bionic/tests/string_test.cpp
Christopher Ferris e03e1eac0b Fix memchr with a zero length.
The memchr implementation for 64 bit fails if these conditions occur:

- The buffer is 32 byte aligned.
- The buffer contains the character in the first byte.
- The count sent in is zero.

The function should return NULL, but it's not.

Bug: 16676625
Change-Id: Iab33cc7a8b79920350c72f054dff0e0a3cde69ce
2014-07-30 16:06:56 -07:00

1290 lines
37 KiB
C++

/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include <errno.h>
#include <malloc.h>
#include <math.h>
#include <string.h>
#include "buffer_tests.h"
#define KB 1024
#define SMALL 1*KB
#define MEDIUM 4*KB
#define LARGE 64*KB
static int signum(int i) {
if (i < 0) {
return -1;
} else if (i > 0) {
return 1;
}
return 0;
}
TEST(string, strerror) {
// Valid.
ASSERT_STREQ("Success", strerror(0));
ASSERT_STREQ("Operation not permitted", strerror(1));
// Invalid.
ASSERT_STREQ("Unknown error -1", strerror(-1));
ASSERT_STREQ("Unknown error 1234", strerror(1234));
}
#if defined(__BIONIC__)
static void* ConcurrentStrErrorFn(void*) {
bool equal = (strcmp("Unknown error 2002", strerror(2002)) == 0);
return reinterpret_cast<void*>(equal);
}
#endif // __BIONIC__
// glibc's strerror isn't thread safe, only its strsignal.
TEST(string, strerror_concurrent) {
#if defined(__BIONIC__)
const char* strerror1001 = strerror(1001);
ASSERT_STREQ("Unknown error 1001", strerror1001);
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, NULL, ConcurrentStrErrorFn, NULL));
void* result;
ASSERT_EQ(0, pthread_join(t, &result));
ASSERT_TRUE(static_cast<bool>(result));
ASSERT_STREQ("Unknown error 1001", strerror1001);
#else // __BIONIC__
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif // __BIONIC__
}
TEST(string, strerror_r) {
#if defined(__BIONIC__) // glibc's strerror_r doesn't even have the same signature as the POSIX one.
char buf[256];
// Valid.
ASSERT_EQ(0, strerror_r(0, buf, sizeof(buf)));
ASSERT_STREQ("Success", buf);
ASSERT_EQ(0, strerror_r(1, buf, sizeof(buf)));
ASSERT_STREQ("Operation not permitted", buf);
// Invalid.
ASSERT_EQ(0, strerror_r(-1, buf, sizeof(buf)));
ASSERT_STREQ("Unknown error -1", buf);
ASSERT_EQ(0, strerror_r(1234, buf, sizeof(buf)));
ASSERT_STREQ("Unknown error 1234", buf);
// Buffer too small.
ASSERT_EQ(-1, strerror_r(0, buf, 2));
ASSERT_EQ(ERANGE, errno);
#else // __BIONIC__
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif // __BIONIC__
}
TEST(string, strsignal) {
// A regular signal.
ASSERT_STREQ("Hangup", strsignal(1));
// A real-time signal.
ASSERT_STREQ("Real-time signal 14", strsignal(SIGRTMIN + 14));
// One of the signals the C library keeps to itself.
ASSERT_STREQ("Unknown signal 32", strsignal(__SIGRTMIN));
// Errors.
ASSERT_STREQ("Unknown signal -1", strsignal(-1)); // Too small.
ASSERT_STREQ("Unknown signal 0", strsignal(0)); // Still too small.
ASSERT_STREQ("Unknown signal 1234", strsignal(1234)); // Too large.
}
static void* ConcurrentStrSignalFn(void*) {
bool equal = (strcmp("Unknown signal 2002", strsignal(2002)) == 0);
return reinterpret_cast<void*>(equal);
}
TEST(string, strsignal_concurrent) {
const char* strsignal1001 = strsignal(1001);
ASSERT_STREQ("Unknown signal 1001", strsignal1001);
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, NULL, ConcurrentStrSignalFn, NULL));
void* result;
ASSERT_EQ(0, pthread_join(t, &result));
ASSERT_TRUE(static_cast<bool>(result));
ASSERT_STREQ("Unknown signal 1001", strsignal1001);
}
// TODO: where did these numbers come from?
#define POS_ITER 10
#define ITER 500
// For every length we want to test, vary and change alignment
// of allocated memory, fill it with some values, calculate
// expected result and then run function and compare what we got.
// These tests contributed by Intel Corporation.
// TODO: make these tests more intention-revealing and less random.
template<class Character>
struct StringTestState {
StringTestState(size_t MAX_LEN) : MAX_LEN(MAX_LEN) {
int max_alignment = 64;
// TODO: fix the tests to not sometimes use twice their specified "MAX_LEN".
glob_ptr = reinterpret_cast<Character*>(memalign(sysconf(_SC_PAGESIZE), 2 * sizeof(Character) * MAX_LEN + max_alignment));
glob_ptr1 = reinterpret_cast<Character*>(memalign(sysconf(_SC_PAGESIZE), 2 * sizeof(Character) * MAX_LEN + max_alignment));
glob_ptr2 = reinterpret_cast<Character*>(memalign(sysconf(_SC_PAGESIZE), 2 * sizeof(Character) * MAX_LEN + max_alignment));
InitLenArray();
srandom(1234);
}
~StringTestState() {
free(glob_ptr);
free(glob_ptr1);
free(glob_ptr2);
}
void NewIteration() {
int alignments[] = { 24, 32, 16, 48, 1, 2, 3, 0, 5, 11 };
int usable_alignments = 10;
int align1 = alignments[random() % (usable_alignments - 1)];
int align2 = alignments[random() % (usable_alignments - 1)];
ptr = glob_ptr + align1;
ptr1 = glob_ptr1 + align1;
ptr2 = glob_ptr2 + align2;
}
const size_t MAX_LEN;
Character *ptr, *ptr1, *ptr2;
size_t n;
int len[ITER + 1];
private:
Character *glob_ptr, *glob_ptr1, *glob_ptr2;
// Calculate input lengths and fill state.len with them.
