bionic/libc/arch-x86_64/string/sse2-memcpy-slm.S
Varvara Rainchik a020a244ae Add 64-bit Silvermont-optimized string/memory functions.
Add following functions:
bcopy, bzero, memcpy, memmove, memset, stpcpy, stpncpy, strcat, strcpy,
strlen, strncat, strncpy, memcmp, strcmp, strncmp.
Set all these functions as the default ones.

Change-Id: Ic66b250ad8c349a43d25e2d4dea075604f6df6ac
Signed-off-by: Varvara Rainchik <varvara.rainchik@intel.com>
2014-05-12 17:37:07 -07:00

300 lines
6.8 KiB
ArmAsm

/*
Copyright (c) 2014, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "cache.h"
#ifndef MEMCPY
# define MEMCPY memcpy
#endif
#ifndef L
# define L(label) .L##label
#endif
#ifndef cfi_startproc
# define cfi_startproc .cfi_startproc
#endif
#ifndef cfi_endproc
# define cfi_endproc .cfi_endproc
#endif
#ifndef cfi_rel_offset
# define cfi_rel_offset(reg, off) .cfi_rel_offset reg, off
#endif
#ifndef cfi_restore
# define cfi_restore(reg) .cfi_restore reg
#endif
#ifndef cfi_adjust_cfa_offset
# define cfi_adjust_cfa_offset(off) .cfi_adjust_cfa_offset off
#endif
#ifndef ENTRY
# define ENTRY(name) \
.type name, @function; \
.globl name; \
.p2align 4; \
name: \
cfi_startproc
#endif
#ifndef END
# define END(name) \
cfi_endproc; \
.size name, .-name
#endif
#define CFI_PUSH(REG) \
cfi_adjust_cfa_offset (4); \
cfi_rel_offset (REG, 0)
#define CFI_POP(REG) \
cfi_adjust_cfa_offset (-4); \
cfi_restore (REG)
#define PUSH(REG) push REG;
#define POP(REG) pop REG;
#define ENTRANCE PUSH (%rbx);
#define RETURN_END POP (%rbx); ret
#define RETURN RETURN_END;
.section .text.sse2,"ax",@progbits
ENTRY (MEMCPY)
ENTRANCE
cmp %rsi, %rdi
je L(return)
cmp $16, %rdx
jbe L(len_0_16_bytes)
cmp $SHARED_CACHE_SIZE_HALF, %rdx
jae L(large_page)
movdqu (%rsi), %xmm0
movdqu -16(%rsi, %rdx), %xmm1
cmp $32, %rdx
movdqu %xmm0, (%rdi)
movdqu %xmm1, -16(%rdi, %rdx)
jbe L(return)
movdqu 16(%rsi), %xmm0
movdqu -32(%rsi, %rdx), %xmm1
cmp $64, %rdx
movdqu %xmm0, 16(%rdi)
movdqu %xmm1, -32(%rdi, %rdx)
jbe L(return)
movdqu 32(%rsi), %xmm0
movdqu 48(%rsi), %xmm1
movdqu -48(%rsi, %rdx), %xmm2
movdqu -64(%rsi, %rdx), %xmm3
cmp $128, %rdx
movdqu %xmm0, 32(%rdi)
movdqu %xmm1, 48(%rdi)
movdqu %xmm2, -48(%rdi, %rdx)
movdqu %xmm3, -64(%rdi, %rdx)
jbe L(return)
/* Now the main loop: we align the address of the destination. */
lea 64(%rdi), %r8
and $-64, %r8
add %rdi, %rdx
and $-64, %rdx
sub %rdi, %rsi
/* We should stop two iterations before the termination
(in order not to misprefetch). */
sub $64, %rdx
cmp %r8, %rdx
je L(main_loop_just_one_iteration)
sub $64, %rdx
cmp %r8, %rdx
je L(main_loop_last_two_iterations)
.p2align 4
L(main_loop_cache):
prefetcht0 128(%r8, %rsi)
movdqu (%r8, %rsi), %xmm0
movdqu 16(%r8, %rsi), %xmm1
movdqu 32(%r8, %rsi), %xmm2
movdqu 48(%r8, %rsi), %xmm3
movdqa %xmm0, (%r8)
movdqa %xmm1, 16(%r8)
movdqa %xmm2, 32(%r8)
movdqa %xmm3, 48(%r8)
lea 64(%r8), %r8
