This brings us up to date with FreeBSD HEAD, fixes various bugs, unifies the set of functions we support on ARM, MIPS, and x86, fixes "long double", adds ISO C99 support, and adds basic unit tests. It turns out that our "long double" functions have always been broken for non-normal numbers. This patch fixes that by not using the upstream implementations and just forwarding to the regular "double" implementation instead (since "long double" on Android is just "double" anyway, which is what BSD doesn't support). All the tests pass on ARM, MIPS, and x86, plus glibc on x86-64. Bug: 3169850 Bug: 8012787 Bug: https://code.google.com/p/android/issues/detail?id=6697 Change-Id: If0c343030959c24bfc50d4d21c9530052c581837
231 lines
7.1 KiB
C
231 lines
7.1 KiB
C
/* e_lgammaf_r.c -- float version of e_lgamma_r.c.
|
|
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
|
*/
|
|
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "math.h"
|
|
#include "math_private.h"
|
|
|
|
static const float
|
|
two23= 8.3886080000e+06, /* 0x4b000000 */
|
|
half= 5.0000000000e-01, /* 0x3f000000 */
|
|
one = 1.0000000000e+00, /* 0x3f800000 */
|
|
pi = 3.1415927410e+00, /* 0x40490fdb */
|
|
a0 = 7.7215664089e-02, /* 0x3d9e233f */
|
|
a1 = 3.2246702909e-01, /* 0x3ea51a66 */
|
|
a2 = 6.7352302372e-02, /* 0x3d89f001 */
|
|
a3 = 2.0580807701e-02, /* 0x3ca89915 */
|
|
a4 = 7.3855509982e-03, /* 0x3bf2027e */
|
|
a5 = 2.8905137442e-03, /* 0x3b3d6ec6 */
|
|
a6 = 1.1927076848e-03, /* 0x3a9c54a1 */
|
|
a7 = 5.1006977446e-04, /* 0x3a05b634 */
|
|
a8 = 2.2086278477e-04, /* 0x39679767 */
|
|
a9 = 1.0801156895e-04, /* 0x38e28445 */
|
|
a10 = 2.5214456400e-05, /* 0x37d383a2 */
|
|
a11 = 4.4864096708e-05, /* 0x383c2c75 */
|
|
tc = 1.4616321325e+00, /* 0x3fbb16c3 */
|
|
tf = -1.2148628384e-01, /* 0xbdf8cdcd */
|
|
/* tt = -(tail of tf) */
|
|
tt = 6.6971006518e-09, /* 0x31e61c52 */
|
|
t0 = 4.8383611441e-01, /* 0x3ef7b95e */
|
|
t1 = -1.4758771658e-01, /* 0xbe17213c */
|
|
t2 = 6.4624942839e-02, /* 0x3d845a15 */
|
|
t3 = -3.2788541168e-02, /* 0xbd064d47 */
|
|
t4 = 1.7970675603e-02, /* 0x3c93373d */
|
|
t5 = -1.0314224288e-02, /* 0xbc28fcfe */
|
|
t6 = 6.1005386524e-03, /* 0x3bc7e707 */
|
|
t7 = -3.6845202558e-03, /* 0xbb7177fe */
|
|
t8 = 2.2596477065e-03, /* 0x3b141699 */
|
|
t9 = -1.4034647029e-03, /* 0xbab7f476 */
|
|
t10 = 8.8108185446e-04, /* 0x3a66f867 */
|
|
t11 = -5.3859531181e-04, /* 0xba0d3085 */
|
|
t12 = 3.1563205994e-04, /* 0x39a57b6b */
|
|
t13 = -3.1275415677e-04, /* 0xb9a3f927 */
|
|
t14 = 3.3552918467e-04, /* 0x39afe9f7 */
|
|
u0 = -7.7215664089e-02, /* 0xbd9e233f */
|
|
u1 = 6.3282704353e-01, /* 0x3f2200f4 */