// Test small lengths with more density than big ones. Manually push
// smallest (0) and biggest (MAX_LEN) lengths. Avoid repeats.
// Return number of lengths to test.
void InitLenArray() {
n = 0;
len[n++] = 0;
for (size_t i = 1; i < ITER; ++i) {
int l = (int) exp(log((double) MAX_LEN) * i / ITER);
if (l != len[n - 1]) {
len[n++] = l;
}
}
len[n++] = MAX_LEN;
}
};
TEST(string, strcat) {
StringTestState<char> state(SMALL);
for (size_t i = 1; i < state.n; i++) {
for (size_t j = 0; j < POS_ITER; j++) {
state.NewIteration();
memset(state.ptr2, '\2', state.MAX_LEN);
state.ptr2[state.MAX_LEN - 1] = '\0';
memcpy(state.ptr, state.ptr2, 2 * state.MAX_LEN);
memset(state.ptr1, random() & 255, state.len[i]);
state.ptr1[random() % state.len[i]] = '\0';
state.ptr1[state.len[i] - 1] = '\0';
strcpy(state.ptr + state.MAX_LEN - 1, state.ptr1);
EXPECT_TRUE(strcat(state.ptr2, state.ptr1) == state.ptr2);
EXPECT_TRUE(memcmp(state.ptr, state.ptr2, 2 * state.MAX_LEN) == 0);
}
}
}
// one byte target with "\0" source
TEST(string, strcpy2) {
char buf[1];
char* orig = strdup("");
ASSERT_EQ(buf, strcpy(buf, orig));
ASSERT_EQ('\0', buf[0]);
free(orig);
}
// multibyte target where we under fill target
TEST(string, strcpy3) {
char buf[10];
char* orig = strdup("12345");
memset(buf, 'A', sizeof(buf));
ASSERT_EQ(buf, strcpy(buf, orig));
ASSERT_STREQ("12345", buf);
ASSERT_EQ('A', buf[6]);
ASSERT_EQ('A', buf[7]);
ASSERT_EQ('A', buf[8]);
ASSERT_EQ('A', buf[9]);
free(orig);
}
// multibyte target where we fill target exactly
TEST(string, strcpy4) {
char buf[10];
char* orig = strdup("123456789");
memset(buf, 'A', sizeof(buf));
ASSERT_EQ(buf, strcpy(buf, orig));
ASSERT_STREQ("123456789", buf);
free(orig);
}
// one byte target with "\0" source
TEST(string, stpcpy2) {
char buf[1];
char* orig = strdup("");
ASSERT_EQ(buf, stpcpy(buf, orig));
ASSERT_EQ('\0', buf[0]);
free(orig);
}
// multibyte target where we under fill target
TEST(string, stpcpy3) {
char buf[10];
char* orig = strdup("12345");
memset(buf, 'A', sizeof(buf));
ASSERT_EQ(buf+strlen(orig), stpcpy(buf, orig));
ASSERT_STREQ("12345", buf);
ASSERT_EQ('A', buf[6]);
ASSERT_EQ('A', buf[7]);
ASSERT_EQ('A', buf[8]);
ASSERT_EQ('A', buf[9]);
free(orig);
}
// multibyte target where we fill target exactly
TEST(string, stpcpy4) {
char buf[10];
char* orig = strdup("123456789");
memset(buf, 'A', sizeof(buf));
ASSERT_EQ(buf+strlen(orig), stpcpy(buf, orig));
ASSERT_STREQ("123456789", buf);
free(orig);
}
TEST(string, strcat2) {
char buf[10];
memset(buf, 'A', sizeof(buf));
buf[0] = 'a';
buf[1] = '\0';
char* res = strcat(buf, "01234");
ASSERT_EQ(buf, res);
ASSERT_STREQ("a01234", buf);
ASSERT_EQ('A', buf[7]);
ASSERT_EQ('A', buf[8]);
ASSERT_EQ('A', buf[9]);
}
TEST(string, strcat3) {
char buf[10];
memset(buf, 'A', sizeof(buf));
buf[0] = 'a';
buf[1] = '\0';
char* res = strcat(buf, "01234567");
ASSERT_EQ(buf, res);
ASSERT_STREQ("a01234567", buf);
}
TEST(string, strncat2) {
char buf[10];
memset(buf, 'A', sizeof(buf));
buf[0] = 'a';
buf[1] = '\0';
char* res = strncat(buf, "01234", sizeof(buf) - strlen(buf) - 1);
ASSERT_EQ(buf, res);
ASSERT_STREQ("a01234", buf);
ASSERT_EQ('A', buf[7]);
ASSERT_EQ('A', buf[8]);
ASSERT_EQ('A', buf[9]);
}
TEST(string, strncat3) {
char buf[10];
memset(buf, 'A', sizeof(buf));
buf[0] = 'a';
buf[1] = '\0';
char* res = strncat(buf, "0123456789", 5);
ASSERT_EQ(buf, res);
ASSERT_STREQ("a01234", buf);
ASSERT_EQ('A', buf[7]);
ASSERT_EQ('A', buf[8]);
ASSERT_EQ('A', buf[9]);
}
TEST(string, strncat4) {
char buf[10];
memset(buf, 'A', sizeof(buf));
buf[0] = 'a';
buf[1] = '\0';
char* res = strncat(buf, "01234567", 8);
ASSERT_EQ(buf, res);
ASSERT_STREQ("a01234567", buf);
}
TEST(string, strncat5) {
char buf[10];
memset(buf, 'A', sizeof(buf));
buf[0] = 'a';
buf[1] = '\0';
char* res = strncat(buf, "01234567", 9);
ASSERT_EQ(buf, res);
ASSERT_STREQ("a01234567", buf);
}
TEST(string, strchr_with_0) {
char buf[10];
const char* s = "01234";
memcpy(buf, s, strlen(s) + 1);
EXPECT_TRUE(strchr(buf, '\0') == (buf + strlen(s)));
}
TEST(string, strchr_multiple) {
char str[128];
memset(str, 'a', sizeof(str) - 1);
str[sizeof(str)-1] = '\0';
// Verify that strchr finds the first occurrence of 'a' in a string
// filled with 'a' characters. Iterate over the string putting
// non 'a' characters at the front of the string during each iteration
// and continue to verify that strchr can find the first occurrence
// properly. The idea is to cover all possible alignments of the location
// of the first occurrence of the 'a' character and which includes
// other 'a' characters close by.
