | |
|          !_dnsPacket_isEqualBytes(pack1, pack2, 2+2) )
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| _dnsPacket_isEqualQuery( DnsPacket*  pack1, DnsPacket*  pack2 )
 | |
| {
 | |
|     int  count1, count2;
 | |
| 
 | |
|     /* compare the headers, ignore most fields */
 | |
|     _dnsPacket_rewind(pack1);
 | |
|     _dnsPacket_rewind(pack2);
 | |
| 
 | |
|     /* compare RD, ignore TC, see comment in _dnsPacket_checkQuery */
 | |
|     if ((pack1->base[2] & 1) != (pack2->base[2] & 1)) {
 | |
|         XLOG("different RD");
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* assume: other flags are all 0 */
 | |
|     _dnsPacket_skip(pack1, 4);
 | |
|     _dnsPacket_skip(pack2, 4);
 | |
| 
 | |
|     /* compare QDCOUNT */
 | |
|     count1 = _dnsPacket_readInt16(pack1);
 | |
|     count2 = _dnsPacket_readInt16(pack2);
 | |
|     if (count1 != count2 || count1 < 0) {
 | |
|         XLOG("different QDCOUNT");
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* assume: ANcount, NScount and ARcount are all 0 */
 | |
|     _dnsPacket_skip(pack1, 6);
 | |
|     _dnsPacket_skip(pack2, 6);
 | |
| 
 | |
|     /* compare the QDCOUNT QRs */
 | |
|     for ( ; count1 > 0; count1-- ) {
 | |
|         if (!_dnsPacket_isEqualQR(pack1, pack2)) {
 | |
|             XLOG("different QR");
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /****************************************************************************/
 | |
| /****************************************************************************/
 | |
| /*****                                                                  *****/
 | |
| /*****                                                                  *****/
 | |
| /*****                                                                  *****/
 | |
| /****************************************************************************/
 | |
| /****************************************************************************/
 | |
| 
 | |
| /* cache entry. for simplicity, 'hash' and 'hlink' are inlined in this
 | |
|  * structure though they are conceptually part of the hash table.
 | |
|  *
 | |
|  * similarly, mru_next and mru_prev are part of the global MRU list
 | |
|  */
 | |
| typedef struct Entry {
 | |
|     unsigned int     hash;   /* hash value */
 | |
|     struct Entry*    hlink;  /* next in collision chain */
 | |
|     struct Entry*    mru_prev;
 | |
|     struct Entry*    mru_next;
 | |
| 
 | |
|     const uint8_t*   query;
 | |
|     int              querylen;
 | |
|     const uint8_t*   answer;
 | |
|     int              answerlen;
 | |
|     time_t           expires;   /* time_t when the entry isn't valid any more */
 | |
|     int              id;        /* for debugging purpose */
 | |
| } Entry;
 | |
| 
 | |
| /**
 | |
|  * Find the TTL for a negative DNS result.  This is defined as the minimum
 | |
|  * of the SOA records TTL and the MINIMUM-TTL field (RFC-2308).
 | |
|  *
 | |
|  * Return 0 if not found.
 | |
|  */
 | |
| static u_long
 | |
| answer_getNegativeTTL(ns_msg handle) {
 | |
|     int n, nscount;
 | |
|     u_long result = 0;
 | |
|     ns_rr rr;
 | |
| 
 | |
|     nscount = ns_msg_count(handle, ns_s_ns);
 | |
|     for (n = 0; n < nscount; n++) {
 | |
|         if ((ns_parserr(&handle, ns_s_ns, n, &rr) == 0) && (ns_rr_type(rr) == ns_t_soa)) {
 | |
|             const u_char *rdata = ns_rr_rdata(rr); // find the data
 | |
|             const u_char *edata = rdata + ns_rr_rdlen(rr); // add the len to find the end
 | |
|             int len;
 | |
|             u_long ttl, rec_result = ns_rr_ttl(rr);
 | |
| 
 | |
|             // find the MINIMUM-TTL field from the blob of binary data for this record
 | |
|             // skip the server name
 | |
|             len = dn_skipname(rdata, edata);
 | |
|             if (len == -1) continue; // error skipping
 | |
|             rdata += len;
 | |
| 
 | |
|             // skip the admin name
 | |
|             len = dn_skipname(rdata, edata);
 | |
|             if (len == -1) continue; // error skipping
 | |
|             rdata += len;
 | |
| 
 | |
|             if (edata - rdata != 5*NS_INT32SZ) continue;
 | |
|             // skip: serial number + refresh interval + retry interval + expiry
 | |
|             rdata += NS_INT32SZ * 4;
 | |
|             // finally read the MINIMUM TTL
 | |
|             ttl = ns_get32(rdata);
 | |
|             if (ttl < rec_result) {
 | |
|                 rec_result = ttl;
 | |
|             }
 | |
|             // Now that the record is read successfully, apply the new min TTL
 | |
|             if (n == 0 || rec_result < result) {
 | |
|                 result = rec_result;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Parse the answer records and find the appropriate
 | |
|  * smallest TTL among the records.  This might be from
 | |
|  * the answer records if found or from the SOA record
 | |
|  * if it's a negative result.
 | |
|  *
 | |
|  * The returned TTL is the number of seconds to
 | |
|  * keep the answer in the cache.
 | |
|  *
 | |
|  * In case of parse error zero (0) is returned which
 | |
|  * indicates that the answer shall not be cached.
 | |
|  */
 | |
| static u_long
 | |
| answer_getTTL(const void* answer, int answerlen)
 | |
| {
 | |
|     ns_msg handle;
 | |
|     int ancount, n;
 | |
|     u_long result, ttl;
 | |
|     ns_rr rr;
 | |
| 
 | |
|     result = 0;
 | |
|     if (ns_initparse(answer, answerlen, &handle) >= 0) {
 | |
|         // get number of answer records
 | |
|         ancount = ns_msg_count(handle, ns_s_an);
 | |
| 
 | |
|         if (ancount == 0) {
 | |
|             // a response with no answers?  Cache this negative result.