|
|
u2 = 1.4549225569e+00, /* 0x3fba3ae7 */
|
|
u3 = 9.7771751881e-01, /* 0x3f7a4bb2 */
|
|
u4 = 2.2896373272e-01, /* 0x3e6a7578 */
|
|
u5 = 1.3381091878e-02, /* 0x3c5b3c5e */
|
|
v1 = 2.4559779167e+00, /* 0x401d2ebe */
|
|
v2 = 2.1284897327e+00, /* 0x4008392d */
|
|
v3 = 7.6928514242e-01, /* 0x3f44efdf */
|
|
v4 = 1.0422264785e-01, /* 0x3dd572af */
|
|
v5 = 3.2170924824e-03, /* 0x3b52d5db */
|
|
s0 = -7.7215664089e-02, /* 0xbd9e233f */
|
|
s1 = 2.1498242021e-01, /* 0x3e5c245a */
|
|
s2 = 3.2577878237e-01, /* 0x3ea6cc7a */
|
|
s3 = 1.4635047317e-01, /* 0x3e15dce6 */
|
|
s4 = 2.6642270386e-02, /* 0x3cda40e4 */
|
|
s5 = 1.8402845599e-03, /* 0x3af135b4 */
|
|
s6 = 3.1947532989e-05, /* 0x3805ff67 */
|
|
r1 = 1.3920053244e+00, /* 0x3fb22d3b */
|
|
r2 = 7.2193557024e-01, /* 0x3f38d0c5 */
|
|
r3 = 1.7193385959e-01, /* 0x3e300f6e */
|
|
r4 = 1.8645919859e-02, /* 0x3c98bf54 */
|
|
r5 = 7.7794247773e-04, /* 0x3a4beed6 */
|
|
r6 = 7.3266842264e-06, /* 0x36f5d7bd */
|
|
w0 = 4.1893854737e-01, /* 0x3ed67f1d */
|
|
w1 = 8.3333335817e-02, /* 0x3daaaaab */
|
|
w2 = -2.7777778450e-03, /* 0xbb360b61 */
|
|
w3 = 7.9365057172e-04, /* 0x3a500cfd */
|
|
w4 = -5.9518753551e-04, /* 0xba1c065c */
|
|
w5 = 8.3633989561e-04, /* 0x3a5b3dd2 */
|
|
w6 = -1.6309292987e-03; /* 0xbad5c4e8 */
|
|
|
|
static const float zero= 0.0000000000e+00;
|
|
|
|
static float sin_pif(float x)
|
|
{
|
|
float y,z;
|
|
int n,ix;
|
|
|
|
GET_FLOAT_WORD(ix,x);
|
|
ix &= 0x7fffffff;
|
|
|
|
if(ix<0x3e800000) return __kernel_sindf(pi*x);
|
|
y = -x; /* x is assume negative */
|
|
|
|
/*
|
|
* argument reduction, make sure inexact flag not raised if input
|
|
* is an integer
|
|
*/
|
|
z = floorf(y);
|
|
if(z!=y) { /* inexact anyway */
|
|
y *= (float)0.5;
|
|
y = (float)2.0*(y - floorf(y)); /* y = |x| mod 2.0 */
|
|
n = (int) (y*(float)4.0);
|
|
} else {
|
|
if(ix>=0x4b800000) {
|
|
y = zero; n = 0; /* y must be even */
|
|
} else {
|
|
if(ix<0x4b000000) z = y+two23; /* exact */
|
|
GET_FLOAT_WORD(n,z);
|
|
n &= 1;
|
|
y = n;
|
|
n<<= 2;
|
|
}
|
|
}
|
|
switch (n) {
|
|
case 0: y = __kernel_sindf(pi*y); break;
|
|
case 1:
|
|
case 2: y = __kernel_cosdf(pi*((float)0.5-y)); break;
|
|
case 3:
|
|
case 4: y = __kernel_sindf(pi*(one-y)); break;
|
|
case 5:
|
|
case 6: y = -__kernel_cosdf(pi*(y-(float)1.5)); break;
|
|
default: y = __kernel_sindf(pi*(y-(float)2.0)); break;
|
|
}
|
|
return -y;
|
|
}
|
|
|
|
|
|
float
|
|
__ieee754_lgammaf_r(float x, int *signgamp)
|
|
{
|
|
float t,y,z,nadj,p,p1,p2,p3,q,r,w;
|
|
int32_t hx;
|
|
int i,ix;
|
|
|
|
GET_FLOAT_WORD(hx,x);
|
|
|
|
/* purge off +-inf, NaN, +-0, tiny and negative arguments */
