1925 lines
62 KiB
C++
Executable File
1925 lines
62 KiB
C++
Executable File
/*
|
|
* Copyright (C) 2012 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <errno.h>
|
|
#include <inttypes.h>
|
|
#include <limits.h>
|
|
#include <malloc.h>
|
|
#include <pthread.h>
|
|
#include <signal.h>
|
|
#include <stdio.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/syscall.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
#include <unwind.h>
|
|
|
|
#include <atomic>
|
|
#include <vector>
|
|
|
|
#include "private/bionic_constants.h"
|
|
#include "private/bionic_macros.h"
|
|
#include "private/ScopeGuard.h"
|
|
#include "BionicDeathTest.h"
|
|
#include "ScopedSignalHandler.h"
|
|
|
|
#include "utils.h"
|
|
|
|
TEST(pthread, pthread_key_create) {
|
|
pthread_key_t key;
|
|
ASSERT_EQ(0, pthread_key_create(&key, NULL));
|
|
ASSERT_EQ(0, pthread_key_delete(key));
|
|
// Can't delete a key that's already been deleted.
|
|
ASSERT_EQ(EINVAL, pthread_key_delete(key));
|
|
}
|
|
|
|
TEST(pthread, pthread_keys_max) {
|
|
// POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX.
|
|
ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX);
|
|
}
|
|
|
|
TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) {
|
|
int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX);
|
|
ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX);
|
|
}
|
|
|
|
TEST(pthread, pthread_key_many_distinct) {
|
|
// As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX
|
|
// pthread keys, but We should be able to allocate at least this many keys.
|
|
int nkeys = PTHREAD_KEYS_MAX / 2;
|
|
std::vector<pthread_key_t> keys;
|
|
|
|
auto scope_guard = make_scope_guard([&keys]{
|
|
for (const auto& key : keys) {
|
|
EXPECT_EQ(0, pthread_key_delete(key));
|
|
}
|
|
});
|
|
|
|
for (int i = 0; i < nkeys; ++i) {
|
|
pthread_key_t key;
|
|
// If this fails, it's likely that LIBC_PTHREAD_KEY_RESERVED_COUNT is wrong.
|
|
ASSERT_EQ(0, pthread_key_create(&key, NULL)) << i << " of " << nkeys;
|
|
keys.push_back(key);
|
|
ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i)));
|
|
}
|
|
|
|
for (int i = keys.size() - 1; i >= 0; --i) {
|
|
ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back()));
|
|
pthread_key_t key = keys.back();
|
|
keys.pop_back();
|
|
ASSERT_EQ(0, pthread_key_delete(key));
|
|
}
|
|
}
|
|
|
|
TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) {
|
|
std::vector<pthread_key_t> keys;
|
|
int rv = 0;
|
|
|
|
// Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should
|
|
// be more than we are allowed to allocate now.
|
|
for (int i = 0; i < PTHREAD_KEYS_MAX; i++) {
|
|
pthread_key_t key;
|
|
rv = pthread_key_create(&key, NULL);
|
|
if (rv == EAGAIN) {
|
|
break;
|
|
}
|
|
EXPECT_EQ(0, rv);
|
|
keys.push_back(key);
|
|
}
|
|
|
|
// Don't leak keys.
|
|
for (const auto& key : keys) {
|
|
EXPECT_EQ(0, pthread_key_delete(key));
|
|
}
|
|
keys.clear();
|
|
|
|
// We should have eventually reached the maximum number of keys and received
|
|
// EAGAIN.
|
|
ASSERT_EQ(EAGAIN, rv);
|
|
}
|
|
|
|
TEST(pthread, pthread_key_delete) {
|
|
void* expected = reinterpret_cast<void*>(1234);
|
|
pthread_key_t key;
|
|
ASSERT_EQ(0, pthread_key_create(&key, NULL));
|
|
ASSERT_EQ(0, pthread_setspecific(key, expected));
|
|
ASSERT_EQ(expected, pthread_getspecific(key));
|
|
ASSERT_EQ(0, pthread_key_delete(key));
|
|
// After deletion, pthread_getspecific returns NULL.
|
|
ASSERT_EQ(NULL, pthread_getspecific(key));
|
|
// And you can't use pthread_setspecific with the deleted key.
|
|
ASSERT_EQ(EINVAL, pthread_setspecific(key, expected));
|
|
}
|
|
|
|
TEST(pthread, pthread_key_fork) {
|
|
void* expected = reinterpret_cast<void*>(1234);
|
|
pthread_key_t key;
|
|
ASSERT_EQ(0, pthread_key_create(&key, NULL));
|
|
ASSERT_EQ(0, pthread_setspecific(key, expected));
|
|
ASSERT_EQ(expected, pthread_getspecific(key));
|
|
|
|
pid_t pid = fork();
|
|
ASSERT_NE(-1, pid) << strerror(errno);
|
|
|
|
if (pid == 0) {
|
|
// The surviving thread inherits all the forking thread's TLS values...
|
|
ASSERT_EQ(expected, pthread_getspecific(key));
|
|
_exit(99);
|
|
}
|
|
|
|
int status;
|
|
ASSERT_EQ(pid, waitpid(pid, &status, 0));
|
|
ASSERT_TRUE(WIFEXITED(status));
|
|
ASSERT_EQ(99, WEXITSTATUS(status));
|
|
|
|
ASSERT_EQ(expected, pthread_getspecific(key));
|
|
ASSERT_EQ(0, pthread_key_delete(key));
|
|
}
|
|
|
|
static void* DirtyKeyFn(void* key) {
|
|
return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key));
|
|
}
|
|
|
|
TEST(pthread, pthread_key_dirty) {
|
|
pthread_key_t key;
|
|
ASSERT_EQ(0, pthread_key_create(&key, NULL));
|
|
|
|
size_t stack_size = 640 * 1024;
|
|
void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
|
|
ASSERT_NE(MAP_FAILED, stack);
|
|
memset(stack, 0xff, stack_size);
|
|
|
|
pthread_attr_t attr;
|
|
ASSERT_EQ(0, pthread_attr_init(&attr));
|
|
ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size));
|
|
|
|
pthread_t t;
|
|
ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key));
|
|
|
|
void* result;
|
|
ASSERT_EQ(0, pthread_join(t, &result));
|
|
ASSERT_EQ(nullptr, result); // Not ~0!
|
|
|
|
ASSERT_EQ(0, munmap(stack, stack_size));
|
|
ASSERT_EQ(0, pthread_key_delete(key));
|
|
}
|
|
|
|
TEST(pthread, static_pthread_key_used_before_creation) {
|
|
#if defined(__BIONIC__)
|
|
// See http://b/19625804. The bug is about a static/global pthread key being used before creation.
|
|
// So here tests if the static/global default value 0 can be detected as invalid key.
|
|
static pthread_key_t key;
|
|
ASSERT_EQ(nullptr, pthread_getspecific(key));
|
|
ASSERT_EQ(EINVAL, pthread_setspecific(key, nullptr));
|
|
ASSERT_EQ(EINVAL, pthread_key_delete(key));
|
|
#else
|
|
GTEST_LOG_(INFO) << "This test tests bionic pthread key implementation detail.\n";
|
|
#endif
|
|
}
|
|
|
|
static void* IdFn(void* arg) {
|
|
return arg;
|
|
}
|
|
|
|
class SpinFunctionHelper {
|
|
public:
|
|
SpinFunctionHelper() {
|
|
SpinFunctionHelper::spin_flag_ = true;
|
|
}
|
|
~SpinFunctionHelper() {
|
|
UnSpin();
|
|
}
|
|
auto GetFunction() -> void* (*)(void*) {
|
|
return SpinFunctionHelper::SpinFn;
|
|
}
|
|
|
|
void UnSpin() {
|
|
SpinFunctionHelper::spin_flag_ = false;
|
|
}
|
|
|
|
private:
|
|
static void* SpinFn(void*) {
|
|
while (spin_flag_) {}
|
|
return NULL;
|
|
}
|
|
static std::atomic<bool> spin_flag_;
|
|
};
|
|
|
|
// It doesn't matter if spin_flag_ is used in several tests,
|
|
// because it is always set to false after each test. Each thread
|
|
// loops on spin_flag_ can find it becomes false at some time.
|
|
std::atomic<bool> SpinFunctionHelper::spin_flag_;
|
|
|
|
static void* JoinFn(void* arg) {
|
|
return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), NULL));
|
|
}
|
|
|
|
static void AssertDetached(pthread_t t, bool is_detached) {
|
|
pthread_attr_t attr;
|
|
ASSERT_EQ(0, pthread_getattr_np(t, &attr));
|
|
int detach_state;
|
|
ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state));
|
|
pthread_attr_destroy(&attr);
|
|
ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED));
|
|
}
|
|
|
|
static void MakeDeadThread(pthread_t& t) {
|
|
ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, NULL));
|
|
ASSERT_EQ(0, pthread_join(t, NULL));
|
|
}
|
|
|
|
TEST(pthread, pthread_create) {
|
|
void* expected_result = reinterpret_cast<void*>(123);
|
|
// Can we create a thread?
|
|
pthread_t t;
|
|
ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, expected_result));
|
|
// If we join, do we get the expected value back?