for (size_t i = 0; i < sizeof(str) - 1; i++) {
EXPECT_EQ(&str[i], strchr(str, 'a'));
str[i] = 'b';
}
}
TEST(string, strchr) {
int seek_char = random() & 255;
StringTestState<char> state(SMALL);
for (size_t i = 1; i < state.n; i++) {
for (size_t j = 0; j < POS_ITER; j++) {
state.NewIteration();
if (~seek_char > 0) {
memset(state.ptr1, ~seek_char, state.len[i]);
} else {
memset(state.ptr1, '\1', state.len[i]);
}
state.ptr1[state.len[i] - 1] = '\0';
int pos = random() % state.MAX_LEN;
char* expected;
if (pos >= state.len[i] - 1) {
if (seek_char == 0) {
expected = state.ptr1 + state.len[i] - 1;
} else {
expected = NULL;
}
} else {
state.ptr1[pos] = seek_char;
expected = state.ptr1 + pos;
}
ASSERT_TRUE(strchr(state.ptr1, seek_char) == expected);
}
}
}
TEST(string, strcmp) {
StringTestState<char> state(SMALL);
for (size_t i = 1; i < state.n; i++) {
for (size_t j = 0; j < POS_ITER; j++) {
state.NewIteration();
memset(state.ptr1, 'v', state.MAX_LEN);
memset(state.ptr2, 'n', state.MAX_LEN);
state.ptr1[state.len[i] - 1] = '\0';
state.ptr2[state.len[i] - 1] = '\0';
int pos = 1 + (random() % (state.MAX_LEN - 1));
int actual;
int expected;
if (pos >= state.len[i] - 1) {
memcpy(state.ptr1, state.ptr2, state.len[i]);
expected = 0;
actual = strcmp(state.ptr1, state.ptr2);
} else {
memcpy(state.ptr1, state.ptr2, pos);
if (state.ptr1[pos] > state.ptr2[pos]) {
expected = 1;
} else if (state.ptr1[pos] == state.ptr2[pos]) {
state.ptr1[pos + 1] = '\0';
state.ptr2[pos + 1] = '\0';
expected = 0;
} else {
expected = -1;
}
actual = strcmp(state.ptr1, state.ptr2);
}
ASSERT_EQ(expected, signum(actual));
}
}
}
TEST(string, stpcpy) {
StringTestState<char> state(SMALL);
for (size_t j = 0; j < POS_ITER; j++) {
state.NewIteration();
size_t pos = random() % state.MAX_LEN;
memset(state.ptr1, '\2', pos);
state.ptr1[pos] = '\0';
state.ptr1[state.MAX_LEN - 1] = '\0';
memcpy(state.ptr, state.ptr1, state.MAX_LEN);
memset(state.ptr2, '\1', state.MAX_LEN);
state.ptr2[state.MAX_LEN - 1] = '\0';
memset(state.ptr + state.MAX_LEN, '\1', state.MAX_LEN);
memcpy(state.ptr + state.MAX_LEN, state.ptr1, pos + 1);
state.ptr[2 * state.MAX_LEN - 1] = '\0';
ASSERT_TRUE(stpcpy(state.ptr2, state.ptr1) == state.ptr2 + strlen(state.ptr1));
ASSERT_FALSE((memcmp(state.ptr1, state.ptr, state.MAX_LEN)) != 0 ||
(memcmp(state.ptr2, state.ptr + state.MAX_LEN, state.MAX_LEN) != 0));
}
}
TEST(string, strcpy) {
StringTestState<char> state(SMALL);
for (size_t j = 0; j < POS_ITER; j++) {
state.NewIteration();
size_t pos = random() % state.MAX_LEN;
memset(state.ptr1, '\2', pos);
state.ptr1[pos] = '\0';
state.ptr1[state.MAX_LEN - 1] = '\0';
memcpy(state.ptr, state.ptr1, state.MAX_LEN);
memset(state.ptr2, '\1', state.MAX_LEN);
state.ptr2[state.MAX_LEN - 1] = '\0';
memset(state.ptr + state.MAX_LEN, '\1', state.MAX_LEN);
memcpy(state.ptr + state.MAX_LEN, state.ptr1, pos + 1);
state.ptr[2 * state.MAX_LEN - 1] = '\0';
ASSERT_TRUE(strcpy(state.ptr2, state.ptr1) == state.ptr2);
ASSERT_FALSE((memcmp(state.ptr1, state.ptr, state.MAX_LEN)) != 0 ||
(memcmp(state.ptr2, state.ptr + state.MAX_LEN, state.MAX_LEN) != 0));
}
}
TEST(string, strlcat) {
#if defined(__BIONIC__)
StringTestState<char> state(SMALL);
for (size_t i = 0; i < state.n; i++) {
for (size_t j = 0; j < POS_ITER; j++) {
state.NewIteration();
memset(state.ptr2, '\2', state.MAX_LEN + state.len[i]);
state.ptr2[state.MAX_LEN - 1] = '\0';
memcpy(state.ptr, state.ptr2, state.MAX_LEN + state.len[i]);
int pos = random() % state.MAX_LEN;
memset(state.ptr1, '\3', pos);
state.ptr1[pos] = '\0';
if (pos < state.len[i]) {
memcpy(state.ptr + state.MAX_LEN - 1, state.ptr1, pos + 1);
} else {
memcpy(state.ptr + state.MAX_LEN - 1, state.ptr1, state.len[i]);
state.ptr[state.MAX_LEN + state.len[i] - 1] = '\0';
}
strlcat(state.ptr2, state.ptr1, state.MAX_LEN + state.len[i]);
ASSERT_TRUE(memcmp(state.ptr, state.ptr2, state.MAX_LEN + state.len[i]) == 0);
}
}
#else // __BIONIC__
