Christopher Ferris 05332f2ce7 Fix all debug directives.
The backtrace when a fortify check failed was not correct. This change
adds all of the necessary directives to get a correct backtrace.

Fix the strcmp directives and change all labels to local labels.

Testing:
- Verify that the runtime can decode the stack for __memcpy_chk, __memset_chk,
  __strcpy_chk, __strcat_chk fortify failures.
- Verify that gdb can decode the stack properly when hitting a fortify check.
- Verify that the runtime can decode the stack for a seg fault for all of the
  _chk functions and for memcpy/memset.
- Verify that gdb can decode the stack for a seg fault for all of the _chk
  functions and for memcpy/memset.
- Verify that the runtime can decode the stack for a seg fault for strcmp.
- Verify that gdb can decode the stack for a seg fault in strcmp.

Bug: 10342460
Bug: 10345269

Change-Id: I1dedadfee207dce4a285e17a21e8952bbc63786a
2013-08-28 15:42:05 -07:00

328 lines
11 KiB
ArmAsm

/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 2013 ARM Ltd
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
ENTRY(MEMCPY_BASE)
.cfi_startproc
.save {r0, lr}
.cfi_def_cfa_offset 8
.cfi_rel_offset r0, 0
.cfi_rel_offset lr, 4
// Assumes that n >= 0, and dst, src are valid pointers.
// For any sizes less than 832 use the neon code that doesn't
// care about the src alignment. This avoids any checks
// for src alignment, and offers the best improvement since
// smaller sized copies are dominated by the overhead of
// the pre and post main loop.
// For larger copies, if src and dst cannot both be aligned to
// word boundaries, use the neon code.
// For all other copies, align dst to a double word boundary
// and copy using LDRD/STRD instructions.
cmp r2, #16
blo .L_copy_less_than_16_unknown_align
cmp r2, #832
bge .L_check_alignment
.L_copy_unknown_alignment:
// Unknown alignment of src and dst.
// Assumes that the first few bytes have already been prefetched.
// Align destination to 128 bits. The mainloop store instructions
// require this alignment or they will throw an exception.
rsb r3, r0, #0
ands r3, r3, #0xF
beq 2f
// Copy up to 15 bytes (count in r3).
sub r2, r2, r3
movs ip, r3, lsl #31
itt mi
ldrbmi lr, [r1], #1
strbmi lr, [r0], #1
itttt cs
ldrbcs ip, [r1], #1
ldrbcs lr, [r1], #1
strbcs ip, [r0], #1
strbcs lr, [r0], #1
movs ip, r3, lsl #29
bge 1f
// Copies 4 bytes, dst 32 bits aligned before, at least 64 bits after.
vld4.8 {d0[0], d1[0], d2[0], d3[0]}, [r1]!
vst4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0, :32]!
1: bcc 2f
// Copies 8 bytes, dst 64 bits aligned before, at least 128 bits after.
vld1.8 {d0}, [r1]!
vst1.8 {d0}, [r0, :64]!
2: // Make sure we have at least 64 bytes to copy.
subs r2, r2, #64
blo 2f
1: // The main loop copies 64 bytes at a time.
vld1.8 {d0 - d3}, [r1]!
vld1.8 {d4 - d7}, [r1]!
pld [r1, #(64*4)]
subs r2, r2, #64
vst1.8 {d0 - d3}, [r0, :128]!
vst1.8 {d4 - d7}, [r0, :128]!
bhs 1b
2: // Fix-up the remaining count and make sure we have >= 32 bytes left.
adds r2, r2, #32
blo 3f
// 32 bytes. These cache lines were already preloaded.
vld1.8 {d0 - d3}, [r1]!
sub r2, r2, #32
vst1.8 {d0 - d3}, [r0, :128]!
3: // Less than 32 left.
add r2, r2, #32
tst r2, #0x10
beq .L_copy_less_than_16_unknown_align
// Copies 16 bytes, destination 128 bits aligned.
vld1.8 {d0, d1}, [r1]!
vst1.8 {d0, d1}, [r0, :128]!
.L_copy_less_than_16_unknown_align:
// Copy up to 15 bytes (count in r2).
movs ip, r2, lsl #29
bcc 1f
vld1.8 {d0}, [r1]!
vst1.8 {d0}, [r0]!
1: bge 2f
vld4.8 {d0[0], d1[0], d2[0], d3[0]}, [r1]!
vst4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0]!
2: // Copy 0 to 4 bytes.
lsls r2, r2, #31
itt ne
ldrbne lr, [r1], #1
strbne lr, [r0], #1
itttt cs
ldrbcs ip, [r1], #1
ldrbcs lr, [r1]