|
|
void* result;
|
|
ASSERT_EQ(0, pthread_join(t, &result));
|
|
ASSERT_EQ(expected_result, result);
|
|
}
|
|
|
|
TEST(pthread, pthread_create_EAGAIN) {
|
|
pthread_attr_t attributes;
|
|
ASSERT_EQ(0, pthread_attr_init(&attributes));
|
|
ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1)));
|
|
|
|
pthread_t t;
|
|
ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, NULL));
|
|
}
|
|
|
|
TEST(pthread, pthread_no_join_after_detach) {
|
|
SpinFunctionHelper spinhelper;
|
|
|
|
pthread_t t1;
|
|
ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
|
|
|
|
// After a pthread_detach...
|
|
ASSERT_EQ(0, pthread_detach(t1));
|
|
AssertDetached(t1, true);
|
|
|
|
// ...pthread_join should fail.
|
|
ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
|
|
}
|
|
|
|
TEST(pthread, pthread_no_op_detach_after_join) {
|
|
SpinFunctionHelper spinhelper;
|
|
|
|
pthread_t t1;
|
|
ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
|
|
|
|
// If thread 2 is already waiting to join thread 1...
|
|
pthread_t t2;
|
|
ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
|
|
|
|
sleep(1); // (Give t2 a chance to call pthread_join.)
|
|
|
|
#if defined(__BIONIC__)
|
|
ASSERT_EQ(EINVAL, pthread_detach(t1));
|
|
#else
|
|
ASSERT_EQ(0, pthread_detach(t1));
|
|
#endif
|
|
AssertDetached(t1, false);
|
|
|
|
spinhelper.UnSpin();
|
|
|
|
// ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
|
|
void* join_result;
|
|
ASSERT_EQ(0, pthread_join(t2, &join_result));
|
|
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
|
|
}
|
|
|
|
TEST(pthread, pthread_join_self) {
|
|
ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), NULL));
|
|
}
|
|
|
|
struct TestBug37410 {
|
|
pthread_t main_thread;
|
|
pthread_mutex_t mutex;
|
|
|
|
static void main() {
|
|
TestBug37410 data;
|
|
data.main_thread = pthread_self();
|
|
ASSERT_EQ(0, pthread_mutex_init(&data.mutex, NULL));
|
|
ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
|
|
|
|
pthread_t t;
|
|
ASSERT_EQ(0, pthread_create(&t, NULL, TestBug37410::thread_fn, reinterpret_cast<void*>(&data)));
|
|
|
|
// Wait for the thread to be running...
|
|
ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex));
|
|
|
|
// ...and exit.
|
|
pthread_exit(NULL);
|
|
}
|
|
|
|
private:
|
|
static void* thread_fn(void* arg) {
|
|
TestBug37410* data = reinterpret_cast<TestBug37410*>(arg);
|
|
|
|
// Let the main thread know we're running.
|
|
pthread_mutex_unlock(&data->mutex);
|
|
|
|
// And wait for the main thread to exit.
|
|
pthread_join(data->main_thread, NULL);
|
|
|
|
return NULL;
|
|
}
|
|
};
|
|
|
|
// Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to
|
|
// run this test (which exits normally) in its own process.
|
|
|
|
class pthread_DeathTest : public BionicDeathTest {};
|
|
|
|
TEST_F(pthread_DeathTest, pthread_bug_37410) {
|
|
// http://code.google.com/p/android/issues/detail?id=37410
|
|
ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), "");
|
|
}
|
|
|
|
static void* SignalHandlerFn(void* arg) {
|
|
sigset_t wait_set;
|
|
sigfillset(&wait_set);
|
|
return reinterpret_cast<void*>(sigwait(&wait_set, reinterpret_cast<int*>(arg)));
|
|
}
|
|
|
|
TEST(pthread, pthread_sigmask) {
|
|
// Check that SIGUSR1 isn't blocked.
|
|
sigset_t original_set;
|
|
sigemptyset(&original_set);
|
|
ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &original_set));
|
|
ASSERT_FALSE(sigismember(&original_set, SIGUSR1));
|
|
|
|
// Block SIGUSR1.
|
|
sigset_t set;
|
|
sigemptyset(&set);
|
|
sigaddset(&set, SIGUSR1);
|
|
ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, NULL));
|
|
|
|
// Check that SIGUSR1 is blocked.
|
|
sigset_t final_set;
|
|
sigemptyset(&final_set);
|
|
ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &final_set));
|
|
ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
|
|
// ...and that sigprocmask agrees with pthread_sigmask.
|
|
sigemptyset(&final_set);
|
|
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, NULL, &final_set));
|
|
ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
|
|
|
|
// Spawn a thread that calls sigwait and tells us what it received.
|
|
pthread_t signal_thread;
|
|
int received_signal = -1;
|
|
ASSERT_EQ(0, pthread_create(&signal_thread, NULL, SignalHandlerFn, &received_signal));
|
|
|
|
// Send that thread SIGUSR1.
|
|
pthread_kill(signal_thread, SIGUSR1);
|
|
|
|
// See what it got.
|
|
void* join_result;
|
|
ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
|
|
ASSERT_EQ(SIGUSR1, received_signal);
|
|
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
|
|
|
|
// Restore the original signal mask.
|
|
ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, NULL));
|
|
}
|
|
|
|
TEST(pthread, pthread_setname_np__too_long) {
|
|
// The limit is 15 characters --- the kernel's buffer is 16, but includes a NUL.
|
|
ASSERT_EQ(0, pthread_setname_np(pthread_self(), "123456789012345"));
|
|
ASSERT_EQ(ERANGE, pthread_setname_np(pthread_self(), "1234567890123456"));
|
|
}
|
|
|
|
TEST(pthread, pthread_setname_np__self) {
|
|
ASSERT_EQ(0, pthread_setname_np(pthread_self(), "short 1"));
|
|
}
|
|
|
|
TEST(pthread, pthread_setname_np__other) {
|
|
SpinFunctionHelper spinhelper;
|
|
|
|
pthread_t t1;
|
|
ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
|
|
ASSERT_EQ(0, pthread_setname_np(t1, "short 2"));
|
|
spinhelper.UnSpin();
|
|
ASSERT_EQ(0, pthread_join(t1, nullptr));
|
|
}
|
|
|
|
TEST(pthread, pthread_setname_np__no_such_thread) {
|
|
pthread_t dead_thread;
|
|
MakeDeadThread(dead_thread);
|
|
|
|
// Call pthread_setname_np after thread has already exited.
|
|
ASSERT_EQ(ENOENT, pthread_setname_np(dead_thread, "short 3"));
|
|
}
|
|
|
|
TEST(pthread, pthread_kill__0) {
|
|
// Signal 0 just tests that the thread exists, so it's safe to call on ourselves.
|
|
ASSERT_EQ(0, pthread_kill(pthread_self(), 0));
|
|
}
|
|
|
|
TEST(pthread, pthread_kill__invalid_signal) {
|
|
ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1));
|
|
}
|
|
|
|
static void pthread_kill__in_signal_handler_helper(int signal_number) {
|
|
static int count = 0;
|
|
ASSERT_EQ(SIGALRM, signal_number);
|
|
if (++count == 1) {
|
|
// Can we call pthread_kill from a signal handler?
|
|
ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
|
|
}
|
|
}
|
|
|
|
TEST(pthread, pthread_kill__in_signal_handler) {
|
|
ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper);
|
|
ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
|
|
}
|
|
|
|
TEST(pthread, pthread_detach__no_such_thread) {
|
|
pthread_t dead_thread;
|
|
MakeDeadThread(dead_thread);
|
|
|
|
ASSERT_EQ(ESRCH, pthread_detach(dead_thread));
|
|
}
|
|
|
|
TEST(pthread, pthread_getcpuclockid__clock_gettime) {
|
|
SpinFunctionHelper spinhelper;
|
|
|
|
pthread_t t;
|
|
ASSERT_EQ(0, pthread_create(&t, NULL, spinhelper.GetFunction(), NULL));
|
|
|
|
clockid_t c;
|
|
ASSERT_EQ(0, pthread_getcpuclockid(t, &c));
|
|
timespec ts;
|
|
ASSERT_EQ(0, clock_gettime(c, &ts));
|
|
spinhelper.UnSpin();
|
|
ASSERT_EQ(0, pthread_join(t, nullptr));
|
|
}
|
|
|
|
TEST(pthread, pthread_getcpuclockid__no_such_thread) {
|
|
pthread_t dead_thread;
|
|
MakeDeadThread(dead_thread);
|
|
|
|
clockid_t c;
|
|
ASSERT_EQ(ESRCH, pthread_getcpuclockid(dead_thread, &c));
|
|
}
|
|
|
|
TEST(pthread, pthread_getschedparam__no_such_thread) {
|
|
pthread_t dead_thread;
|
|
MakeDeadThread(dead_thread);
|
|
|
|
int policy;
|
|
sched_param param;
|
|
ASSERT_EQ(ESRCH, pthread_getschedparam(dead_thread, &policy, ¶m));
|
|
}
|
|
|
|
TEST(pthread, pthread_setschedparam__no_such_thread) {
|
|
pthread_t dead_thread;
|
|
MakeDeadThread(dead_thread);
|
|
|
|
int policy = 0;
|
|
sched_param param;
|
|
ASSERT_EQ(ESRCH, pthread_setschedparam(dead_thread, policy, ¶m));
|
|
}
|
|
|
|
TEST(pthread, pthread_join__no_such_thread) {
|
|
pthread_t dead_thread;
|
|
MakeDeadThread(dead_thread);
|
|
|
|
ASSERT_EQ(ESRCH, pthread_join(dead_thread, NULL));
|
|
}
|
|
|
|
TEST(pthread, pthread_kill__no_such_thread) {
|
|
pthread_t dead_thread;
|
|
MakeDeadThread(dead_thread);
|
|
|
|
ASSERT_EQ(ESRCH, pthread_kill(dead_thread, 0));
|
|
}
|
|
|
|
TEST(pthread, pthread_join__multijoin) {
|
|
SpinFunctionHelper spinhelper;
|
|
|
|
pthread_t t1;
|
|
ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
|
|
|
|
pthread_t t2;
|
|
ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
|
|
|
|
sleep(1); // (Give t2 a chance to call pthread_join.)