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif // __BIONIC__
}
TEST(string, strlcpy) {
#if defined(__BIONIC__)
StringTestState<char> state(SMALL);
for (size_t j = 0; j < POS_ITER; j++) {
state.NewIteration();
int rand = random() & 255;
if (rand < 1) {
rand = 1;
}
memset(state.ptr1, rand, state.MAX_LEN);
size_t pos = random() % state.MAX_LEN;
if (pos < state.MAX_LEN) {
state.ptr1[pos] = '\0';
}
memcpy(state.ptr, state.ptr1, state.MAX_LEN);
memset(state.ptr2, random() & 255, state.MAX_LEN);
memcpy(state.ptr + state.MAX_LEN, state.ptr2, state.MAX_LEN);
if (pos > state.MAX_LEN - 1) {
memcpy(state.ptr + state.MAX_LEN, state.ptr1, state.MAX_LEN);
state.ptr[2 * state.MAX_LEN - 1] = '\0';
} else {
memcpy(state.ptr + state.MAX_LEN, state.ptr1, pos + 1);
}
ASSERT_EQ(strlcpy(state.ptr2, state.ptr1, state.MAX_LEN), strlen(state.ptr1));
ASSERT_FALSE((memcmp(state.ptr1, state.ptr, state.MAX_LEN) != 0) ||
(memcmp(state.ptr2, state.ptr + state.MAX_LEN, state.MAX_LEN) != 0));
}
#else // __BIONIC__
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif // __BIONIC__
}
TEST(string, strncat) {
StringTestState<char> state(SMALL);
for (size_t i = 1; i < state.n; i++) {
for (size_t j = 0; j < POS_ITER; j++) {
state.NewIteration();
memset(state.ptr2, '\2', state.MAX_LEN);
state.ptr2[state.MAX_LEN - 1] = '\0';
memcpy(state.ptr, state.ptr2, 2 * state.MAX_LEN);
memset(state.ptr1, random() & 255, state.len[i]);
state.ptr1[random() % state.len[i]] = '\0';
state.ptr1[state.len[i] - 1] = '\0';
size_t pos = strlen(state.ptr1);
size_t actual = random() % state.len[i];
strncpy(state.ptr + state.MAX_LEN - 1, state.ptr1, std::min(actual, pos));
state.ptr[state.MAX_LEN + std::min(actual, pos) - 1] = '\0';
ASSERT_TRUE(strncat(state.ptr2, state.ptr1, actual) == state.ptr2);
ASSERT_EQ(memcmp(state.ptr, state.ptr2, 2 * state.MAX_LEN), 0);
}
}
}
TEST(string, strncmp) {
StringTestState<char> state(SMALL);
for (size_t i = 1; i < state.n; i++) {
for (size_t j = 0; j < POS_ITER; j++) {
state.NewIteration();
memset(state.ptr1, 'v', state.MAX_LEN);
memset(state.ptr2, 'n', state.MAX_LEN);
state.ptr1[state.len[i] - 1] = '\0';
state.ptr2[state.len[i] - 1] = '\0';
int pos = 1 + (random() % (state.MAX_LEN - 1));
int actual;
int expected;
if (pos >= state.len[i] - 1) {
memcpy(state.ptr1, state.ptr2, state.len[i]);
expected = 0;
actual = strncmp(state.ptr1, state.ptr2, state.len[i]);
} else {
memcpy(state.ptr1, state.ptr2, pos);
if (state.ptr1[pos] > state.ptr2[pos]) {
expected = 1;
} else if (state.ptr1[pos] == state.ptr2[pos]) {
state.ptr1[pos + 1] = '\0';
state.ptr2[pos + 1] = '\0';
expected = 0;
} else {
expected = -1;
}
actual = strncmp(state.ptr1, state.ptr2, state.len[i]);
}
ASSERT_EQ(expected, signum(actual));
}
}
}
TEST(string, stpncpy) {
StringTestState<char> state(SMALL);
for (size_t j = 0; j < ITER; j++) {
state.NewIteration();
// Choose a random value to fill the string, except \0 (string terminator),
// or \1 (guarantees it's different from anything in ptr2).
memset(state.ptr1, (random() % 254) + 2, state.MAX_LEN);
// Choose a random size for our src buffer.
size_t ptr1_len = random() % state.MAX_LEN;
state.ptr1[ptr1_len] = '\0';
// Copy ptr1 into ptr, used to verify that ptr1 does not get modified.
memcpy(state.ptr, state.ptr1, state.MAX_LEN);
// Init ptr2 to a set value.
memset(state.ptr2, '\1', state.MAX_LEN);
// Choose a random amount of data to copy.
size_t copy_len = random() % state.MAX_LEN;
// Set the second half of ptr to the expected pattern in ptr2.
memset(state.ptr + state.MAX_LEN, '\1', state.MAX_LEN);
memcpy(state.ptr + state.MAX_LEN, state.ptr1, copy_len);
size_t expected_end;
if (copy_len > ptr1_len) {
memset(state.ptr + state.MAX_LEN + ptr1_len, '\0', copy_len - ptr1_len);
expected_end = ptr1_len;
} else {
expected_end = copy_len;
}
ASSERT_EQ(state.ptr2 + expected_end, stpncpy(state.ptr2, state.ptr1, copy_len));
// Verify ptr1 was not modified.