 | |
|             result = answer_getNegativeTTL(handle);
 | |
|         } else {
 | |
|             for (n = 0; n < ancount; n++) {
 | |
|                 if (ns_parserr(&handle, ns_s_an, n, &rr) == 0) {
 | |
|                     ttl = ns_rr_ttl(rr);
 | |
|                     if (n == 0 || ttl < result) {
 | |
|                         result = ttl;
 | |
|                     }
 | |
|                 } else {
 | |
|                     XLOG("ns_parserr failed ancount no = %d. errno = %s\n", n, strerror(errno));
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         XLOG("ns_parserr failed. %s\n", strerror(errno));
 | |
|     }
 | |
| 
 | |
|     XLOG("TTL = %d\n", result);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static void
 | |
| entry_free( Entry*  e )
 | |
| {
 | |
|     /* everything is allocated in a single memory block */
 | |
|     if (e) {
 | |
|         free(e);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __inline__ void
 | |
| entry_mru_remove( Entry*  e )
 | |
| {
 | |
|     e->mru_prev->mru_next = e->mru_next;
 | |
|     e->mru_next->mru_prev = e->mru_prev;
 | |
| }
 | |
| 
 | |
| static __inline__ void
 | |
| entry_mru_add( Entry*  e, Entry*  list )
 | |
| {
 | |
|     Entry*  first = list->mru_next;
 | |
| 
 | |
|     e->mru_next = first;
 | |
|     e->mru_prev = list;
 | |
| 
 | |
|     list->mru_next  = e;
 | |
|     first->mru_prev = e;
 | |
| }
 | |
| 
 | |
| /* compute the hash of a given entry, this is a hash of most
 | |
|  * data in the query (key) */
 | |
| static unsigned
 | |
| entry_hash( const Entry*  e )
 | |
| {
 | |
|     DnsPacket  pack[1];
 | |
| 
 | |
|     _dnsPacket_init(pack, e->query, e->querylen);
 | |
|     return _dnsPacket_hashQuery(pack);
 | |
| }
 | |
| 
 | |
| /* initialize an Entry as a search key, this also checks the input query packet
 | |
|  * returns 1 on success, or 0 in case of unsupported/malformed data */
 | |
| static int
 | |
| entry_init_key( Entry*  e, const void*  query, int  querylen )
 | |
| {
 | |
|     DnsPacket  pack[1];
 | |
| 
 | |
|     memset(e, 0, sizeof(*e));
 | |
| 
 | |
|     e->query    = query;
 | |
|     e->querylen = querylen;
 | |
|     e->hash     = entry_hash(e);
 | |
| 
 | |
|     _dnsPacket_init(pack, query, querylen);
 | |
| 
 | |
|     return _dnsPacket_checkQuery(pack);
 | |
| }
 | |
| 
 | |
| /* allocate a new entry as a cache node */
 | |
| static Entry*
 | |
| entry_alloc( const Entry*  init, const void*  answer, int  answerlen )
 | |
| {
 | |
|     Entry*  e;
 | |
|     int     size;
 | |
| 
 | |
|     size = sizeof(*e) + init->querylen + answerlen;
 | |
|     e    = calloc(size, 1);
 | |
|     if (e == NULL)
 | |
|         return e;
 | |
| 
 | |
|     e->hash     = init->hash;
 | |
|     e->query    = (const uint8_t*)(e+1);
 | |
|     e->querylen = init->querylen;
 | |
| 
 | |
|     memcpy( (char*)e->query, init->query, e->querylen );
 | |
| 
 | |
|     e->answer    = e->query + e->querylen;
 | |
|     e->answerlen = answerlen;
 | |
| 
 | |
|     memcpy( (char*)e->answer, answer, e->answerlen );
 | |
| 
 | |
|     return e;
 | |
| }
 | |
| 
 | |
| static int
 | |
| entry_equals( const Entry*  e1, const Entry*  e2 )
 | |
| {
 | |
|     DnsPacket  pack1[1], pack2[1];
 | |
| 
 | |
|     if (e1->querylen != e2->querylen) {
 | |
|         return 0;
 | |
|     }
 | |
|     _dnsPacket_init(pack1, e1->query, e1->querylen);
 | |
|     _dnsPacket_init(pack2, e2->query, e2->querylen);
 | |
| 
 | |
|     return _dnsPacket_isEqualQuery(pack1, pack2);
 | |
| }
 | |
| 
 | |
| /****************************************************************************/
 | |
| /****************************************************************************/
 | |
| /*****                                                                  *****/
 | |
| /*****                                                                  *****/
 | |
| /*****                                                                  *****/
 | |
| /****************************************************************************/
 | |
| /****************************************************************************/
 | |
| 
 | |
| /* We use a simple hash table with external collision lists
 | |
|  * for simplicity, the hash-table fields 'hash' and 'hlink' are
 | |
|  * inlined in the Entry structure.