|
|
|
|
// Multiple joins to the same thread should fail.
|
|
ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
|
|
|
|
spinhelper.UnSpin();
|
|
|
|
// ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
|
|
void* join_result;
|
|
ASSERT_EQ(0, pthread_join(t2, &join_result));
|
|
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
|
|
}
|
|
|
|
TEST(pthread, pthread_join__race) {
|
|
// http://b/11693195 --- pthread_join could return before the thread had actually exited.
|
|
// If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread.
|
|
for (size_t i = 0; i < 1024; ++i) {
|
|
size_t stack_size = 640*1024;
|
|
void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
|
|
|
|
pthread_attr_t a;
|
|
pthread_attr_init(&a);
|
|
pthread_attr_setstack(&a, stack, stack_size);
|
|
|
|
pthread_t t;
|
|
ASSERT_EQ(0, pthread_create(&t, &a, IdFn, NULL));
|
|
ASSERT_EQ(0, pthread_join(t, NULL));
|
|
ASSERT_EQ(0, munmap(stack, stack_size));
|
|
}
|
|
}
|
|
|
|
static void* GetActualGuardSizeFn(void* arg) {
|
|
pthread_attr_t attributes;
|
|
pthread_getattr_np(pthread_self(), &attributes);
|
|
pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg));
|
|
return NULL;
|
|
}
|
|
|
|
static size_t GetActualGuardSize(const pthread_attr_t& attributes) {
|
|
size_t result;
|
|
pthread_t t;
|
|
pthread_create(&t, &attributes, GetActualGuardSizeFn, &result);
|
|
pthread_join(t, NULL);
|
|
return result;
|
|
}
|
|
|
|
static void* GetActualStackSizeFn(void* arg) {
|
|
pthread_attr_t attributes;
|
|
pthread_getattr_np(pthread_self(), &attributes);
|
|
pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg));
|
|
return NULL;
|
|
}
|
|
|
|
static size_t GetActualStackSize(const pthread_attr_t& attributes) {
|
|
size_t result;
|
|
pthread_t t;
|
|
pthread_create(&t, &attributes, GetActualStackSizeFn, &result);
|
|
pthread_join(t, NULL);
|
|
return result;
|
|
}
|
|
|
|
TEST(pthread, pthread_attr_setguardsize) {
|
|
pthread_attr_t attributes;
|
|
ASSERT_EQ(0, pthread_attr_init(&attributes));
|
|
|
|
// Get the default guard size.
|
|
size_t default_guard_size;
|
|
ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &default_guard_size));
|
|
|
|
// No such thing as too small: will be rounded up to one page by pthread_create.
|
|
ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128));
|
|
size_t guard_size;
|
|
ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
|
|
ASSERT_EQ(128U, guard_size);
|
|
ASSERT_EQ(4096U, GetActualGuardSize(attributes));
|
|
|
|
// Large enough and a multiple of the page size.
|
|
ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024));
|
|
ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
|
|
ASSERT_EQ(32*1024U, guard_size);
|
|
|
|
// Large enough but not a multiple of the page size; will be rounded up by pthread_create.
|
|
ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1));
|
|
ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
|
|
ASSERT_EQ(32*1024U + 1, guard_size);
|
|
}
|
|
|
|
TEST(pthread, pthread_attr_setstacksize) {
|
|
pthread_attr_t attributes;
|
|
ASSERT_EQ(0, pthread_attr_init(&attributes));
|
|
|
|
// Get the default stack size.
|
|
size_t default_stack_size;
|
|
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size));
|
|
|
|
// Too small.
|
|
ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128));
|
|
size_t stack_size;
|
|
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
|
|
ASSERT_EQ(default_stack_size, stack_size);
|
|
ASSERT_GE(GetActualStackSize(attributes), default_stack_size);
|
|
|
|
// Large enough and a multiple of the page size; may be rounded up by pthread_create.
|
|
ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024));
|
|
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
|
|
ASSERT_EQ(32*1024U, stack_size);
|
|
ASSERT_GE(GetActualStackSize(attributes), 32*1024U);
|
|
|
|
// Large enough but not aligned; will be rounded up by pthread_create.
|
|
ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1));
|
|
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
|
|
ASSERT_EQ(32*1024U + 1, stack_size);
|
|
#if defined(__BIONIC__)
|
|
ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1);
|
|
#else // __BIONIC__
|
|
// glibc rounds down, in violation of POSIX. They document this in their BUGS section.
|
|
ASSERT_EQ(GetActualStackSize(attributes), 32*1024U);
|
|
#endif // __BIONIC__
|
|
}
|
|
|
|
TEST(pthread, pthread_rwlockattr_smoke) {
|
|
pthread_rwlockattr_t attr;
|
|
ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
|
|
|
|
int pshared_value_array[] = {PTHREAD_PROCESS_PRIVATE, PTHREAD_PROCESS_SHARED};
|
|
for (size_t i = 0; i < sizeof(pshared_value_array) / sizeof(pshared_value_array[0]); ++i) {
|
|
ASSERT_EQ(0, pthread_rwlockattr_setpshared(&attr, pshared_value_array[i]));
|
|
int pshared;
|
|
ASSERT_EQ(0, pthread_rwlockattr_getpshared(&attr, &pshared));
|
|
ASSERT_EQ(pshared_value_array[i], pshared);
|
|
}
|
|
|
|
int kind_array[] = {PTHREAD_RWLOCK_PREFER_READER_NP,
|
|
PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP};
|
|
for (size_t i = 0; i < sizeof(kind_array) / sizeof(kind_array[0]); ++i) {
|
|
ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_array[i]));
|
|
int kind;
|
|
ASSERT_EQ(0, pthread_rwlockattr_getkind_np(&attr, &kind));
|
|
ASSERT_EQ(kind_array[i], kind);
|
|
}
|
|
|
|
ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
|
|
}
|
|
|
|
TEST(pthread, pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER) {
|
|
pthread_rwlock_t lock1 = PTHREAD_RWLOCK_INITIALIZER;
|
|
pthread_rwlock_t lock2;
|
|
ASSERT_EQ(0, pthread_rwlock_init(&lock2, NULL));
|
|
ASSERT_EQ(0, memcmp(&lock1, &lock2, sizeof(lock1)));
|
|
}
|
|
|
|
TEST(pthread, pthread_rwlock_smoke) {
|
|
pthread_rwlock_t l;
|
|
ASSERT_EQ(0, pthread_rwlock_init(&l, NULL));
|
|
|
|
// Single read lock
|
|
ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
|
|
// Multiple read lock
|
|
ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
|
|
// Write lock
|
|
ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
|
|
// Try writer lock
|
|
ASSERT_EQ(0, pthread_rwlock_trywrlock(&l));
|
|
ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
|
|
ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
|
|
// Try reader lock
|
|
ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
|
|
ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
|
|
// Try writer lock after unlock
|
|
ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
|
|
// EDEADLK in "read after write"
|
|
ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
|
|
ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
|
|
// EDEADLK in "write after write"
|
|
ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
|
|
ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
|
|
ASSERT_EQ(0, pthread_rwlock_destroy(&l));
|
|
}
|
|
|
|
struct RwlockWakeupHelperArg {
|
|
pthread_rwlock_t lock;
|
|
enum Progress {
|
|
LOCK_INITIALIZED,
|
|
LOCK_WAITING,
|
|
LOCK_RELEASED,
|
|
LOCK_ACCESSED,
|
|
LOCK_TIMEDOUT,
|
|
};
|
|
std::atomic<Progress> progress;
|
|
std::atomic<pid_t> tid;
|
|
std::function<int (pthread_rwlock_t*)> trylock_function;
|
|
std::function<int (pthread_rwlock_t*)> lock_function;
|
|
std::function<int (pthread_rwlock_t*, const timespec*)> timed_lock_function;
|
|
};
|
|
|
|
static void pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg* arg) {
|
|
arg->tid = gettid();
|
|
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
|
|
arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
|
|
|
|
ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
|
|
ASSERT_EQ(0, arg->lock_function(&arg->lock));
|
|
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
|
|
|
|
arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
|
|
}
|
|
|
|
static void test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t*)> lock_function) {
|
|
RwlockWakeupHelperArg wakeup_arg;
|
|
ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
|
|
ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
|
|
wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
|
|
wakeup_arg.tid = 0;
|
|
wakeup_arg.trylock_function = pthread_rwlock_trywrlock;
|
|
wakeup_arg.lock_function = lock_function;
|
|
|
|
pthread_t thread;
|
|
ASSERT_EQ(0, pthread_create(&thread, NULL,
|
|
reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
|
|
WaitUntilThreadSleep(wakeup_arg.tid);
|
|
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
|
|
|
|
wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
|
|
|
|
ASSERT_EQ(0, pthread_join(thread, NULL));
|
|
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
|
|
ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
|
|
}
|
|
|
|
TEST(pthread, pthread_rwlock_reader_wakeup_writer) {
|
|
test_pthread_rwlock_reader_wakeup_writer(pthread_rwlock_wrlock);
|
|
}
|
|
|
|
TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait) {
|
|
timespec ts;
|
|
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
|
|
ts.tv_sec += 1;
|
|
test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) {
|
|
return pthread_rwlock_timedwrlock(lock, &ts);
|
|
});
|
|
}
|
|
|
|