ASSERT_EQ(0, memcmp(state.ptr1, state.ptr, state.MAX_LEN));
// Verify ptr2 contains the expected data.
ASSERT_EQ(0, memcmp(state.ptr2, state.ptr + state.MAX_LEN, state.MAX_LEN));
}
}
TEST(string, strncpy) {
StringTestState<char> state(SMALL);
for (size_t j = 0; j < ITER; j++) {
state.NewIteration();
// Choose a random value to fill the string, except \0 (string terminator),
// or \1 (guarantees it's different from anything in ptr2).
memset(state.ptr1, (random() % 254) + 2, state.MAX_LEN);
// Choose a random size for our src buffer.
size_t ptr1_len = random() % state.MAX_LEN;
state.ptr1[ptr1_len] = '\0';
// Copy ptr1 into ptr, used to verify that ptr1 does not get modified.
memcpy(state.ptr, state.ptr1, state.MAX_LEN);
// Init ptr2 to a set value.
memset(state.ptr2, '\1', state.MAX_LEN);
// Choose a random amount of data to copy.
size_t copy_len = random() % state.MAX_LEN;
// Set the second half of ptr to the expected pattern in ptr2.
memset(state.ptr + state.MAX_LEN, '\1', state.MAX_LEN);
memcpy(state.ptr + state.MAX_LEN, state.ptr1, copy_len);
size_t expected_end;
if (copy_len > ptr1_len) {
memset(state.ptr + state.MAX_LEN + ptr1_len, '\0', copy_len - ptr1_len);
expected_end = ptr1_len;
} else {
expected_end = copy_len;
}
ASSERT_EQ(state.ptr2 + expected_end, stpncpy(state.ptr2, state.ptr1, copy_len));
// Verify ptr1 was not modified.
ASSERT_EQ(0, memcmp(state.ptr1, state.ptr, state.MAX_LEN));
// Verify ptr2 contains the expected data.
ASSERT_EQ(0, memcmp(state.ptr2, state.ptr + state.MAX_LEN, state.MAX_LEN));
}
}
TEST(string, strrchr) {
int seek_char = random() & 255;
StringTestState<char> state(SMALL);
for (size_t i = 1; i < state.n; i++) {
for (size_t j = 0; j < POS_ITER; j++) {
state.NewIteration();
if (~seek_char > 0) {
memset(state.ptr1, ~seek_char, state.len[i]);
} else {
memset(state.ptr1, '\1', state.len[i]);
}
state.ptr1[state.len[i] - 1] = '\0';
int pos = random() % state.MAX_LEN;
char* expected;
if (pos >= state.len[i] - 1) {
if (seek_char == 0) {
expected = state.ptr1 + state.len[i] - 1;
} else {
expected = NULL;
}
} else {
state.ptr1[pos] = seek_char;
expected = state.ptr1 + pos;
}
ASSERT_TRUE(strrchr(state.ptr1, seek_char) == expected);
}
}
}
TEST(string, memchr) {
int seek_char = random() & 255;
StringTestState<char> state(SMALL);
for (size_t i = 0; i < state.n; i++) {
for (size_t j = 0; j < POS_ITER; j++) {
state.NewIteration();
memset(state.ptr1, ~seek_char, state.len[i]);
int pos = random() % state.MAX_LEN;
char* expected;
if (pos >= state.len[i]) {
expected = NULL;
} else {
state.ptr1[pos] = seek_char;
expected = state.ptr1 + pos;
}
ASSERT_TRUE(memchr(state.ptr1, seek_char, state.len[i]) == expected);
}
}
}
TEST(string, memchr_zero) {
uint8_t* buffer;
ASSERT_EQ(0, posix_memalign(reinterpret_cast<void**>(&buffer), 64, 64));
memset(buffer, 10, 64);
ASSERT_TRUE(NULL == memchr(buffer, 5, 0));
ASSERT_TRUE(NULL == memchr(buffer, 10, 0));
}
TEST(string, memrchr) {
int seek_char = random() & 255;
StringTestState<char> state(SMALL);
for (size_t i = 0; i < state.n; i++) {
for (size_t j = 0; j < POS_ITER; j++) {
state.NewIteration();
memset(state.ptr1, ~seek_char, state.len[i]);
int pos = random() % state.MAX_LEN;
char* expected;
if (pos >= state.len[i]) {
expected = NULL;
} else {
state.ptr1[pos] = seek_char;
expected = state.ptr1 + pos;
}
ASSERT_TRUE(memrchr(state.ptr1, seek_char, state.len[i]) == expected);
}
}
}
TEST(string, memcmp) {
StringTestState<char> state(SMALL);
for (size_t i = 0; i < state.n; i++) {
for (size_t j = 0; j < POS_ITER; j++) {
state.NewIteration();
int c1 = random() & 0xff;
int c2 = random() & 0xff;
memset(state.ptr1, c1, state.MAX_LEN);
memset(state.ptr2, c1, state.MAX_LEN);
int pos = (state.len[i] == 0) ? 0 : (random() % state.len[i]);
state.ptr2[pos] = c2;
int expected = (static_cast<int>(c1) - static_cast<int>(c2));
int actual = memcmp(state.ptr1, state.ptr2, state.MAX_LEN);
ASSERT_EQ(signum(expected), signum(actual));
}
}
}
TEST(string, wmemcmp) {
StringTestState<wchar_t> state(SMALL);
for (size_t i = 0; i < state.n; i++) {