 | |
|  */
 | |
| 
 | |
| /* Maximum time for a thread to wait for an pending request */
 | |
| #define PENDING_REQUEST_TIMEOUT 20;
 | |
| 
 | |
| typedef struct pending_req_info {
 | |
|     unsigned int                hash;
 | |
|     pthread_cond_t              cond;
 | |
|     struct pending_req_info*    next;
 | |
| } PendingReqInfo;
 | |
| 
 | |
| typedef struct resolv_cache {
 | |
|     int              max_entries;
 | |
|     int              num_entries;
 | |
|     Entry            mru_list;
 | |
|     int              last_id;
 | |
|     Entry*           entries;
 | |
|     PendingReqInfo   pending_requests;
 | |
| } Cache;
 | |
| 
 | |
| struct resolv_cache_info {
 | |
|     unsigned                    netid;
 | |
|     Cache*                      cache;
 | |
|     struct resolv_cache_info*   next;
 | |
|     char*                       nameservers[MAXNS +1];
 | |
|     struct addrinfo*            nsaddrinfo[MAXNS + 1];
 | |
|     char                        defdname[256];
 | |
|     int                         dnsrch_offset[MAXDNSRCH+1];  // offsets into defdname
 | |
| };
 | |
| 
 | |
| #define  HTABLE_VALID(x)  ((x) != NULL && (x) != HTABLE_DELETED)
 | |
| 
 | |
| static pthread_once_t        _res_cache_once = PTHREAD_ONCE_INIT;
 | |
| static void _res_cache_init(void);
 | |
| 
 | |
| // lock protecting everything in the _resolve_cache_info structs (next ptr, etc)
 | |
| static pthread_mutex_t _res_cache_list_lock;
 | |
| 
 | |
| /* gets cache associated with a network, or NULL if none exists */
 | |
| static struct resolv_cache* _find_named_cache_locked(unsigned netid);
 | |
| 
 | |
| static void
 | |
| _cache_flush_pending_requests_locked( struct resolv_cache* cache )
 | |
| {
 | |
|     struct pending_req_info *ri, *tmp;
 | |
|     if (cache) {
 | |
|         ri = cache->pending_requests.next;
 | |
| 
 | |
|         while (ri) {
 | |
|             tmp = ri;
 | |
|             ri = ri->next;
 | |
|             pthread_cond_broadcast(&tmp->cond);
 | |
| 
 | |
|             pthread_cond_destroy(&tmp->cond);
 | |
|             free(tmp);
 | |
|         }
 | |
| 
 | |
|         cache->pending_requests.next = NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Return 0 if no pending request is found matching the key.
 | |
|  * If a matching request is found the calling thread will wait until
 | |
|  * the matching request completes, then update *cache and return 1. */
 | |
| static int
 | |
| _cache_check_pending_request_locked( struct resolv_cache** cache, Entry* key, unsigned netid )
 | |
| {
 | |
|     struct pending_req_info *ri, *prev;
 | |
|     int exist = 0;
 | |
| 
 | |
|     if (*cache && key) {
 | |
|         ri = (*cache)->pending_requests.next;
 | |
|         prev = &(*cache)->pending_requests;
 | |
|         while (ri) {
 | |
|             if (ri->hash == key->hash) {
 | |
|                 exist = 1;
 | |
|                 break;
 | |
|             }
 | |
|             prev = ri;
 | |
|             ri = ri->next;
 | |
|         }
 | |
| 
 | |
|         if (!exist) {
 | |
|             ri = calloc(1, sizeof(struct pending_req_info));
 | |
|             if (ri) {
 | |
|                 ri->hash = key->hash;
 | |
|                 pthread_cond_init(&ri->cond, NULL);
 | |
|                 prev->next = ri;
 | |
|             }
 | |
|         } else {
 | |
|             struct timespec ts = {0,0};
 | |
|             XLOG("Waiting for previous request");
 | |
|             ts.tv_sec = _time_now() + PENDING_REQUEST_TIMEOUT;
 | |
|             pthread_cond_timedwait(&ri->cond, &_res_cache_list_lock, &ts);
 | |
|             /* Must update *cache as it could have been deleted. */
 | |
|             *cache = _find_named_cache_locked(netid);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return exist;
 | |
| }
 | |
| 
 | |
| /* notify any waiting thread that waiting on a request
 | |
|  * matching the key has been added to the cache */
 | |
| static void
 | |
| _cache_notify_waiting_tid_locked( struct resolv_cache* cache, Entry* key )
 | |
| {
 | |
|     struct pending_req_info *ri, *prev;
 | |
| 
 | |
|     if (cache && key) {
 | |
|         ri = cache->pending_requests.next;
 | |
|         prev = &cache->pending_requests;
 | |
|         while (ri) {
 | |
|             if (ri->hash == key->hash) {
 | |
|                 pthread_cond_broadcast(&ri->cond);
 | |
|                 break;
 | |
|             }
 | |
|             prev = ri;
 | |
|             ri = ri->next;
 | |
|         }
 | |
| 
 | |
|         // remove item from list and destroy
 | |
|         if (ri) {
 | |
|             prev->next = ri->next;
 | |
|             pthread_cond_destroy(&ri->cond);
 | |
|             free(ri);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* notify the cache that the query failed */
 | |
| void
 | |
| _resolv_cache_query_failed( unsigned    netid,
 | |
|                    const void* query,
 | |
|                    int         querylen)
 | |
| {
 | |
|     Entry    key[1];
 | |
|     Cache*   cache;
 | |
| 
 | |
|     if (!entry_init_key(key, query, querylen))
 | |
|         return;
 | |
| 
 | |
|     pthread_mutex_lock(&_res_cache_list_lock);
 | |
| 
 | |
|     cache = _find_named_cache_locked(netid);
 | |
| 
 | |
|     if (cache) {
 | |
|         _cache_notify_waiting_tid_locked(cache, key);
 | |
|     }
 | |
| 
 | |
|     pthread_mutex_unlock(&_res_cache_list_lock);
 | |
| }
 | |
| 
 | |
| static void
 | |
| _cache_flush_locked( Cache*  cache )
 | |
| {
 | |
|     int     nn;
 | |
| 
 | |
|     for (nn = 0; nn < cache->max_entries; nn++)
 | |
|     {
 | |
|         Entry**  pnode = (Entry**) &cache->entries[nn];
 | |
| 
 | |
|         while (*pnode != NULL) {
 | |
|             Entry*  node = *pnode;
 | |
|             *pnode = node->hlink;
 | |
|             entry_free(node);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // flush pending request
 | |
|     _cache_flush_pending_requests_locked(cache);
 | |
| 
 | |
|     cache->mru_list.mru_next = cache->mru_list.mru_prev = &cache->mru_list;
 | |
|     cache->num_entries       = 0;
 | |
|     cache->last_id           = 0;
 | |
| 
 | |
|     XLOG("*************************\n"
 | |
|          "*** DNS CACHE FLUSHED ***\n"
 | |
|          "*************************");
 | |
| }
 | |
| 
 | |
| static int
 | |
| _res_cache_get_max_entries( void )
 | |
| {
 | |
|     int cache_size = CONFIG_MAX_ENTRIES;
 | |
| 
 | |
|     const char* cache_mode = getenv("ANDROID_DNS_MODE");
 | |
|     if (cache_mode == NULL || strcmp(cache_mode, "local") != 0) {
 | |
|         // Don't use the cache in local mode. This is used by the proxy itself.