static void test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t*)> lock_function) {
|
|
RwlockWakeupHelperArg wakeup_arg;
|
|
ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
|
|
ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
|
|
wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
|
|
wakeup_arg.tid = 0;
|
|
wakeup_arg.trylock_function = pthread_rwlock_tryrdlock;
|
|
wakeup_arg.lock_function = lock_function;
|
|
|
|
pthread_t thread;
|
|
ASSERT_EQ(0, pthread_create(&thread, NULL,
|
|
reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
|
|
WaitUntilThreadSleep(wakeup_arg.tid);
|
|
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
|
|
|
|
wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
|
|
|
|
ASSERT_EQ(0, pthread_join(thread, NULL));
|
|
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
|
|
ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
|
|
}
|
|
|
|
TEST(pthread, pthread_rwlock_writer_wakeup_reader) {
|
|
test_pthread_rwlock_writer_wakeup_reader(pthread_rwlock_rdlock);
|
|
}
|
|
|
|
TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait) {
|
|
timespec ts;
|
|
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
|
|
ts.tv_sec += 1;
|
|
test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) {
|
|
return pthread_rwlock_timedrdlock(lock, &ts);
|
|
});
|
|
}
|
|
|
|
static void pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg* arg) {
|
|
arg->tid = gettid();
|
|
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
|
|
arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
|
|
|
|
ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
|
|
|
|
timespec ts;
|
|
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
|
|
ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
|
|
ts.tv_nsec = -1;
|
|
ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
|
|
ts.tv_nsec = NS_PER_S;
|
|
ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
|
|
ts.tv_nsec = NS_PER_S - 1;
|
|
ts.tv_sec = -1;
|
|
ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
|
|
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
|
|
ts.tv_sec += 1;
|
|
ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
|
|
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, arg->progress);
|
|
arg->progress = RwlockWakeupHelperArg::LOCK_TIMEDOUT;
|
|
}
|
|
|
|
TEST(pthread, pthread_rwlock_timedrdlock_timeout) {
|
|
RwlockWakeupHelperArg wakeup_arg;
|
|
ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
|
|
ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
|
|
wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
|
|
wakeup_arg.tid = 0;
|
|
wakeup_arg.trylock_function = pthread_rwlock_tryrdlock;
|
|
wakeup_arg.timed_lock_function = pthread_rwlock_timedrdlock;
|
|
|
|
pthread_t thread;
|
|
ASSERT_EQ(0, pthread_create(&thread, nullptr,
|
|
reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
|
|
WaitUntilThreadSleep(wakeup_arg.tid);
|
|
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
|
|
|
|
ASSERT_EQ(0, pthread_join(thread, nullptr));
|
|
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
|
|
ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
|
|
}
|
|
|
|
TEST(pthread, pthread_rwlock_timedwrlock_timeout) {
|
|
RwlockWakeupHelperArg wakeup_arg;
|
|
ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
|
|
ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
|
|
wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
|
|
wakeup_arg.tid = 0;
|
|
wakeup_arg.trylock_function = pthread_rwlock_trywrlock;
|
|
wakeup_arg.timed_lock_function = pthread_rwlock_timedwrlock;
|
|
|
|
pthread_t thread;
|
|
ASSERT_EQ(0, pthread_create(&thread, nullptr,
|
|
reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
|
|
WaitUntilThreadSleep(wakeup_arg.tid);
|
|
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
|
|
|
|
ASSERT_EQ(0, pthread_join(thread, nullptr));
|
|
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
|
|
ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
|
|
}
|
|
|
|
class RwlockKindTestHelper {
|
|
private:
|
|
struct ThreadArg {
|
|
RwlockKindTestHelper* helper;
|
|
std::atomic<pid_t>& tid;
|
|
|
|
ThreadArg(RwlockKindTestHelper* helper, std::atomic<pid_t>& tid)
|
|
: helper(helper), tid(tid) { }
|
|
};
|
|
|
|
public:
|
|
pthread_rwlock_t lock;
|
|
|
|
public:
|
|
RwlockKindTestHelper(int kind_type) {
|
|
InitRwlock(kind_type);
|
|
}
|
|
|
|
~RwlockKindTestHelper() {
|
|
DestroyRwlock();
|
|
}
|
|
|
|
void CreateWriterThread(pthread_t& thread, std::atomic<pid_t>& tid) {
|
|
tid = 0;
|
|
ThreadArg* arg = new ThreadArg(this, tid);
|
|
ASSERT_EQ(0, pthread_create(&thread, NULL,
|
|
reinterpret_cast<void* (*)(void*)>(WriterThreadFn), arg));
|
|
}
|
|
|
|
void CreateReaderThread(pthread_t& thread, std::atomic<pid_t>& tid) {
|
|
tid = 0;
|
|
ThreadArg* arg = new ThreadArg(this, tid);
|
|
ASSERT_EQ(0, pthread_create(&thread, NULL,
|
|
reinterpret_cast<void* (*)(void*)>(ReaderThreadFn), arg));
|
|
}
|
|
|
|
private:
|
|
void InitRwlock(int kind_type) {
|
|
pthread_rwlockattr_t attr;
|
|
ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
|
|
ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_type));
|
|
ASSERT_EQ(0, pthread_rwlock_init(&lock, &attr));
|
|
ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
|
|
}
|
|
|
|
void DestroyRwlock() {
|
|
ASSERT_EQ(0, pthread_rwlock_destroy(&lock));
|
|
}
|
|
|
|
static void WriterThreadFn(ThreadArg* arg) {
|
|
arg->tid = gettid();
|
|
|
|
RwlockKindTestHelper* helper = arg->helper;
|
|
ASSERT_EQ(0, pthread_rwlock_wrlock(&helper->lock));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
|
|
delete arg;
|
|
}
|
|
|
|
static void ReaderThreadFn(ThreadArg* arg) {
|
|
arg->tid = gettid();
|
|
|
|
RwlockKindTestHelper* helper = arg->helper;
|
|
ASSERT_EQ(0, pthread_rwlock_rdlock(&helper->lock));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
|
|
delete arg;
|
|
}
|
|
};
|
|
|
|
TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP) {
|
|
RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_READER_NP);
|
|
ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
|
|
|
|
pthread_t writer_thread;
|
|
std::atomic<pid_t> writer_tid;
|
|
helper.CreateWriterThread(writer_thread, writer_tid);
|
|
WaitUntilThreadSleep(writer_tid);
|
|
|
|
pthread_t reader_thread;
|
|
std::atomic<pid_t> reader_tid;
|
|
helper.CreateReaderThread(reader_thread, reader_tid);
|
|
ASSERT_EQ(0, pthread_join(reader_thread, NULL));
|
|
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
|
|
ASSERT_EQ(0, pthread_join(writer_thread, NULL));
|
|
}
|
|
|
|
TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) {
|
|
RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
|
|
ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
|
|
|
|
pthread_t writer_thread;
|
|
std::atomic<pid_t> writer_tid;
|
|
helper.CreateWriterThread(writer_thread, writer_tid);
|
|
WaitUntilThreadSleep(writer_tid);
|
|
|
|
pthread_t reader_thread;
|
|
std::atomic<pid_t> reader_tid;
|
|
helper.CreateReaderThread(reader_thread, reader_tid);
|
|
WaitUntilThreadSleep(reader_tid);
|
|
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
|
|
ASSERT_EQ(0, pthread_join(writer_thread, NULL));
|
|
ASSERT_EQ(0, pthread_join(reader_thread, NULL));
|
|
}
|
|
|
|
static int g_once_fn_call_count = 0;
|
|
static void OnceFn() {
|
|
++g_once_fn_call_count;
|
|
}
|
|
|
|
TEST(pthread, pthread_once_smoke) {
|
|
pthread_once_t once_control = PTHREAD_ONCE_INIT;
|
|
ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
|
|
ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
|
|
ASSERT_EQ(1, g_once_fn_call_count);
|
|
}
|
|
|
|
static std::string pthread_once_1934122_result = "";
|
|
|
|
static void Routine2() {
|
|
pthread_once_1934122_result += "2";
|
|
}
|
|
|
|
static void Routine1() {
|
|
pthread_once_t once_control_2 = PTHREAD_ONCE_INIT;
|
|
pthread_once_1934122_result += "1";
|
|
pthread_once(&once_control_2, &Routine2);
|
|
}
|
|
|
|
TEST(pthread, pthread_once_1934122) {
|
|
// Very old versions of Android couldn't call pthread_once from a
|
|
// pthread_once init routine. http://b/1934122.
|
|
pthread_once_t once_control_1 = PTHREAD_ONCE_INIT;
|
|
ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1));
|
|
ASSERT_EQ("12", pthread_once_1934122_result);
|
|
}
|
|
|
|
static int g_atfork_prepare_calls = 0;
|
|
static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 1; }
|
|
static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 2; }
|
|
static int g_atfork_parent_calls = 0;
|
|
static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 1; }
|
|
static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 2; }
|
|
static int g_atfork_child_calls = 0;
|
|
static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 1; }
|
|
static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 2; }
|
|
|
|
TEST(pthread, pthread_atfork_smoke) {
|
|
ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1));
|
|
ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2));
|
|
|
|
int pid = fork();
|
|
ASSERT_NE(-1, pid) << strerror(errno);
|
|
|
|
// Child and parent calls are made in the order they were registered.