for (size_t j = 0; j < POS_ITER; j++) {
state.NewIteration();
long long mask = ((long long) 1 << 8 * sizeof(wchar_t)) - 1;
int c1 = rand() & mask;
int c2 = rand() & mask;
wmemset(state.ptr1, c1, state.MAX_LEN);
wmemset(state.ptr2, c1, state.MAX_LEN);
int pos = (state.len[i] == 0) ? 0 : (random() % state.len[i]);
state.ptr2[pos] = c2;
int expected = (static_cast<int>(c1) - static_cast<int>(c2));
int actual = wmemcmp(state.ptr1, state.ptr2, (size_t) state.MAX_LEN);
ASSERT_EQ(signum(expected), signum(actual));
}
}
}
TEST(string, memcpy) {
StringTestState<char> state(LARGE);
int rand = random() & 255;
for (size_t i = 0; i < state.n - 1; i++) {
for (size_t j = 0; j < POS_ITER; j++) {
state.NewIteration();
size_t pos = random() % (state.MAX_LEN - state.len[i]);
memset(state.ptr1, rand, state.len[i]);
memset(state.ptr1 + state.len[i], ~rand, state.MAX_LEN - state.len[i]);
memset(state.ptr2, rand, state.len[i]);
memset(state.ptr2 + state.len[i], ~rand, state.MAX_LEN - state.len[i]);
memset(state.ptr2 + pos, '\0', state.len[i]);
ASSERT_FALSE(memcpy(state.ptr2 + pos, state.ptr1 + pos, state.len[i]) != state.ptr2 + pos);
ASSERT_EQ(0, memcmp(state.ptr1, state.ptr2, state.MAX_LEN));
}
}
}
TEST(string, memset) {
StringTestState<char> state(LARGE);
char ch = random () & 255;
for (size_t i = 0; i < state.n - 1; i++) {
for (size_t j = 0; j < POS_ITER; j++) {
state.NewIteration();
memset(state.ptr1, ~ch, state.MAX_LEN);
memcpy(state.ptr2, state.ptr1, state.MAX_LEN);
size_t pos = random () % (state.MAX_LEN - state.len[i]);
for (size_t k = pos; k < pos + state.len[i]; k++) {
state.ptr1[k] = ch;
}
ASSERT_TRUE(memset(state.ptr2 + pos, ch, state.len[i]) == state.ptr2 + pos);
ASSERT_EQ(0, memcmp(state.ptr1, state.ptr2, state.MAX_LEN));
}
}
}
TEST(string, memmove) {
StringTestState<char> state(LARGE);
for (size_t i = 0; i < state.n - 1; i++) {
for (size_t j = 0; j < POS_ITER; j++) {
state.NewIteration();
memset(state.ptr1, random() & 255, 2 * state.MAX_LEN);
size_t pos = random() % (state.MAX_LEN - state.len[i]);
memset(state.ptr1, random() & 255, state.len[i]);
memcpy(state.ptr2, state.ptr1, 2 * state.MAX_LEN);
memcpy(state.ptr, state.ptr1, state.len[i]);
memcpy(state.ptr1 + pos, state.ptr, state.len[i]);
ASSERT_TRUE(memmove(state.ptr2 + pos, state.ptr2, state.len[i]) == state.ptr2 + pos);
ASSERT_EQ(0, memcmp(state.ptr2, state.ptr1, 2 * state.MAX_LEN));
}
}
}
TEST(string, memmove_cache_size) {
size_t len = 600000;
int max_alignment = 31;
int alignments[] = {0, 5, 11, 29, 30};
char* ptr = reinterpret_cast<char*>(malloc(sizeof(char) * len));
char* ptr1 = reinterpret_cast<char*>(malloc(2 * sizeof(char) * len));
char* glob_ptr2 = reinterpret_cast<char*>(malloc(2 * sizeof(char) * len + max_alignment));
size_t pos = 64;
ASSERT_TRUE(ptr != NULL);
ASSERT_TRUE(ptr1 != NULL);
ASSERT_TRUE(glob_ptr2 != NULL);
for (int i = 0; i < 5; i++) {
char* ptr2 = glob_ptr2 + alignments[i];
memset(ptr1, random() & 255, 2 * len);
memset(ptr1, random() & 255, len);
memcpy(ptr2, ptr1, 2 * len);
memcpy(ptr, ptr1, len);
memcpy(ptr1 + pos, ptr, len);
ASSERT_TRUE(memmove(ptr2 + pos, ptr, len) == ptr2 + pos);
ASSERT_EQ(0, memcmp(ptr2, ptr1, 2 * len));
}
free(ptr);
free(ptr1);
free(glob_ptr2);
}
static void verify_memmove(char* src_copy, char* dst, char* src, size_t size) {
memset(dst, 0, size);
memcpy(src, src_copy, size);
ASSERT_EQ(dst, memmove(dst, src, size));
ASSERT_EQ(0, memcmp(dst, src_copy, size));
}
#define MEMMOVE_DATA_SIZE (1024*1024*3)
TEST(string, memmove_check) {
char* buffer = reinterpret_cast<char*>(malloc(MEMMOVE_DATA_SIZE));
ASSERT_TRUE(buffer != NULL);
char* src_data = reinterpret_cast<char*>(malloc(MEMMOVE_DATA_SIZE));
ASSERT_TRUE(src_data != NULL);
// Initialize to a known pattern to copy into src for each test and
// to compare dst against.
for (size_t i = 0; i < MEMMOVE_DATA_SIZE; i++) {
src_data[i] = (i + 1) % 255;
}
// Check all different dst offsets between 0 and 127 inclusive.
char* src = buffer;
for (size_t i = 0; i < 127; i++) {
char* dst = buffer + 256 + i;
// Small copy.
verify_memmove(src_data, dst, src, 1024);
// Medium copy.