cmp %r8, %rdx
jne L(main_loop_cache)
L(main_loop_last_two_iterations):
movdqu (%r8, %rsi), %xmm0
movdqu 16(%r8, %rsi), %xmm1
movdqu 32(%r8, %rsi), %xmm2
movdqu 48(%r8, %rsi), %xmm3
movdqu 64(%r8, %rsi), %xmm4
movdqu 80(%r8, %rsi), %xmm5
movdqu 96(%r8, %rsi), %xmm6
movdqu 112(%r8, %rsi), %xmm7
movdqa %xmm0, (%r8)
movdqa %xmm1, 16(%r8)
movdqa %xmm2, 32(%r8)
movdqa %xmm3, 48(%r8)
movdqa %xmm4, 64(%r8)
movdqa %xmm5, 80(%r8)
movdqa %xmm6, 96(%r8)
movdqa %xmm7, 112(%r8)
jmp L(return)
L(main_loop_just_one_iteration):
movdqu (%r8, %rsi), %xmm0
movdqu 16(%r8, %rsi), %xmm1
movdqu 32(%r8, %rsi), %xmm2
movdqu 48(%r8, %rsi), %xmm3
movdqa %xmm0, (%r8)
movdqa %xmm1, 16(%r8)
movdqa %xmm2, 32(%r8)
movdqa %xmm3, 48(%r8)
jmp L(return)
L(large_page):
movdqu (%rsi), %xmm0
movdqu 16(%rsi), %xmm1
movdqu 32(%rsi), %xmm2
movdqu 48(%rsi), %xmm3
movdqu -64(%rsi, %rdx), %xmm4
movdqu -48(%rsi, %rdx), %xmm5
movdqu -32(%rsi, %rdx), %xmm6
movdqu -16(%rsi, %rdx), %xmm7
movdqu %xmm0, (%rdi)
movdqu %xmm1, 16(%rdi)
movdqu %xmm2, 32(%rdi)
movdqu %xmm3, 48(%rdi)
movdqu %xmm4, -64(%rdi, %rdx)
movdqu %xmm5, -48(%rdi, %rdx)
movdqu %xmm6, -32(%rdi, %rdx)
movdqu %xmm7, -16(%rdi, %rdx)
movdqu 64(%rsi), %xmm0
movdqu 80(%rsi), %xmm1
movdqu 96(%rsi), %xmm2
movdqu 112(%rsi), %xmm3
movdqu -128(%rsi, %rdx), %xmm4
movdqu -112(%rsi, %rdx), %xmm5
movdqu -96(%rsi, %rdx), %xmm6
movdqu -80(%rsi, %rdx), %xmm7
movdqu %xmm0, 64(%rdi)
movdqu %xmm1, 80(%rdi)
movdqu %xmm2, 96(%rdi)
movdqu %xmm3, 112(%rdi)
movdqu %xmm4, -128(%rdi, %rdx)
movdqu %xmm5, -112(%rdi, %rdx)
movdqu %xmm6, -96(%rdi, %rdx)
movdqu %xmm7, -80(%rdi, %rdx)
/* Now the main loop with non temporal stores. We align
the address of the destination. */
lea 128(%rdi), %r8
and $-128, %r8
add %rdi, %rdx
and $-128, %rdx
sub %rdi, %rsi
.p2align 4
L(main_loop_large_page):
movdqu (%r8, %rsi), %xmm0
movdqu 16(%r8, %rsi), %xmm1
movdqu 32(%r8, %rsi), %xmm2
movdqu 48(%r8, %rsi), %xmm3
movdqu 64(%r8, %rsi), %xmm4
movdqu 80(%r8, %rsi), %xmm5
movdqu 96(%r8, %rsi), %xmm6
movdqu 112(%r8, %rsi), %xmm7
movntdq %xmm0, (%r8)
movntdq %xmm1, 16(%r8)
movntdq %xmm2, 32(%r8)
movntdq %xmm3, 48(%r8)
movntdq %xmm4, 64(%r8)
movntdq %xmm5, 80(%r8)
movntdq %xmm6, 96(%r8)
movntdq %xmm7, 112(%r8)
lea 128(%r8), %r8
cmp %r8, %rdx
jne L(main_loop_large_page)
sfence
jmp L(return)
L(len_0_16_bytes):
testb $24, %dl
jne L(len_9_16_bytes)
testb $4, %dl
.p2align 4,,5
jne L(len_5_8_bytes)
test %rdx, %rdx
.p2align 4,,2
je L(return)
movzbl (%rsi), %ebx
testb $2, %dl
movb %bl, (%rdi)
je L(return)
movzwl -2(%rsi,%rdx), %ebx
movw %bx, -2(%rdi,%rdx)
jmp L(return)
L(len_9_16_bytes):
movq (%rsi), %xmm0
movq -8(%rsi, %rdx), %xmm1
movq %xmm0, (%rdi)
movq %xmm1, -8(%rdi, %rdx)
jmp L(return)
L(len_5_8_bytes):
movl (%rsi), %ebx
movl %ebx, (%rdi)
movl -4(%rsi,%rdx), %ebx
movl %ebx, -4(%rdi,%rdx)
jmp L(return)
L(return):
mov %rdi, %rax
RETURN
END (MEMCPY)