|
|
if (pid == 0) {
|
|
ASSERT_EQ(12, g_atfork_child_calls);
|
|
_exit(0);
|
|
}
|
|
ASSERT_EQ(12, g_atfork_parent_calls);
|
|
|
|
// Prepare calls are made in the reverse order.
|
|
ASSERT_EQ(21, g_atfork_prepare_calls);
|
|
int status;
|
|
ASSERT_EQ(pid, waitpid(pid, &status, 0));
|
|
}
|
|
|
|
TEST(pthread, pthread_attr_getscope) {
|
|
pthread_attr_t attr;
|
|
ASSERT_EQ(0, pthread_attr_init(&attr));
|
|
|
|
int scope;
|
|
ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope));
|
|
ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope);
|
|
}
|
|
|
|
TEST(pthread, pthread_condattr_init) {
|
|
pthread_condattr_t attr;
|
|
pthread_condattr_init(&attr);
|
|
|
|
clockid_t clock;
|
|
ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
|
|
ASSERT_EQ(CLOCK_REALTIME, clock);
|
|
|
|
int pshared;
|
|
ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
|
|
ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
|
|
}
|
|
|
|
TEST(pthread, pthread_condattr_setclock) {
|
|
pthread_condattr_t attr;
|
|
pthread_condattr_init(&attr);
|
|
|
|
ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME));
|
|
clockid_t clock;
|
|
ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
|
|
ASSERT_EQ(CLOCK_REALTIME, clock);
|
|
|
|
ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
|
|
ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
|
|
ASSERT_EQ(CLOCK_MONOTONIC, clock);
|
|
|
|
ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID));
|
|
}
|
|
|
|
TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) {
|
|
#if defined(__BIONIC__)
|
|
pthread_condattr_t attr;
|
|
pthread_condattr_init(&attr);
|
|
|
|
ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
|
|
ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
|
|
|
|
pthread_cond_t cond_var;
|
|
ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr));
|
|
|
|
ASSERT_EQ(0, pthread_cond_signal(&cond_var));
|
|
ASSERT_EQ(0, pthread_cond_broadcast(&cond_var));
|
|
|
|
attr = static_cast<pthread_condattr_t>(*reinterpret_cast<uint32_t*>(cond_var.__private));
|
|
clockid_t clock;
|
|
ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
|
|
ASSERT_EQ(CLOCK_MONOTONIC, clock);
|
|
int pshared;
|
|
ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
|
|
ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
|
|
#else // !defined(__BIONIC__)
|
|
GTEST_LOG_(INFO) << "This tests a bionic implementation detail.\n";
|
|
#endif // !defined(__BIONIC__)
|
|
}
|
|
|
|
class pthread_CondWakeupTest : public ::testing::Test {
|
|
protected:
|
|
pthread_mutex_t mutex;
|
|
pthread_cond_t cond;
|
|
|
|
enum Progress {
|
|
INITIALIZED,
|
|
WAITING,
|
|
SIGNALED,
|
|
FINISHED,
|
|
};
|
|
std::atomic<Progress> progress;
|
|
pthread_t thread;
|
|
std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function;
|
|
|
|
protected:
|
|
void SetUp() override {
|
|
ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
|
|
}
|
|
|
|
void InitCond(clockid_t clock=CLOCK_REALTIME) {
|
|
pthread_condattr_t attr;
|
|
ASSERT_EQ(0, pthread_condattr_init(&attr));
|
|
ASSERT_EQ(0, pthread_condattr_setclock(&attr, clock));
|
|
ASSERT_EQ(0, pthread_cond_init(&cond, &attr));
|
|
ASSERT_EQ(0, pthread_condattr_destroy(&attr));
|
|
}
|
|
|
|
void StartWaitingThread(std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function) {
|
|
progress = INITIALIZED;
|
|
this->wait_function = wait_function;
|
|
ASSERT_EQ(0, pthread_create(&thread, NULL, reinterpret_cast<void* (*)(void*)>(WaitThreadFn), this));
|
|
while (progress != WAITING) {
|
|
usleep(5000);
|
|
}
|
|
usleep(5000);
|
|
}
|
|
|
|
void TearDown() override {
|
|
ASSERT_EQ(0, pthread_join(thread, nullptr));
|
|
ASSERT_EQ(FINISHED, progress);
|
|
ASSERT_EQ(0, pthread_cond_destroy(&cond));
|
|
ASSERT_EQ(0, pthread_mutex_destroy(&mutex));
|
|
}
|
|
|
|
private:
|
|
static void WaitThreadFn(pthread_CondWakeupTest* test) {
|
|
ASSERT_EQ(0, pthread_mutex_lock(&test->mutex));
|
|
test->progress = WAITING;
|
|
while (test->progress == WAITING) {
|
|
ASSERT_EQ(0, test->wait_function(&test->cond, &test->mutex));
|
|
}
|
|
ASSERT_EQ(SIGNALED, test->progress);
|
|
test->progress = FINISHED;
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&test->mutex));
|
|
}
|
|
};
|
|
|
|
TEST_F(pthread_CondWakeupTest, signal_wait) {
|
|
InitCond();
|
|
StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
|
|
return pthread_cond_wait(cond, mutex);
|
|
});
|
|
progress = SIGNALED;
|
|
ASSERT_EQ(0, pthread_cond_signal(&cond));
|
|
}
|
|
|
|
TEST_F(pthread_CondWakeupTest, broadcast_wait) {
|
|
InitCond();
|
|
StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
|
|
return pthread_cond_wait(cond, mutex);
|
|
});
|
|
progress = SIGNALED;
|
|
ASSERT_EQ(0, pthread_cond_broadcast(&cond));
|
|
}
|
|
|
|
TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_REALTIME) {
|
|
InitCond(CLOCK_REALTIME);
|
|
timespec ts;
|
|
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
|
|
ts.tv_sec += 1;
|
|
StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) {
|
|
return pthread_cond_timedwait(cond, mutex, &ts);
|
|
});
|
|
progress = SIGNALED;
|
|
ASSERT_EQ(0, pthread_cond_signal(&cond));
|
|
}
|
|
|
|
TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC) {
|
|
InitCond(CLOCK_MONOTONIC);
|
|
timespec ts;
|
|
ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
|
|
ts.tv_sec += 1;
|
|
StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) {
|
|
return pthread_cond_timedwait(cond, mutex, &ts);
|
|
});
|
|
progress = SIGNALED;
|
|
ASSERT_EQ(0, pthread_cond_signal(&cond));
|
|
}
|
|
|
|
TEST(pthread, pthread_cond_timedwait_timeout) {
|
|
pthread_mutex_t mutex;
|
|
ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
|
|
pthread_cond_t cond;
|
|
ASSERT_EQ(0, pthread_cond_init(&cond, nullptr));
|
|
ASSERT_EQ(0, pthread_mutex_lock(&mutex));
|
|
timespec ts;
|
|
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
|
|
ASSERT_EQ(ETIMEDOUT, pthread_cond_timedwait(&cond, &mutex, &ts));
|
|
ts.tv_nsec = -1;
|
|
ASSERT_EQ(EINVAL, pthread_cond_timedwait(&cond, &mutex, &ts));
|
|
ts.tv_nsec = NS_PER_S;
|
|
ASSERT_EQ(EINVAL, pthread_cond_timedwait(&cond, &mutex, &ts));
|
|
ts.tv_nsec = NS_PER_S - 1;
|
|
ts.tv_sec = -1;
|
|
ASSERT_EQ(ETIMEDOUT, pthread_cond_timedwait(&cond, &mutex, &ts));
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&mutex));
|
|
}
|
|
|
|
TEST(pthread, pthread_attr_getstack__main_thread) {
|
|
// This test is only meaningful for the main thread, so make sure we're running on it!
|
|
ASSERT_EQ(getpid(), syscall(__NR_gettid));
|
|
|
|
// Get the main thread's attributes.
|
|
pthread_attr_t attributes;
|
|
ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
|
|
|
|
// Check that we correctly report that the main thread has no guard page.
|
|
size_t guard_size;
|
|
ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
|
|
ASSERT_EQ(0U, guard_size); // The main thread has no guard page.
|
|
|
|
// Get the stack base and the stack size (both ways).
|
|
void* stack_base;
|
|
size_t stack_size;
|
|
ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
|
|
size_t stack_size2;
|
|
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
|
|
|
|
// The two methods of asking for the stack size should agree.
|
|
EXPECT_EQ(stack_size, stack_size2);
|
|
|
|
#if defined(__BIONIC__)
|
|
// What does /proc/self/maps' [stack] line say?
|
|
void* maps_stack_hi = NULL;
|
|
std::vector<map_record> maps;
|
|
ASSERT_TRUE(Maps::parse_maps(&maps));
|
|
for (const auto& map : maps) {
|
|
if (map.pathname == "[stack]") {
|
|
maps_stack_hi = reinterpret_cast<void*>(map.addr_end);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// The high address of the /proc/self/maps [stack] region should equal stack_base + stack_size.
|
|
// Remember that the stack grows down (and is mapped in on demand), so the low address of the
|
|
// region isn't very interesting.