verify_memmove(src_data, dst, src, 64 * 1024);
// Medium copy.
verify_memmove(src_data, dst, src, 1024 * 1024 + 128 * 1024);
}
// Check all leftover size offsets between 1 and 127 inclusive.
char* dst = buffer + 256;
src = buffer;
for (size_t size = 1; size < 127; size++) {
// Small copy.
verify_memmove(src_data, dst, src, 1024);
// Medium copy.
verify_memmove(src_data, dst, src, 64 * 1024);
// Large copy.
verify_memmove(src_data, dst, src, 1024 * 1024 + 128 * 1024);
}
}
TEST(string, bcopy) {
StringTestState<char> state(LARGE);
for (size_t i = 0; i < state.n; i++) {
for (size_t j = 0; j < POS_ITER; j++) {
state.NewIteration();
memset(state.ptr1, random() & 255, state.MAX_LEN);
memset(state.ptr1 + state.MAX_LEN, random() & 255, state.MAX_LEN);
memcpy(state.ptr2, state.ptr1, 2 * state.MAX_LEN);
size_t start = random() % (2 * state.MAX_LEN - state.len[i]);
memcpy(state.ptr2 + start, state.ptr1, state.len[i]);
bcopy(state.ptr1, state.ptr1 + start, state.len[i]);
ASSERT_EQ(0, memcmp(state.ptr1, state.ptr2, 2 * state.MAX_LEN));
}
}
}
TEST(string, bzero) {
StringTestState<char> state(LARGE);
for (size_t j = 0; j < ITER; j++) {
state.NewIteration();
memset(state.ptr1, random() & 255, state.MAX_LEN);
size_t start = random() % state.MAX_LEN;
size_t end = start + random() % (state.MAX_LEN - start);
memcpy(state.ptr2, state.ptr1, start);
memset(state.ptr2 + start, '\0', end - start);
memcpy(state.ptr2 + end, state.ptr1 + end, state.MAX_LEN - end);
bzero(state.ptr1 + start, end - start);
ASSERT_EQ(0, memcmp(state.ptr1, state.ptr2, state.MAX_LEN));
}
}
static void DoMemcpyTest(uint8_t* src, uint8_t* dst, size_t len) {
memset(src, (len % 255) + 1, len);
memset(dst, 0, len);
ASSERT_EQ(dst, memcpy(dst, src, len));
ASSERT_TRUE(memcmp(src, dst, len) == 0);
}
TEST(string, memcpy_align) {
RunSrcDstBufferAlignTest(LARGE, DoMemcpyTest);
}
TEST(string, memcpy_overread) {
RunSrcDstBufferOverreadTest(DoMemcpyTest);
}
static void DoMemmoveTest(uint8_t* src, uint8_t* dst, size_t len) {
memset(src, (len % 255) + 1, len);
memset(dst, 0, len);
ASSERT_EQ(dst, memmove(dst, src, len));
ASSERT_TRUE(memcmp(src, dst, len) == 0);
}
TEST(string, memmove_align) {
RunSrcDstBufferAlignTest(LARGE, DoMemmoveTest);
}
TEST(string, memmove_overread) {
RunSrcDstBufferOverreadTest(DoMemmoveTest);
}
static void DoMemsetTest(uint8_t* buf, size_t len) {
for (size_t i = 0; i < len; i++) {
buf[i] = 0;
}
int value = (len % 255) + 1;
ASSERT_EQ(buf, memset(buf, value, len));
for (size_t i = 0; i < len; i++) {
ASSERT_EQ(value, buf[i]);
}
}
TEST(string, memset_align) {
RunSingleBufferAlignTest(LARGE, DoMemsetTest);
}
static void DoStrlenTest(uint8_t* buf, size_t len) {
if (len >= 1) {
memset(buf, (32 + (len % 96)), len - 1);
buf[len-1] = '\0';
ASSERT_EQ(len-1, strlen(reinterpret_cast<char*>(buf)));
}
}
TEST(string, strlen_align) {
RunSingleBufferAlignTest(LARGE, DoStrlenTest);
}
TEST(string, strlen_overread) {
RunSingleBufferOverreadTest(DoStrlenTest);
}
static void DoStrcpyTest(uint8_t* src, uint8_t* dst, size_t len) {
if (len >= 1) {
memset(src, (32 + (len % 96)), len - 1);
src[len-1] = '\0';
memset(dst, 0, len);
ASSERT_EQ(dst, reinterpret_cast<uint8_t*>(strcpy(reinterpret_cast<char*>(dst),
reinterpret_cast<char*>(src))));
ASSERT_TRUE(memcmp(src, dst, len) == 0);
}
}
TEST(string, strcpy_align) {
RunSrcDstBufferAlignTest(LARGE, DoStrcpyTest);
}
TEST(string, strcpy_overread) {
RunSrcDstBufferOverreadTest(DoStrcpyTest);
}
static void DoStpcpyTest(uint8_t* src, uint8_t* dst, size_t len) {
if (len >= 1) {
memset(src, (32 + (len % 96)), len - 1);
src[len-1] = '\0';
memset(dst, 0, len);
ASSERT_EQ(dst+len-1, reinterpret_cast<uint8_t*>(stpcpy(reinterpret_cast<char*>(dst),
reinterpret_cast<char*>(src))));
ASSERT_TRUE(memcmp(src, dst, len) == 0);
}
}
TEST(string, stpcpy_align) {
RunSrcDstBufferAlignTest(LARGE, DoStpcpyTest);
}
TEST(string, stpcpy_overread) {
RunSrcDstBufferOverreadTest(DoStpcpyTest);
}
// Use our own incrementer to cut down on the total number of calls.