|
|
*signgamp = 1;
|
|
ix = hx&0x7fffffff;
|
|
if(ix>=0x7f800000) return x*x;
|
|
if(ix==0) return one/zero;
|
|
if(ix<0x35000000) { /* |x|<2**-21, return -log(|x|) */
|
|
if(hx<0) {
|
|
*signgamp = -1;
|
|
return -__ieee754_logf(-x);
|
|
} else return -__ieee754_logf(x);
|
|
}
|
|
if(hx<0) {
|
|
if(ix>=0x4b000000) /* |x|>=2**23, must be -integer */
|
|
return one/zero;
|
|
t = sin_pif(x);
|
|
if(t==zero) return one/zero; /* -integer */
|
|
nadj = __ieee754_logf(pi/fabsf(t*x));
|
|
if(t<zero) *signgamp = -1;
|
|
x = -x;
|
|
}
|
|
|
|
/* purge off 1 and 2 */
|
|
if (ix==0x3f800000||ix==0x40000000) r = 0;
|
|
/* for x < 2.0 */
|
|
else if(ix<0x40000000) {
|
|
if(ix<=0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */
|
|
r = -__ieee754_logf(x);
|
|
if(ix>=0x3f3b4a20) {y = one-x; i= 0;}
|
|
else if(ix>=0x3e6d3308) {y= x-(tc-one); i=1;}
|
|
else {y = x; i=2;}
|
|
} else {
|
|
r = zero;
|
|
if(ix>=0x3fdda618) {y=(float)2.0-x;i=0;} /* [1.7316,2] */
|
|
else if(ix>=0x3F9da620) {y=x-tc;i=1;} /* [1.23,1.73] */
|
|
else {y=x-one;i=2;}
|
|
}
|
|
switch(i) {
|
|
case 0:
|
|
z = y*y;
|
|
p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
|
|
p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
|
|
p = y*p1+p2;
|
|
r += (p-(float)0.5*y); break;
|
|
case 1:
|
|
z = y*y;
|
|
w = z*y;
|
|
p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */
|
|
p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
|
|
p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
|
|
p = z*p1-(tt-w*(p2+y*p3));
|
|
r += (tf + p); break;
|
|
case 2:
|
|
p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
|
|
p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
|
|
r += (-(float)0.5*y + p1/p2);
|
|
}
|
|
}
|
|
else if(ix<0x41000000) { /* x < 8.0 */
|
|
i = (int)x;
|
|
y = x-(float)i;
|
|
p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
|
|
q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
|
|
r = half*y+p/q;
|
|
z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
|
|
switch(i) {
|
|
case 7: z *= (y+(float)6.0); /* FALLTHRU */
|
|
case 6: z *= (y+(float)5.0); /* FALLTHRU */
|
|
case 5: z *= (y+(float)4.0); /* FALLTHRU */
|
|
case 4: z *= (y+(float)3.0); /* FALLTHRU */
|
|
case 3: z *= (y+(float)2.0); /* FALLTHRU */
|
|
r += __ieee754_logf(z); break;
|
|
}
|
|
/* 8.0 <= x < 2**58 */
|
|
} else if (ix < 0x5c800000) {
|
|
t = __ieee754_logf(x);
|
|
z = one/x;
|
|
y = z*z;
|
|
w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
|
|
r = (x-half)*(t-one)+w;
|
|
} else
|
|
/* 2**58 <= x <= inf */
|
|
r = x*(__ieee754_logf(x)-one);
|
|
if(hx<0) r = nadj - r;
|
|
return r;
|
|
}
|