|
|
EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size);
|
|
|
|
// The stack size should correspond to RLIMIT_STACK.
|
|
rlimit rl;
|
|
ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl));
|
|
uint64_t original_rlim_cur = rl.rlim_cur;
|
|
if (rl.rlim_cur == RLIM_INFINITY) {
|
|
rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB.
|
|
}
|
|
EXPECT_EQ(rl.rlim_cur, stack_size);
|
|
|
|
auto guard = make_scope_guard([&rl, original_rlim_cur]() {
|
|
rl.rlim_cur = original_rlim_cur;
|
|
ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
|
|
});
|
|
|
|
//
|
|
// What if RLIMIT_STACK is smaller than the stack's current extent?
|
|
//
|
|
rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already.
|
|
rl.rlim_max = RLIM_INFINITY;
|
|
ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
|
|
|
|
ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
|
|
ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
|
|
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
|
|
|
|
EXPECT_EQ(stack_size, stack_size2);
|
|
ASSERT_EQ(1024U, stack_size);
|
|
|
|
//
|
|
// What if RLIMIT_STACK isn't a whole number of pages?
|
|
//
|
|
rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages.
|
|
rl.rlim_max = RLIM_INFINITY;
|
|
ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
|
|
|
|
ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
|
|
ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
|
|
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
|
|
|
|
EXPECT_EQ(stack_size, stack_size2);
|
|
ASSERT_EQ(6666U, stack_size);
|
|
#endif
|
|
}
|
|
|
|
struct GetStackSignalHandlerArg {
|
|
volatile bool done;
|
|
void* signal_handler_sp;
|
|
void* main_stack_base;
|
|
size_t main_stack_size;
|
|
};
|
|
|
|
static GetStackSignalHandlerArg getstack_signal_handler_arg;
|
|
|
|
static void getstack_signal_handler(int sig) {
|
|
ASSERT_EQ(SIGUSR1, sig);
|
|
// Use sleep() to make current thread be switched out by the kernel to provoke the error.
|
|
sleep(1);
|
|
pthread_attr_t attr;
|
|
ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
|
|
void* stack_base;
|
|
size_t stack_size;
|
|
ASSERT_EQ(0, pthread_attr_getstack(&attr, &stack_base, &stack_size));
|
|
getstack_signal_handler_arg.signal_handler_sp = &attr;
|
|
getstack_signal_handler_arg.main_stack_base = stack_base;
|
|
getstack_signal_handler_arg.main_stack_size = stack_size;
|
|
getstack_signal_handler_arg.done = true;
|
|
}
|
|
|
|
// The previous code obtained the main thread's stack by reading the entry in
|
|
// /proc/self/task/<pid>/maps that was labeled [stack]. Unfortunately, on x86/x86_64, the kernel
|
|
// relies on sp0 in task state segment(tss) to label the stack map with [stack]. If the kernel
|
|
// switches a process while the main thread is in an alternate stack, then the kernel will label
|
|
// the wrong map with [stack]. This test verifies that when the above situation happens, the main
|
|
// thread's stack is found correctly.
|
|
TEST(pthread, pthread_attr_getstack_in_signal_handler) {
|
|
const size_t sig_stack_size = 16 * 1024;
|
|
void* sig_stack = mmap(NULL, sig_stack_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS,
|
|
-1, 0);
|
|
ASSERT_NE(MAP_FAILED, sig_stack);
|
|
stack_t ss;
|
|
ss.ss_sp = sig_stack;
|
|
ss.ss_size = sig_stack_size;
|
|
ss.ss_flags = 0;
|
|
stack_t oss;
|
|
ASSERT_EQ(0, sigaltstack(&ss, &oss));
|
|
|
|
ScopedSignalHandler handler(SIGUSR1, getstack_signal_handler, SA_ONSTACK);
|
|
getstack_signal_handler_arg.done = false;
|
|
kill(getpid(), SIGUSR1);
|
|
ASSERT_EQ(true, getstack_signal_handler_arg.done);
|
|
|
|
// Verify if the stack used by the signal handler is the alternate stack just registered.
|
|
ASSERT_LE(sig_stack, getstack_signal_handler_arg.signal_handler_sp);
|
|
ASSERT_GE(reinterpret_cast<char*>(sig_stack) + sig_stack_size,
|
|
getstack_signal_handler_arg.signal_handler_sp);
|
|
|
|
// Verify if the main thread's stack got in the signal handler is correct.
|
|
ASSERT_LE(getstack_signal_handler_arg.main_stack_base, &ss);
|
|
ASSERT_GE(reinterpret_cast<char*>(getstack_signal_handler_arg.main_stack_base) +
|
|
getstack_signal_handler_arg.main_stack_size, reinterpret_cast<void*>(&ss));
|
|
|
|
ASSERT_EQ(0, sigaltstack(&oss, nullptr));
|
|
ASSERT_EQ(0, munmap(sig_stack, sig_stack_size));
|
|
}
|
|
|
|
static void pthread_attr_getstack_18908062_helper(void*) {
|
|
char local_variable;
|
|
pthread_attr_t attributes;
|
|
pthread_getattr_np(pthread_self(), &attributes);
|
|
void* stack_base;
|
|
size_t stack_size;
|
|
pthread_attr_getstack(&attributes, &stack_base, &stack_size);
|
|
|
|
// Test whether &local_variable is in [stack_base, stack_base + stack_size).
|
|
ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable);
|
|
ASSERT_LT(&local_variable, reinterpret_cast<char*>(stack_base) + stack_size);
|
|
}
|
|
|
|
// Check whether something on stack is in the range of
|
|
// [stack_base, stack_base + stack_size). see b/18908062.
|
|
TEST(pthread, pthread_attr_getstack_18908062) {
|
|
pthread_t t;
|
|
ASSERT_EQ(0, pthread_create(&t, NULL,
|
|
reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper),
|
|
NULL));
|
|
pthread_join(t, NULL);
|
|
}
|
|
|
|
#if defined(__BIONIC__)
|
|
static pthread_mutex_t pthread_gettid_np_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
static void* pthread_gettid_np_helper(void* arg) {
|
|
*reinterpret_cast<pid_t*>(arg) = gettid();
|
|
|
|
// Wait for our parent to call pthread_gettid_np on us before exiting.
|
|
pthread_mutex_lock(&pthread_gettid_np_mutex);
|
|
pthread_mutex_unlock(&pthread_gettid_np_mutex);
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
TEST(pthread, pthread_gettid_np) {
|
|
#if defined(__BIONIC__)
|
|
ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self()));
|
|
|
|
// Ensure the other thread doesn't exit until after we've called
|
|
// pthread_gettid_np on it.
|
|
pthread_mutex_lock(&pthread_gettid_np_mutex);
|
|
|
|
pid_t t_gettid_result;
|
|
pthread_t t;
|
|
pthread_create(&t, NULL, pthread_gettid_np_helper, &t_gettid_result);
|
|
|
|
pid_t t_pthread_gettid_np_result = pthread_gettid_np(t);
|
|
|
|
// Release the other thread and wait for it to exit.
|
|
pthread_mutex_unlock(&pthread_gettid_np_mutex);
|
|
pthread_join(t, NULL);
|
|
|
|
ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result);
|
|
#else
|
|
GTEST_LOG_(INFO) << "This test does nothing.\n";
|
|
#endif
|
|
}
|
|
|
|
static size_t cleanup_counter = 0;
|
|
|
|
static void AbortCleanupRoutine(void*) {
|
|
abort();
|
|
}
|
|
|
|
static void CountCleanupRoutine(void*) {
|
|
++cleanup_counter;
|
|
}
|
|
|
|
static void PthreadCleanupTester() {
|
|
pthread_cleanup_push(CountCleanupRoutine, NULL);
|
|
pthread_cleanup_push(CountCleanupRoutine, NULL);
|
|
pthread_cleanup_push(AbortCleanupRoutine, NULL);
|
|
|
|
pthread_cleanup_pop(0); // Pop the abort without executing it.
|
|
pthread_cleanup_pop(1); // Pop one count while executing it.
|
|
ASSERT_EQ(1U, cleanup_counter);
|
|
// Exit while the other count is still on the cleanup stack.
|
|
pthread_exit(NULL);
|
|
|
|
// Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced.