static size_t LargeSetIncrement(size_t len) {
if (len >= 4096) {
return 4096;
} else if (len >= 1024) {
return 1024;
} else if (len >= 256) {
return 256;
}
return 1;
}
#define STRCAT_DST_LEN 128
static void DoStrcatTest(uint8_t* src, uint8_t* dst, size_t len) {
if (len >= 1) {
int value = 32 + (len % 96);
memset(src, value, len - 1);
src[len-1] = '\0';
if (len >= STRCAT_DST_LEN) {
// Create a small buffer for doing quick compares in each loop.
uint8_t cmp_buf[STRCAT_DST_LEN];
// Make sure dst string contains a different value then the src string.
int value2 = 32 + (value + 2) % 96;
memset(cmp_buf, value2, sizeof(cmp_buf));
for (size_t i = 1; i <= STRCAT_DST_LEN; i++) {
memset(dst, value2, i-1);
memset(dst+i-1, 0, len-i);
src[len-i] = '\0';
ASSERT_EQ(dst, reinterpret_cast<uint8_t*>(strcat(reinterpret_cast<char*>(dst),
reinterpret_cast<char*>(src))));
ASSERT_TRUE(memcmp(dst, cmp_buf, i-1) == 0);
ASSERT_TRUE(memcmp(src, dst+i-1, len-i+1) == 0);
}
} else {
dst[0] = '\0';
ASSERT_EQ(dst, reinterpret_cast<uint8_t*>(strcat(reinterpret_cast<char*>(dst),
reinterpret_cast<char*>(src))));
ASSERT_TRUE(memcmp(src, dst, len) == 0);
}
}
}
TEST(string, strcat_align) {
RunSrcDstBufferAlignTest(MEDIUM, DoStrcatTest, LargeSetIncrement);
}
TEST(string, strcat_overread) {
RunSrcDstBufferOverreadTest(DoStrcatTest);
}
static void DoStrcmpTest(uint8_t* buf1, uint8_t* buf2, size_t len) {
if (len >= 1) {
memset(buf1, (32 + (len % 96)), len - 1);
buf1[len-1] = '\0';
memset(buf2, (32 + (len % 96)), len - 1);
buf2[len-1] = '\0';
ASSERT_EQ(0, strcmp(reinterpret_cast<char*>(buf1),
reinterpret_cast<char*>(buf2)));
}
}
static void DoStrcmpFailTest(uint8_t* buf1, uint8_t* buf2, size_t len1, size_t len2) {
// Do string length differences.
int c = (32 + (len1 % 96));
memset(buf1, c, len1 - 1);
buf1[len1-1] = '\0';
memset(buf2, c, len2 - 1);
buf2[len2-1] = '\0';
ASSERT_NE(0, strcmp(reinterpret_cast<char*>(buf1),
reinterpret_cast<char*>(buf2)));
// Do single character differences.
size_t len;
if (len1 > len2) {
len = len2;
} else {
len = len1;
}
// Need at least a two character buffer to do this test.
if (len > 1) {
buf1[len-1] = '\0';
buf2[len-1] = '\0';
int diff_c = (c + 1) % 96;
buf1[len-2] = diff_c;
ASSERT_NE(0, strcmp(reinterpret_cast<char*>(buf1),
reinterpret_cast<char*>(buf2)));
buf1[len-2] = c;
buf2[len-2] = diff_c;
ASSERT_NE(0, strcmp(reinterpret_cast<char*>(buf1),
reinterpret_cast<char*>(buf2)));
}
}
TEST(string, strcmp_align) {
RunCmpBufferAlignTest(MEDIUM, DoStrcmpTest, DoStrcmpFailTest, LargeSetIncrement);
}
TEST(string, strcmp_overread) {
RunCmpBufferOverreadTest(DoStrcmpTest, DoStrcmpFailTest);
}
static void DoMemcmpTest(uint8_t* buf1, uint8_t* buf2, size_t len) {
memset(buf1, len+1, len);
memset(buf2, len+1, len);
ASSERT_EQ(0, memcmp(buf1, buf2, len));
}
static void DoMemcmpFailTest(uint8_t* buf1, uint8_t* buf2, size_t len1, size_t len2) {
size_t len;
if (len1 > len2) {
len = len2;
} else {
len = len1;
}
memset(buf1, len2+1, len);
buf1[len-1] = len2;
memset(buf2, len2+1, len);
ASSERT_NE(0, memcmp(buf1, buf2, len));
buf1[len-1] = len2+1;
buf2[len-1] = len2;
ASSERT_NE(0, memcmp(buf1, buf2, len));
}
TEST(string, memcmp_align) {
RunCmpBufferAlignTest(MEDIUM, DoMemcmpTest, DoMemcmpFailTest, LargeSetIncrement);
}
TEST(string, memcmp_overread) {
RunCmpBufferOverreadTest(DoMemcmpTest, DoMemcmpFailTest);
}
static void DoStrchrTest(uint8_t* buf, size_t len) {
if (len >= 1) {
char value = 32 + (len % 96);
char search_value = 33 + (len % 96);
memset(buf, value, len - 1);
buf[len-1] = '\0';
ASSERT_EQ(NULL, strchr(reinterpret_cast<char*>(buf), search_value));
ASSERT_EQ(reinterpret_cast<char*>(&buf[len-1]), strchr(reinterpret_cast<char*>(buf), '\0'));
if (len >= 2) {
buf[0] = search_value;
ASSERT_EQ(reinterpret_cast<char*>(&buf[0]), strchr(reinterpret_cast<char*>(buf), search_value));
buf[0] = value;
buf[len-2] = search_value;
ASSERT_EQ(reinterpret_cast<char*>(&buf[len-2]), strchr(reinterpret_cast<char*>(buf), search_value));
}
}
}
TEST(string, strchr_align) {
RunSingleBufferAlignTest(MEDIUM, DoStrchrTest);
}
TEST(string, strchr_overread) {
RunSingleBufferOverreadTest(DoStrchrTest);
}