 | |
|         cache_size = 0;
 | |
|     }
 | |
| 
 | |
|     XLOG("cache size: %d", cache_size);
 | |
|     return cache_size;
 | |
| }
 | |
| 
 | |
| static struct resolv_cache*
 | |
| _resolv_cache_create( void )
 | |
| {
 | |
|     struct resolv_cache*  cache;
 | |
| 
 | |
|     cache = calloc(sizeof(*cache), 1);
 | |
|     if (cache) {
 | |
|         cache->max_entries = _res_cache_get_max_entries();
 | |
|         cache->entries = calloc(sizeof(*cache->entries), cache->max_entries);
 | |
|         if (cache->entries) {
 | |
|             cache->mru_list.mru_prev = cache->mru_list.mru_next = &cache->mru_list;
 | |
|             XLOG("%s: cache created\n", __FUNCTION__);
 | |
|         } else {
 | |
|             free(cache);
 | |
|             cache = NULL;
 | |
|         }
 | |
|     }
 | |
|     return cache;
 | |
| }
 | |
| 
 | |
| 
 | |
| #if DEBUG
 | |
| static void
 | |
| _dump_query( const uint8_t*  query, int  querylen )
 | |
| {
 | |
|     char       temp[256], *p=temp, *end=p+sizeof(temp);
 | |
|     DnsPacket  pack[1];
 | |
| 
 | |
|     _dnsPacket_init(pack, query, querylen);
 | |
|     p = _dnsPacket_bprintQuery(pack, p, end);
 | |
|     XLOG("QUERY: %s", temp);
 | |
| }
 | |
| 
 | |
| static void
 | |
| _cache_dump_mru( Cache*  cache )
 | |
| {
 | |
|     char    temp[512], *p=temp, *end=p+sizeof(temp);
 | |
|     Entry*  e;
 | |
| 
 | |
|     p = _bprint(temp, end, "MRU LIST (%2d): ", cache->num_entries);
 | |
|     for (e = cache->mru_list.mru_next; e != &cache->mru_list; e = e->mru_next)
 | |
|         p = _bprint(p, end, " %d", e->id);
 | |
| 
 | |
|     XLOG("%s", temp);
 | |
| }
 | |
| 
 | |
| static void
 | |
| _dump_answer(const void* answer, int answerlen)
 | |
| {
 | |
|     res_state statep;
 | |
|     FILE* fp;
 | |
|     char* buf;
 | |
|     int fileLen;
 | |
| 
 | |
|     fp = fopen("/data/reslog.txt", "w+");
 | |
|     if (fp != NULL) {
 | |
|         statep = __res_get_state();
 | |
| 
 | |
|         res_pquery(statep, answer, answerlen, fp);
 | |
| 
 | |
|         //Get file length
 | |
|         fseek(fp, 0, SEEK_END);
 | |
|         fileLen=ftell(fp);
 | |
|         fseek(fp, 0, SEEK_SET);
 | |
|         buf = (char *)malloc(fileLen+1);
 | |
|         if (buf != NULL) {
 | |
|             //Read file contents into buffer
 | |
|             fread(buf, fileLen, 1, fp);
 | |
|             XLOG("%s\n", buf);
 | |
|             free(buf);
 | |
|         }
 | |
|         fclose(fp);
 | |
|         remove("/data/reslog.txt");
 | |
|     }
 | |
|     else {
 | |
|         errno = 0; // else debug is introducing error signals
 | |
|         XLOG("%s: can't open file\n", __FUNCTION__);
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if DEBUG
 | |
| #  define  XLOG_QUERY(q,len)   _dump_query((q), (len))
 | |
| #  define  XLOG_ANSWER(a, len) _dump_answer((a), (len))
 | |
| #else
 | |
| #  define  XLOG_QUERY(q,len)   ((void)0)
 | |
| #  define  XLOG_ANSWER(a,len)  ((void)0)
 | |
| #endif
 | |
| 
 | |
| /* This function tries to find a key within the hash table
 | |
|  * In case of success, it will return a *pointer* to the hashed key.
 | |
|  * In case of failure, it will return a *pointer* to NULL
 | |
|  *
 | |
|  * So, the caller must check '*result' to check for success/failure.
 | |
|  *
 | |
|  * The main idea is that the result can later be used directly in
 | |
|  * calls to _resolv_cache_add or _resolv_cache_remove as the 'lookup'
 | |
|  * parameter. This makes the code simpler and avoids re-searching
 | |
|  * for the key position in the htable.
 | |
|  *
 | |
|  * The result of a lookup_p is only valid until you alter the hash
 | |
|  * table.