|
|
pthread_cleanup_pop(0);
|
|
}
|
|
|
|
static void* PthreadCleanupStartRoutine(void*) {
|
|
PthreadCleanupTester();
|
|
return NULL;
|
|
}
|
|
|
|
TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) {
|
|
pthread_t t;
|
|
ASSERT_EQ(0, pthread_create(&t, NULL, PthreadCleanupStartRoutine, NULL));
|
|
pthread_join(t, NULL);
|
|
ASSERT_EQ(2U, cleanup_counter);
|
|
}
|
|
|
|
TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) {
|
|
ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT);
|
|
}
|
|
|
|
TEST(pthread, pthread_mutexattr_gettype) {
|
|
pthread_mutexattr_t attr;
|
|
ASSERT_EQ(0, pthread_mutexattr_init(&attr));
|
|
|
|
int attr_type;
|
|
|
|
ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
|
|
ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
|
|
ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type);
|
|
|
|
ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
|
|
ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
|
|
ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type);
|
|
|
|
ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
|
|
ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
|
|
ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type);
|
|
|
|
ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
|
|
}
|
|
|
|
struct PthreadMutex {
|
|
pthread_mutex_t lock;
|
|
|
|
PthreadMutex(int mutex_type) {
|
|
init(mutex_type);
|
|
}
|
|
|
|
~PthreadMutex() {
|
|
destroy();
|
|
}
|
|
|
|
private:
|
|
void init(int mutex_type) {
|
|
pthread_mutexattr_t attr;
|
|
ASSERT_EQ(0, pthread_mutexattr_init(&attr));
|
|
ASSERT_EQ(0, pthread_mutexattr_settype(&attr, mutex_type));
|
|
ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
|
|
ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
|
|
}
|
|
|
|
void destroy() {
|
|
ASSERT_EQ(0, pthread_mutex_destroy(&lock));
|
|
}
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(PthreadMutex);
|
|
};
|
|
|
|
TEST(pthread, pthread_mutex_lock_NORMAL) {
|
|
PthreadMutex m(PTHREAD_MUTEX_NORMAL);
|
|
|
|
ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
|
|
}
|
|
|
|
TEST(pthread, pthread_mutex_lock_ERRORCHECK) {
|
|
PthreadMutex m(PTHREAD_MUTEX_ERRORCHECK);
|
|
|
|
ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
|
|
ASSERT_EQ(EDEADLK, pthread_mutex_lock(&m.lock));
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
|
|
ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
|
|
ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
|
|
ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
|
|
}
|
|
|
|
TEST(pthread, pthread_mutex_lock_RECURSIVE) {
|
|
PthreadMutex m(PTHREAD_MUTEX_RECURSIVE);
|
|
|
|
ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
|
|
ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
|
|
ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
|
|
ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
|
|
}
|
|
|
|
TEST(pthread, pthread_mutex_init_same_as_static_initializers) {
|
|
pthread_mutex_t lock_normal = PTHREAD_MUTEX_INITIALIZER;
|
|
PthreadMutex m1(PTHREAD_MUTEX_NORMAL);
|
|
ASSERT_EQ(0, memcmp(&lock_normal, &m1.lock, sizeof(pthread_mutex_t)));
|
|
pthread_mutex_destroy(&lock_normal);
|
|
|
|
pthread_mutex_t lock_errorcheck = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
|
|
PthreadMutex m2(PTHREAD_MUTEX_ERRORCHECK);
|
|
ASSERT_EQ(0, memcmp(&lock_errorcheck, &m2.lock, sizeof(pthread_mutex_t)));
|
|
pthread_mutex_destroy(&lock_errorcheck);
|
|
|
|
pthread_mutex_t lock_recursive = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
|
|
PthreadMutex m3(PTHREAD_MUTEX_RECURSIVE);
|
|
ASSERT_EQ(0, memcmp(&lock_recursive, &m3.lock, sizeof(pthread_mutex_t)));
|
|
ASSERT_EQ(0, pthread_mutex_destroy(&lock_recursive));
|
|
}
|
|
class MutexWakeupHelper {
|
|
private:
|
|
PthreadMutex m;
|
|
enum Progress {
|
|
LOCK_INITIALIZED,
|
|
LOCK_WAITING,
|
|
LOCK_RELEASED,
|
|
LOCK_ACCESSED
|
|
};
|
|
std::atomic<Progress> progress;
|
|
std::atomic<pid_t> tid;
|
|
|
|
static void thread_fn(MutexWakeupHelper* helper) {
|
|
helper->tid = gettid();
|
|
ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
|
|
helper->progress = LOCK_WAITING;
|
|
|
|
ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
|
|
ASSERT_EQ(LOCK_RELEASED, helper->progress);
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));
|
|
|
|
helper->progress = LOCK_ACCESSED;
|
|
}
|
|
|
|
public:
|
|
MutexWakeupHelper(int mutex_type) : m(mutex_type) {
|
|
}
|
|
|
|
void test() {
|
|
ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
|
|
progress = LOCK_INITIALIZED;
|
|
tid = 0;
|
|
|
|
pthread_t thread;
|
|
ASSERT_EQ(0, pthread_create(&thread, NULL,
|
|
reinterpret_cast<void* (*)(void*)>(MutexWakeupHelper::thread_fn), this));
|
|
|
|
WaitUntilThreadSleep(tid);
|
|
ASSERT_EQ(LOCK_WAITING, progress);
|
|
|
|
progress = LOCK_RELEASED;
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
|
|
|
|
ASSERT_EQ(0, pthread_join(thread, NULL));
|
|
ASSERT_EQ(LOCK_ACCESSED, progress);
|
|
}
|
|
};
|
|
|
|
TEST(pthread, pthread_mutex_NORMAL_wakeup) {
|
|
MutexWakeupHelper helper(PTHREAD_MUTEX_NORMAL);
|
|
helper.test();
|
|
}
|
|
|
|
TEST(pthread, pthread_mutex_ERRORCHECK_wakeup) {
|
|
MutexWakeupHelper helper(PTHREAD_MUTEX_ERRORCHECK);
|
|
helper.test();
|
|
}
|
|
|
|
TEST(pthread, pthread_mutex_RECURSIVE_wakeup) {
|
|
MutexWakeupHelper helper(PTHREAD_MUTEX_RECURSIVE);
|
|
helper.test();
|
|
}
|
|
|
|
TEST(pthread, pthread_mutex_owner_tid_limit) {
|
|
#if defined(__BIONIC__) && !defined(__LP64__)
|
|
FILE* fp = fopen("/proc/sys/kernel/pid_max", "r");
|
|
ASSERT_TRUE(fp != NULL);
|
|
long pid_max;
|
|
ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max));
|
|
fclose(fp);
|
|
// Bionic's pthread_mutex implementation on 32-bit devices uses 16 bits to represent owner tid.
|
|
ASSERT_LE(pid_max, 65536);
|
|
#else
|
|
GTEST_LOG_(INFO) << "This test does nothing as 32-bit tid is supported by pthread_mutex.\n";
|
|
#endif
|
|
}
|
|
|
|
TEST(pthread, pthread_mutex_timedlock) {
|
|
pthread_mutex_t m;
|
|
ASSERT_EQ(0, pthread_mutex_init(&m, nullptr));
|
|
|
|
// If the mutex is already locked, pthread_mutex_timedlock should time out.
|
|
ASSERT_EQ(0, pthread_mutex_lock(&m));
|
|
|
|
timespec ts;
|
|
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
|
|
ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));
|
|
ts.tv_nsec = -1;
|
|
ASSERT_EQ(EINVAL, pthread_mutex_timedlock(&m, &ts));
|
|
ts.tv_nsec = NS_PER_S;
|
|
ASSERT_EQ(EINVAL, pthread_mutex_timedlock(&m, &ts));
|
|
ts.tv_nsec = NS_PER_S - 1;
|
|
ts.tv_sec = -1;
|
|
ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));
|
|
|
|
// If the mutex is unlocked, pthread_mutex_timedlock should succeed.
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&m));
|
|
|
|
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
|
|
ts.tv_sec += 1;
|
|
ASSERT_EQ(0, pthread_mutex_timedlock(&m, &ts));
|
|
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&m));
|
|
ASSERT_EQ(0, pthread_mutex_destroy(&m));
|
|
}
|
|
|
|
class StrictAlignmentAllocator {
|
|
public:
|
|
void* allocate(size_t size, size_t alignment) {
|
|
char* p = new char[size + alignment * 2];
|
|
allocated_array.push_back(p);
|
|
while (!is_strict_aligned(p, alignment)) {
|
|
++p;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
~StrictAlignmentAllocator() {
|
|
for (const auto& p : allocated_array) {
|
|
delete[] p;
|
|
}
|
|
}
|
|
|
|
private:
|
|
bool is_strict_aligned(char* p, size_t alignment) {
|
|
return (reinterpret_cast<uintptr_t>(p) % (alignment * 2)) == alignment;
|
|
}
|
|
|
|
std::vector<char*> allocated_array;
|
|
};
|
|
|
|
TEST(pthread, pthread_types_allow_four_bytes_alignment) {
|
|
#if defined(__BIONIC__)
|
|
// For binary compatibility with old version, we need to allow 4-byte aligned data for pthread types.