strbcs ip, [r0], #1
strbcs lr, [r0]
pop {r0, pc}
.L_check_alignment:
// If src and dst cannot both be aligned to a word boundary,
// use the unaligned copy version.
eor r3, r0, r1
ands r3, r3, #0x3
bne .L_copy_unknown_alignment
.cfi_endproc
END(MEMCPY_BASE)
ENTRY(MEMCPY_BASE_ALIGNED)
.cfi_startproc
.save {r0, lr}
.cfi_def_cfa_offset 8
.cfi_rel_offset r0, 0
.cfi_rel_offset lr, 4
// To try and improve performance, stack layout changed,
// i.e., not keeping the stack looking like users expect
// (highest numbered register at highest address).
strd r4, r5, [sp, #-8]!
.save {r4, r5}
.cfi_adjust_cfa_offset 8
.cfi_rel_offset r4, 0
.cfi_rel_offset r5, 4
strd r6, r7, [sp, #-8]!
.save {r6, r7}
.cfi_adjust_cfa_offset 8
.cfi_rel_offset r6, 0
.cfi_rel_offset r7, 0
strd r8, r9, [sp, #-8]!
.save {r8, r9}
.cfi_adjust_cfa_offset 8
.cfi_rel_offset r8, 0
.cfi_rel_offset r9, 4
// Optimized for already aligned dst code.
ands ip, r0, #3
bne .L_dst_not_word_aligned
.L_word_aligned:
// Align the destination buffer to 8 bytes, to make sure double
// loads and stores don't cross a cache line boundary,
// as they are then more expensive even if the data is in the cache
// (require two load/store issue cycles instead of one).
// If only one of the buffers is not 8 bytes aligned,
// then it's more important to align dst than src,
// because there is more penalty for stores
// than loads that cross a cacheline boundary.
// This check and realignment are only done if there is >= 832
// bytes to copy.
// Dst is word aligned, but check if it is already double word aligned.
ands r3, r0, #4
beq 1f
ldr r3, [r1], #4
str r3, [r0], #4
sub r2, #4
1: // Can only get here if > 64 bytes to copy, so don't do check r2.
sub r2, #64
2: // Every loop iteration copies 64 bytes.
.irp offset, #0, #8, #16, #24, #32
ldrd r4, r5, [r1, \offset]
strd r4, r5, [r0, \offset]
.endr
ldrd r4, r5, [r1, #40]
ldrd r6, r7, [r1, #48]
ldrd r8, r9, [r1, #56]
// Keep the pld as far from the next load as possible.
// The amount to prefetch was determined experimentally using
// large sizes, and verifying the prefetch size does not affect
// the smaller copies too much.
// WARNING: If the ldrd and strd instructions get too far away
// from each other, performance suffers. Three loads
// in a row is the best tradeoff.
pld [r1, #(64*16)]
strd r4, r5, [r0, #40]
strd r6, r7, [r0, #48]
strd r8, r9, [r0, #56]
add r0, r0, #64
add r1, r1, #64
subs r2, r2, #64
bge 2b
// Fix-up the remaining count and make sure we have >= 32 bytes left.
adds r2, r2, #32
blo 4f
// Copy 32 bytes. These cache lines were already preloaded.
.irp offset, #0, #8, #16, #24
ldrd r4, r5, [r1, \offset]
strd r4, r5, [r0, \offset]
.endr
add r1, r1, #32
add r0, r0, #32
sub r2, r2, #32
4: // Less than 32 left.
add r2, r2, #32
tst r2, #0x10
beq 5f
// Copy 16 bytes.
.irp offset, #0, #8
ldrd r4, r5, [r1, \offset]
strd r4, r5, [r0, \offset]
.endr
add r1, r1, #16
add r0, r0, #16
5: // Copy up to 15 bytes (count in r2).
movs ip, r2, lsl #29
bcc 1f
// Copy 8 bytes.
ldrd r4, r5, [r1], #8
strd r4, r5, [r0], #8
1: bge 2f
// Copy 4 bytes.
ldr r4, [r1], #4
str r4, [r0], #4
2: // Copy 0 to 4 bytes.
lsls r2, r2, #31
itt ne
ldrbne lr, [r1], #1
strbne lr, [r0], #1
itttt cs
ldrbcs ip, [r1], #1
ldrbcs lr, [r1]
strbcs ip, [r0], #1
strbcs lr, [r0]
// Restore registers: optimized pop {r0, pc}
ldrd r8, r9, [sp], #8
ldrd r6, r7, [sp], #8
ldrd r4, r5, [sp], #8
pop {r0, pc}
.L_dst_not_word_aligned:
// Align dst to word.
rsb ip, ip, #4
cmp ip, #2
itt gt
ldrbgt lr, [r1], #1
strbgt lr, [r0], #1
itt ge
ldrbge lr, [r1], #1
strbge lr, [r0], #1
ldrb lr, [r1], #1
strb lr, [r0], #1
sub r2, r2, ip
// Src is guaranteed to be at least word aligned by this point.
b .L_word_aligned
.cfi_endproc
END(MEMCPY_BASE_ALIGNED)