 | |
|  */
 | |
| static Entry**
 | |
| _cache_lookup_p( Cache*   cache,
 | |
|                  Entry*   key )
 | |
| {
 | |
|     int      index = key->hash % cache->max_entries;
 | |
|     Entry**  pnode = (Entry**) &cache->entries[ index ];
 | |
| 
 | |
|     while (*pnode != NULL) {
 | |
|         Entry*  node = *pnode;
 | |
| 
 | |
|         if (node == NULL)
 | |
|             break;
 | |
| 
 | |
|         if (node->hash == key->hash && entry_equals(node, key))
 | |
|             break;
 | |
| 
 | |
|         pnode = &node->hlink;
 | |
|     }
 | |
|     return pnode;
 | |
| }
 | |
| 
 | |
| /* Add a new entry to the hash table. 'lookup' must be the
 | |
|  * result of an immediate previous failed _lookup_p() call
 | |
|  * (i.e. with *lookup == NULL), and 'e' is the pointer to the
 | |
|  * newly created entry
 | |
|  */
 | |
| static void
 | |
| _cache_add_p( Cache*   cache,
 | |
|               Entry**  lookup,
 | |
|               Entry*   e )
 | |
| {
 | |
|     *lookup = e;
 | |
|     e->id = ++cache->last_id;
 | |
|     entry_mru_add(e, &cache->mru_list);
 | |
|     cache->num_entries += 1;
 | |
| 
 | |
|     XLOG("%s: entry %d added (count=%d)", __FUNCTION__,
 | |
|          e->id, cache->num_entries);
 | |
| }
 | |
| 
 | |
| /* Remove an existing entry from the hash table,
 | |
|  * 'lookup' must be the result of an immediate previous
 | |
|  * and succesful _lookup_p() call.
 | |
|  */
 | |
| static void
 | |
| _cache_remove_p( Cache*   cache,
 | |
|                  Entry**  lookup )
 | |
| {
 | |
|     Entry*  e  = *lookup;
 | |
| 
 | |
|     XLOG("%s: entry %d removed (count=%d)", __FUNCTION__,
 | |
|          e->id, cache->num_entries-1);
 | |
| 
 | |
|     entry_mru_remove(e);
 | |
|     *lookup = e->hlink;
 | |
|     entry_free(e);
 | |
|     cache->num_entries -= 1;
 | |
| }
 | |
| 
 | |
| /* Remove the oldest entry from the hash table.
 | |
|  */
 | |
| static void
 | |
| _cache_remove_oldest( Cache*  cache )
 | |
| {
 | |
|     Entry*   oldest = cache->mru_list.mru_prev;
 | |
|     Entry**  lookup = _cache_lookup_p(cache, oldest);
 | |
| 
 | |
|     if (*lookup == NULL) { /* should not happen */
 | |
|         XLOG("%s: OLDEST NOT IN HTABLE ?", __FUNCTION__);
 | |
|         return;
 | |
|     }
 | |
|     if (DEBUG) {
 | |
|         XLOG("Cache full - removing oldest");
 | |
|         XLOG_QUERY(oldest->query, oldest->querylen);
 | |
|     }
 | |
|     _cache_remove_p(cache, lookup);
 | |
| }
 | |
| 
 | |
| /* Remove all expired entries from the hash table.
 | |
|  */
 | |
| static void _cache_remove_expired(Cache* cache) {
 | |
|     Entry* e;
 | |
|     time_t now = _time_now();
 | |
| 
 | |
|     for (e = cache->mru_list.mru_next; e != &cache->mru_list;) {
 | |
|         // Entry is old, remove
 | |
|         if (now >= e->expires) {
 | |
|             Entry** lookup = _cache_lookup_p(cache, e);
 | |
|             if (*lookup == NULL) { /* should not happen */
 | |
|                 XLOG("%s: ENTRY NOT IN HTABLE ?", __FUNCTION__);
 | |
|                 return;
 | |
|             }
 | |
|             e = e->mru_next;
 | |
|             _cache_remove_p(cache, lookup);
 | |
|         } else {
 | |
|             e = e->mru_next;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| ResolvCacheStatus
 | |
| _resolv_cache_lookup( unsigned              netid,
 | |
|                       const void*           query,
 | |
|                       int                   querylen,
 | |
|                       void*                 answer,
 | |
|                       int                   answersize,
 | |
|                       int                  *answerlen )
 | |
| {
 | |
|     Entry      key[1];
 | |
|     Entry**    lookup;
 | |
|     Entry*     e;
 | |
|     time_t     now;
 | |
|     Cache*     cache;
 | |
| 
 | |
|     ResolvCacheStatus  result = RESOLV_CACHE_NOTFOUND;
 | |
| 
 | |
|     XLOG("%s: lookup", __FUNCTION__);
 | |
|     XLOG_QUERY(query, querylen);
 | |
| 
 | |
|     /* we don't cache malformed queries */
 | |
|     if (!entry_init_key(key, query, querylen)) {
 | |
|         XLOG("%s: unsupported query", __FUNCTION__);
 | |
|         return RESOLV_CACHE_UNSUPPORTED;
 | |
|     }
 | |
|     /* lookup cache */
 | |
|     pthread_once(&_res_cache_once, _res_cache_init);
 | |
|     pthread_mutex_lock(&_res_cache_list_lock);
 | |
| 
 | |
|     cache = _find_named_cache_locked(netid);
 | |
|     if (cache == NULL) {
 | |
|         result = RESOLV_CACHE_UNSUPPORTED;
 | |
|         goto Exit;
 | |
|     }
 | |
| 
 | |
|     /* see the description of _lookup_p to understand this.
 | |
|      * the function always return a non-NULL pointer.