|
|
StrictAlignmentAllocator allocator;
|
|
pthread_mutex_t* mutex = reinterpret_cast<pthread_mutex_t*>(
|
|
allocator.allocate(sizeof(pthread_mutex_t), 4));
|
|
ASSERT_EQ(0, pthread_mutex_init(mutex, NULL));
|
|
ASSERT_EQ(0, pthread_mutex_lock(mutex));
|
|
ASSERT_EQ(0, pthread_mutex_unlock(mutex));
|
|
ASSERT_EQ(0, pthread_mutex_destroy(mutex));
|
|
|
|
pthread_cond_t* cond = reinterpret_cast<pthread_cond_t*>(
|
|
allocator.allocate(sizeof(pthread_cond_t), 4));
|
|
ASSERT_EQ(0, pthread_cond_init(cond, NULL));
|
|
ASSERT_EQ(0, pthread_cond_signal(cond));
|
|
ASSERT_EQ(0, pthread_cond_broadcast(cond));
|
|
ASSERT_EQ(0, pthread_cond_destroy(cond));
|
|
|
|
pthread_rwlock_t* rwlock = reinterpret_cast<pthread_rwlock_t*>(
|
|
allocator.allocate(sizeof(pthread_rwlock_t), 4));
|
|
ASSERT_EQ(0, pthread_rwlock_init(rwlock, NULL));
|
|
ASSERT_EQ(0, pthread_rwlock_rdlock(rwlock));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
|
|
ASSERT_EQ(0, pthread_rwlock_wrlock(rwlock));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
|
|
ASSERT_EQ(0, pthread_rwlock_destroy(rwlock));
|
|
|
|
#else
|
|
GTEST_LOG_(INFO) << "This test tests bionic implementation details.";
|
|
#endif
|
|
}
|
|
|
|
TEST(pthread, pthread_mutex_lock_null_32) {
|
|
#if defined(__BIONIC__) && !defined(__LP64__)
|
|
ASSERT_EQ(EINVAL, pthread_mutex_lock(NULL));
|
|
#else
|
|
GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
|
|
#endif
|
|
}
|
|
|
|
TEST(pthread, pthread_mutex_unlock_null_32) {
|
|
#if defined(__BIONIC__) && !defined(__LP64__)
|
|
ASSERT_EQ(EINVAL, pthread_mutex_unlock(NULL));
|
|
#else
|
|
GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
|
|
#endif
|
|
}
|
|
|
|
TEST_F(pthread_DeathTest, pthread_mutex_lock_null_64) {
|
|
#if defined(__BIONIC__) && defined(__LP64__)
|
|
pthread_mutex_t* null_value = nullptr;
|
|
ASSERT_EXIT(pthread_mutex_lock(null_value), testing::KilledBySignal(SIGSEGV), "");
|
|
#else
|
|
GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
|
|
#endif
|
|
}
|
|
|
|
TEST_F(pthread_DeathTest, pthread_mutex_unlock_null_64) {
|
|
#if defined(__BIONIC__) && defined(__LP64__)
|
|
pthread_mutex_t* null_value = nullptr;
|
|
ASSERT_EXIT(pthread_mutex_unlock(null_value), testing::KilledBySignal(SIGSEGV), "");
|
|
#else
|
|
GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
|
|
#endif
|
|
}
|
|
|
|
extern _Unwind_Reason_Code FrameCounter(_Unwind_Context* ctx, void* arg);
|
|
|
|
static volatile bool signal_handler_on_altstack_done;
|
|
|
|
static void SignalHandlerOnAltStack(int signo, siginfo_t*, void*) {
|
|
ASSERT_EQ(SIGUSR1, signo);
|
|
// Check if we have enough stack space for unwinding.
|
|
int count = 0;
|
|
_Unwind_Backtrace(FrameCounter, &count);
|
|
ASSERT_GT(count, 0);
|
|
// Check if we have enough stack space for logging.
|
|
std::string s(2048, '*');
|
|
GTEST_LOG_(INFO) << s;
|
|
signal_handler_on_altstack_done = true;
|
|
}
|
|
|
|
TEST(pthread, big_enough_signal_stack_for_64bit_arch) {
|
|
signal_handler_on_altstack_done = false;
|
|
ScopedSignalHandler handler(SIGUSR1, SignalHandlerOnAltStack, SA_SIGINFO | SA_ONSTACK);
|
|
kill(getpid(), SIGUSR1);
|
|
ASSERT_TRUE(signal_handler_on_altstack_done);
|
|
}
|
|
|
|
TEST(pthread, pthread_barrierattr_smoke) {
|
|
pthread_barrierattr_t attr;
|
|
ASSERT_EQ(0, pthread_barrierattr_init(&attr));
|
|
int pshared;
|
|
ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
|
|
ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
|
|
ASSERT_EQ(0, pthread_barrierattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
|
|
ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
|
|
ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
|
|
ASSERT_EQ(0, pthread_barrierattr_destroy(&attr));
|
|
}
|
|
|
|
struct BarrierTestHelperArg {
|
|
std::atomic<pid_t> tid;
|
|
pthread_barrier_t* barrier;
|
|
size_t iteration_count;
|
|
};
|
|
|
|
static void BarrierTestHelper(BarrierTestHelperArg* arg) {
|
|
arg->tid = gettid();
|
|
for (size_t i = 0; i < arg->iteration_count; ++i) {
|
|
ASSERT_EQ(0, pthread_barrier_wait(arg->barrier));
|
|
}
|
|
}
|
|
|
|
TEST(pthread, pthread_barrier_smoke) {
|
|
const size_t BARRIER_ITERATION_COUNT = 10;
|
|
const size_t BARRIER_THREAD_COUNT = 10;
|
|
pthread_barrier_t barrier;
|
|
ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, BARRIER_THREAD_COUNT + 1));
|
|
std::vector<pthread_t> threads(BARRIER_THREAD_COUNT);
|
|
std::vector<BarrierTestHelperArg> args(threads.size());
|
|
for (size_t i = 0; i < threads.size(); ++i) {
|
|
args[i].tid = 0;
|
|
args[i].barrier = &barrier;
|
|
args[i].iteration_count = BARRIER_ITERATION_COUNT;
|
|
ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
|
|
reinterpret_cast<void* (*)(void*)>(BarrierTestHelper), &args[i]));
|
|
}
|
|
for (size_t iteration = 0; iteration < BARRIER_ITERATION_COUNT; ++iteration) {
|
|
for (size_t i = 0; i < threads.size(); ++i) {
|
|
WaitUntilThreadSleep(args[i].tid);
|
|
}
|
|
ASSERT_EQ(PTHREAD_BARRIER_SERIAL_THREAD, pthread_barrier_wait(&barrier));
|
|
}
|
|
for (size_t i = 0; i < threads.size(); ++i) {
|
|
ASSERT_EQ(0, pthread_join(threads[i], nullptr));
|
|
}
|
|
ASSERT_EQ(0, pthread_barrier_destroy(&barrier));
|
|
}
|
|
|
|
TEST(pthread, pthread_barrier_destroy) {
|
|
pthread_barrier_t barrier;
|
|
ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, 2));
|
|
pthread_t thread;
|
|
BarrierTestHelperArg arg;
|
|
arg.tid = 0;
|
|
arg.barrier = &barrier;
|
|
arg.iteration_count = 1;
|
|
ASSERT_EQ(0, pthread_create(&thread, nullptr,
|
|
reinterpret_cast<void* (*)(void*)>(BarrierTestHelper), &arg));
|
|
WaitUntilThreadSleep(arg.tid);
|
|
ASSERT_EQ(EBUSY, pthread_barrier_destroy(&barrier));
|
|
ASSERT_EQ(PTHREAD_BARRIER_SERIAL_THREAD, pthread_barrier_wait(&barrier));
|
|
// Verify if the barrier can be destroyed directly after pthread_barrier_wait().
|
|
ASSERT_EQ(0, pthread_barrier_destroy(&barrier));
|
|
ASSERT_EQ(0, pthread_join(thread, nullptr));
|
|
#if defined(__BIONIC__)
|
|
ASSERT_EQ(EINVAL, pthread_barrier_destroy(&barrier));
|
|
#endif
|
|
}
|
|
|
|
struct BarrierOrderingTestHelperArg {
|
|
pthread_barrier_t* barrier;
|
|
size_t* array;
|
|
size_t array_length;
|
|
size_t id;
|
|
};
|
|
|
|
void BarrierOrderingTestHelper(BarrierOrderingTestHelperArg* arg) {
|
|
const size_t ITERATION_COUNT = 10000;
|
|
for (size_t i = 1; i <= ITERATION_COUNT; ++i) {
|
|
arg->array[arg->id] = i;
|
|
int result = pthread_barrier_wait(arg->barrier);
|
|
ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
|
|
for (size_t j = 0; j < arg->array_length; ++j) {
|
|
ASSERT_EQ(i, arg->array[j]);
|
|
}
|
|
result = pthread_barrier_wait(arg->barrier);
|
|
ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
|
|
}
|
|
}
|
|
|
|
TEST(pthread, pthread_barrier_check_ordering) {
|
|
const size_t THREAD_COUNT = 4;
|
|
pthread_barrier_t barrier;
|
|
ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, THREAD_COUNT));
|
|
size_t array[THREAD_COUNT];
|
|
std::vector<pthread_t> threads(THREAD_COUNT);
|
|
std::vector<BarrierOrderingTestHelperArg> args(THREAD_COUNT);
|
|
for (size_t i = 0; i < THREAD_COUNT; ++i) {
|
|
args[i].barrier = &barrier;
|
|
args[i].array = array;
|
|
args[i].array_length = THREAD_COUNT;
|
|
args[i].id = i;
|
|
ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
|
|
reinterpret_cast<void* (*)(void*)>(BarrierOrderingTestHelper),
|
|
&args[i]));
|
|
}
|
|
for (size_t i = 0; i < THREAD_COUNT; ++i) {
|
|
ASSERT_EQ(0, pthread_join(threads[i], nullptr));
|
|
}
|
|
}
|
|
|
|
TEST(pthread, pthread_spinlock_smoke) {
|
|
pthread_spinlock_t lock;
|
|
ASSERT_EQ(0, pthread_spin_init(&lock, 0));
|
|
ASSERT_EQ(0, pthread_spin_trylock(&lock));
|
|
ASSERT_EQ(0, pthread_spin_unlock(&lock));
|
|
ASSERT_EQ(0, pthread_spin_lock(&lock));
|
|
ASSERT_EQ(EBUSY, pthread_spin_trylock(&lock));
|
|
ASSERT_EQ(0, pthread_spin_unlock(&lock));
|
|
ASSERT_EQ(0, pthread_spin_destroy(&lock));
|
|
}
|