 | |
|      */
 | |
|     lookup = _cache_lookup_p(cache, key);
 | |
|     e      = *lookup;
 | |
| 
 | |
|     if (e == NULL) {
 | |
|         XLOG( "NOT IN CACHE");
 | |
|         // calling thread will wait if an outstanding request is found
 | |
|         // that matching this query
 | |
|         if (!_cache_check_pending_request_locked(&cache, key, netid) || cache == NULL) {
 | |
|             goto Exit;
 | |
|         } else {
 | |
|             lookup = _cache_lookup_p(cache, key);
 | |
|             e = *lookup;
 | |
|             if (e == NULL) {
 | |
|                 goto Exit;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     now = _time_now();
 | |
| 
 | |
|     /* remove stale entries here */
 | |
|     if (now >= e->expires) {
 | |
|         XLOG( " NOT IN CACHE (STALE ENTRY %p DISCARDED)", *lookup );
 | |
|         XLOG_QUERY(e->query, e->querylen);
 | |
|         _cache_remove_p(cache, lookup);
 | |
|         goto Exit;
 | |
|     }
 | |
| 
 | |
|     *answerlen = e->answerlen;
 | |
|     if (e->answerlen > answersize) {
 | |
|         /* NOTE: we return UNSUPPORTED if the answer buffer is too short */
 | |
|         result = RESOLV_CACHE_UNSUPPORTED;
 | |
|         XLOG(" ANSWER TOO LONG");
 | |
|         goto Exit;
 | |
|     }
 | |
| 
 | |
|     memcpy( answer, e->answer, e->answerlen );
 | |
| 
 | |
|     /* bump up this entry to the top of the MRU list */
 | |
|     if (e != cache->mru_list.mru_next) {
 | |
|         entry_mru_remove( e );
 | |
|         entry_mru_add( e, &cache->mru_list );
 | |
|     }
 | |
| 
 | |
|     XLOG( "FOUND IN CACHE entry=%p", e );
 | |
|     result = RESOLV_CACHE_FOUND;
 | |
| 
 | |
| Exit:
 | |
|     pthread_mutex_unlock(&_res_cache_list_lock);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| _resolv_cache_add( unsigned              netid,
 | |
|                    const void*           query,
 | |
|                    int                   querylen,
 | |
|                    const void*           answer,
 | |
|                    int                   answerlen )
 | |
| {
 | |
|     Entry    key[1];
 | |
|     Entry*   e;
 | |
|     Entry**  lookup;
 | |
|     u_long   ttl;
 | |
|     Cache*   cache = NULL;
 | |
| 
 | |
|     /* don't assume that the query has already been cached
 | |
|      */
 | |
|     if (!entry_init_key( key, query, querylen )) {
 | |
|         XLOG( "%s: passed invalid query ?", __FUNCTION__);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     pthread_mutex_lock(&_res_cache_list_lock);
 | |
| 
 | |
|     cache = _find_named_cache_locked(netid);
 | |
|     if (cache == NULL) {
 | |
|         goto Exit;
 | |
|     }
 | |
| 
 | |
|     XLOG( "%s: query:", __FUNCTION__ );
 | |
|     XLOG_QUERY(query,querylen);
 | |
|     XLOG_ANSWER(answer, answerlen);
 | |
| #if DEBUG_DATA
 | |
|     XLOG( "answer:");
 | |
|     XLOG_BYTES(answer,answerlen);
 | |
| #endif
 | |
| 
 | |
|     lookup = _cache_lookup_p(cache, key);
 | |
|     e      = *lookup;
 | |
| 
 | |
|     if (e != NULL) { /* should not happen */
 | |
|         XLOG("%s: ALREADY IN CACHE (%p) ? IGNORING ADD",
 | |
|              __FUNCTION__, e);
 | |
|         goto Exit;
 | |
|     }
 | |
| 
 | |
|     if (cache->num_entries >= cache->max_entries) {
 | |
|         _cache_remove_expired(cache);
 | |
|         if (cache->num_entries >= cache->max_entries) {
 | |
|             _cache_remove_oldest(cache);
 | |
|         }
 | |
|         /* need to lookup again */
 | |
|         lookup = _cache_lookup_p(cache, key);
 | |
|         e      = *lookup;
 | |
|         if (e != NULL) {
 | |
|             XLOG("%s: ALREADY IN CACHE (%p) ? IGNORING ADD",
 | |
|                 __FUNCTION__, e);
 | |
|             goto Exit;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ttl = answer_getTTL(answer, answerlen);
 | |
|     if (ttl > 0) {
 | |
|         e = entry_alloc(key, answer, answerlen);
 | |
|         if (e != NULL) {
 | |
|             e->expires = ttl + _time_now();
 | |
|             _cache_add_p(cache, lookup, e);
 | |
|         }
 | |
|     }
 | |
| #if DEBUG
 | |
|     _cache_dump_mru(cache);
 | |
| #endif
 | |
| Exit:
 | |
|     if (cache != NULL) {
 | |
|       _cache_notify_waiting_tid_locked(cache, key);
 | |
|     }
 | |
|     pthread_mutex_unlock(&_res_cache_list_lock);
 | |
| }
 | |
| 
 | |
| /****************************************************************************/
 | |
| /****************************************************************************/
 | |
| /*****                                                                  *****/
 | |
| /*****                                                                  *****/
 | |
| /*****                                                                  *****/
 | |
| /****************************************************************************/
 | |
| /****************************************************************************/
 | |
| 
 | |
| // Head of the list of caches.  Protected by _res_cache_list_lock.
 | |
| static struct resolv_cache_info _res_cache_list;
 | |
| 
 | |
| /* insert resolv_cache_info into the list of resolv_cache_infos */
 | |
| static void _insert_cache_info_locked(struct resolv_cache_info* cache_info);
 | |
| /* creates a resolv_cache_info */
 | |
| static struct resolv_cache_info* _create_cache_info( void );
 | |
| /* gets a resolv_cache_info associated with a network, or NULL if not found */
 | |
| static struct resolv_cache_info* _find_cache_info_locked(unsigned netid);
 | |
| /* look up the named cache, and creates one if needed */
 | |
| static struct resolv_cache* _get_res_cache_for_net_locked(unsigned netid);
 | |
| /* empty the named cache */
 | |
| static void _flush_cache_for_net_locked(unsigned netid);
 | |
| /* empty the nameservers set for the named cache */
 | |
| static void _free_nameservers_locked(struct resolv_cache_info* cache_info);
 | |
| /* return 1 if the provided list of name servers differs from the list of name servers
 | |
|  * currently attached to the provided cache_info */
 | |
| static int _resolv_is_nameservers_equal_locked(struct resolv_cache_info* cache_info,
 | |
|         const char** servers, int numservers);
 | |
| 
 | |
| static void
 | |
| _res_cache_init(void)
 | |
| {
 | |
|     const char*  env = getenv(CONFIG_ENV);
 | |
| 
 | |
|     if (env && atoi(env) == 0) {
 | |
|         /* the cache is disabled */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     memset(&_res_cache_list, 0, sizeof(_res_cache_list));
 | |
|     pthread_mutex_init(&_res_cache_list_lock, NULL);
 | |
| }
 | |
| 
 | |
| static struct resolv_cache*
 | |
| _get_res_cache_for_net_locked(unsigned netid)
 | |
| {
 | |
|     struct resolv_cache* cache = _find_named_cache_locked(netid);
 | |
|     if (!cache) {
 | |
|         struct resolv_cache_info* cache_info = _create_cache_info();
 | |
|         if (cache_info) {
 | |
|             cache = _resolv_cache_create();
 | |
|             if (cache) {
 | |
|                 cache_info->cache = cache;
 | |
|                 cache_info->netid = netid;
 | |
|                 _insert_cache_info_locked(cache_info);
 | |
|             } else {
 | |
|                 free(cache_info);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return cache;
 | |
| }
 | |
| 
 | |
| static void
 | |
| _flush_cache_for_net_locked(unsigned netid)
 | |
| {
 | |
|     struct resolv_cache* cache = _find_named_cache_locked(netid);
 | |
|     if (cache) {
 | |
|         _cache_flush_locked(cache);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void _resolv_delete_cache_for_net(unsigned netid)
 | |
| {
 | |
|     pthread_once(&_res_cache_once, _res_cache_init);
 | |
|     pthread_mutex_lock(&_res_cache_list_lock);
 | |
| 
 | |
|     struct resolv_cache_info* prev_cache_info = &_res_cache_list;
 | |
| 
 | |
|     while (prev_cache_info->next) {
 | |
|         struct resolv_cache_info* cache_info = prev_cache_info->next;
 | |
| 
 | |
|         if (cache_info->netid == netid) {
 | |
|             prev_cache_info->next = cache_info->next;
 | |
|             _cache_flush_locked(cache_info->cache);
 | |
|             free(cache_info->cache->entries);
 | |
|             free(cache_info->cache);
 | |
|             _free_nameservers_locked(cache_info);
 | |
|             free(cache_info);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         prev_cache_info = prev_cache_info->next;
 | |
|     }
 | |
| 
 | |
|     pthread_mutex_unlock(&_res_cache_list_lock);
 | |
| }
 | |
| 
 | |
| static struct resolv_cache_info*
 | |
| _create_cache_info(void)
 | |
| {
 | |
|     struct resolv_cache_info* cache_info;
 | |
| 
 | |
|     cache_info = calloc(sizeof(*cache_info), 1);
 | |
|     return cache_info;
 | |
| }
 | |
| 
 | |
| static void
 | |
| _insert_cache_info_locked(struct resolv_cache_info* cache_info)
 | |
| {
 | |
|     struct resolv_cache_info* last;
 | |
| 
 | |
|     for (last = &_res_cache_list; last->next; last = last->next);
 | |
| 
 | |
|     last->next = cache_info;
 | |
| 
 | |
| }
 | |
| 
 | |
| static struct resolv_cache*
 | |
| _find_named_cache_locked(unsigned netid) {
 | |
| 
 | |
|     struct resolv_cache_info* info = _find_cache_info_locked(netid);
 | |
| 
 | |
|     if (info != NULL) return info->cache;
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static struct resolv_cache_info*
 | |
| _find_cache_info_locked(unsigned netid)
 | |
| {
 | |
|     struct resolv_cache_info* cache_info = _res_cache_list.next;
 | |
| 
 | |
|     while (cache_info) {
 | |
|         if (cache_info->netid == netid) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         cache_info = cache_info->next;
 | |
|     }
 | |
|     return cache_info;
 | |
| }
 | |
| 
 | |
| void
 | |
| _resolv_set_nameservers_for_net(unsigned netid, const char** servers, int numservers,
 | |
|         const char *domains)
 | |
| {
 | |
|     int i, rt, index;
 | |
|     struct addrinfo hints;
 | |
|     char sbuf[NI_MAXSERV];
 | |
|     register char *cp;
 | |
|     int *offset;
 | |
| 
 | |
|     pthread_once(&_res_cache_once, _res_cache_init);
 | |
|     pthread_mutex_lock(&_res_cache_list_lock);
 | |
| 
 | |
|     // creates the cache if not created
 | |
|     _get_res_cache_for_net_locked(netid);
 | |
| 
 | |
|     struct resolv_cache_info* cache_info = _find_cache_info_locked(netid);
 | |
| 
 | |
|     if (cache_info != NULL &&
 | |
|             !_resolv_is_nameservers_equal_locked(cache_info, servers, numservers)) {
 | |
|         // free current before adding new
 | |
|         _free_nameservers_locked(cache_info);
 | |
| 
 | |
|         memset(&hints, 0, sizeof(hints));
 | |
|         hints.ai_family = PF_UNSPEC;
 | |
|         hints.ai_socktype = SOCK_DGRAM; /*dummy*/
 | |
|         hints.ai_flags = AI_NUMERICHOST;
 | |
|         sprintf(sbuf, "%u", NAMESERVER_PORT);
 | |
| 
 | |
|         index = 0;
 | |
|         for (i = 0; i < numservers && i < MAXNS; i++) {
 | |
|             rt = getaddrinfo(servers[i], sbuf, &hints, &cache_info->nsaddrinfo[index]);
 | |
|             if (rt == 0) {
 | |
|                 cache_info->nameservers[index] = strdup(servers[i]);
 | |
|                 index++;
 | |
|                 XLOG("%s: netid = %u, addr = %s\n", __FUNCTION__, netid, servers[i]);
 | |
|             } else {
 | |
|                 cache_info->nsaddrinfo[index] = NULL;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // code moved from res_init.c, load_domain_search_list
 | |
|         strlcpy(cache_info->defdname, domains, sizeof(cache_info->defdname));
 | |
|         if ((cp = strchr(cache_info->defdname, '\n')) != NULL)
 | |
|             *cp = '\0';
 | |
|         cp = cache_info->defdname;
 | |
|         offset = cache_info->dnsrch_offset;
 | |
|         while (offset < cache_info->dnsrch_offset + MAXDNSRCH) {
 | |
|             while (*cp == ' ' || *cp == '\t') /* skip leading white space */
 | |
|                 cp++;
 | |
|             if (*cp == '\0') /* stop if nothing more to do */
 | |
|                 break;
 | |
|             *offset++ = cp - cache_info->defdname; /* record this search domain */
 | |
|             while (*cp) { /* zero-terminate it */
 | |
|                 if (*cp == ' '|| *cp == '\t') {
 | |
|                     *cp++ = '\0';
 | |
|                     break;
 | |
|                 }
 | |
|                 cp++;
 | |
|             }
 | |
|         }
 | |
|         *offset = -1; /* cache_info->dnsrch_offset has MAXDNSRCH+1 items */
 | |
| 
 | |
|         // flush cache since new settings
 | |
|         _flush_cache_for_net_locked(netid);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     pthread_mutex_unlock(&_res_cache_list_lock);
 | |
| }
 | |
| 
 | |
| static int
 | |
| _resolv_is_nameservers_equal_locked(struct resolv_cache_info* cache_info,
 | |
|         const char** servers, int numservers)
 | |
| {
 | |
|     int i;
 | |
|     char** ns;
 | |
|     int equal = 1;
 | |
| 
 | |
|     // compare each name server against current name servers
 | |
|     if (numservers > MAXNS) numservers = MAXNS;
 | |
|     for (i = 0; i < numservers && equal; i++) {
 | |
|         ns = cache_info->nameservers;
 | |
|         equal = 0;
 | |
|         while(*ns) {
 | |
|             if (strcmp(*ns, servers[i]) == 0) {
 | |
|                 equal = 1;
 | |
|                 break;
 | |
|             }
 | |
|             ns++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return equal;
 | |
| }
 | |
| 
 | |
| static void
 | |
| _free_nameservers_locked(struct resolv_cache_info* cache_info)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i <= MAXNS; i++) {
 | |
|         free(cache_info->nameservers[i]);
 | |
|         cache_info->nameservers[i] = NULL;
 | |
|         if (cache_info->nsaddrinfo[i] != NULL) {
 | |
|             freeaddrinfo(cache_info->nsaddrinfo[i]);
 | |
|             cache_info->nsaddrinfo[i] = NULL;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void
 | |
| _resolv_populate_res_for_net(res_state statp)
 | |
| {
 | |
|     if (statp == NULL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     pthread_once(&_res_cache_once, _res_cache_init);
 | |
|     pthread_mutex_lock(&_res_cache_list_lock);
 | |
| 
 | |
|     struct resolv_cache_info* info = _find_cache_info_locked(statp->netid);
 | |
|     if (info != NULL) {
 | |
|         int nserv;
 | |
|         struct addrinfo* ai;
 | |
|         XLOG("%s: %u\n", __FUNCTION__, statp->netid);
 | |
|         for (nserv = 0; nserv < MAXNS; nserv++) {
 | |
|             ai = info->nsaddrinfo[nserv];
 | |
|             if (ai == NULL) {
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             if ((size_t) ai->ai_addrlen <= sizeof(statp->_u._ext.ext->nsaddrs[0])) {
 | |
|                 if (statp->_u._ext.ext != NULL) {
 | |
|                     memcpy(&statp->_u._ext.ext->nsaddrs[nserv], ai->ai_addr, ai->ai_addrlen);
 | |
|                     statp->nsaddr_list[nserv].sin_family = AF_UNSPEC;
 | |
|                 } else {
 | |
|                     if ((size_t) ai->ai_addrlen
 | |
|                             <= sizeof(statp->nsaddr_list[0])) {
 | |
|                         memcpy(&statp->nsaddr_list[nserv], ai->ai_addr,
 | |
|                                 ai->ai_addrlen);
 | |
|                     } else {
 | |
|                         statp->nsaddr_list[nserv].sin_family = AF_UNSPEC;
 | |
|                     }
 | |
|                 }
 | |
|             } else {
 | |
|                 XLOG("%s: found too long addrlen", __FUNCTION__);
 | |
|             }
 | |
|         }
 | |
|         statp->nscount = nserv;
 | |
|         // now do search domains.  Note that we cache the offsets as this code runs alot
 | |
|         // but the setting/offset-computer only runs when set/changed
 | |
|         strlcpy(statp->defdname, info->defdname, sizeof(statp->defdname));
 | |
|         register char **pp = statp->dnsrch;
 | |
|         register int *p = info->dnsrch_offset;
 | |
|         while (pp < statp->dnsrch + MAXDNSRCH && *p != -1) {
 | |
|             *pp++ = &statp->defdname[0] + *p++;
 | |
|         }
 | |
|     }
 | |
|     pthread_mutex_unlock(&_res_cache_list_lock);
 | |
| }
 | 
