
This is recent addition to bionic linker. The symbol versioning was not supported before therefore this bug went unnoticed. Also normal exit when there is not enought relocations to pack. This is to enable integration of relocation_packer to android build system. Bug: http://b/20139821 Bug: http://b/18051137 Change-Id: Iaf36ae11c8e4b15cf785b6dd1712a3bdcf47cc45
886 lines
33 KiB
C++
886 lines
33 KiB
C++
// Copyright 2014 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
// Implementation notes:
|
|
//
|
|
// We need to remove a piece from the ELF shared library. However, we also
|
|
// want to avoid fixing DWARF cfi data and relative relocation addresses.
|
|
// So after packing we shift offets and starting address of the RX segment
|
|
// while preserving code/data vaddrs location.
|
|
// This requires some fixups for symtab/hash/gnu_hash dynamic section addresses.
|
|
|
|
#include "elf_file.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <sys/types.h>
|
|
#include <unistd.h>
|
|
#include <algorithm>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "debug.h"
|
|
#include "elf_traits.h"
|
|
#include "libelf.h"
|
|
#include "packer.h"
|
|
|
|
namespace relocation_packer {
|
|
|
|
// Out-of-band dynamic tags used to indicate the offset and size of the
|
|
// android packed relocations section.
|
|
static constexpr int32_t DT_ANDROID_REL = DT_LOOS + 2;
|
|
static constexpr int32_t DT_ANDROID_RELSZ = DT_LOOS + 3;
|
|
|
|
static constexpr int32_t DT_ANDROID_RELA = DT_LOOS + 4;
|
|
static constexpr int32_t DT_ANDROID_RELASZ = DT_LOOS + 5;
|
|
|
|
static constexpr uint32_t SHT_ANDROID_REL = SHT_LOOS + 1;
|
|
static constexpr uint32_t SHT_ANDROID_RELA = SHT_LOOS + 2;
|
|
|
|
// Alignment to preserve, in bytes. This must be at least as large as the
|
|
// largest d_align and sh_addralign values found in the loaded file.
|
|
// Out of caution for RELRO page alignment, we preserve to a complete target
|
|
// page. See http://www.airs.com/blog/archives/189.
|
|
static constexpr size_t kPreserveAlignment = 4096;
|
|
|
|
// Get section data. Checks that the section has exactly one data entry,
|
|
// so that the section size and the data size are the same. True in
|
|
// practice for all sections we resize when packing or unpacking. Done
|
|
// by ensuring that a call to elf_getdata(section, data) returns NULL as
|
|
// the next data entry.
|
|
static Elf_Data* GetSectionData(Elf_Scn* section) {
|
|
Elf_Data* data = elf_getdata(section, NULL);
|
|
CHECK(data && elf_getdata(section, data) == NULL);
|
|
return data;
|
|
}
|
|
|
|
// Rewrite section data. Allocates new data and makes it the data element's
|
|
// buffer. Relies on program exit to free allocated data.
|
|
static void RewriteSectionData(Elf_Scn* section,
|
|
const void* section_data,
|
|
size_t size) {
|
|
Elf_Data* data = GetSectionData(section);
|
|
CHECK(size == data->d_size);
|
|
uint8_t* area = new uint8_t[size];
|
|
memcpy(area, section_data, size);
|
|
data->d_buf = area;
|
|
}
|
|
|
|
// Verbose ELF header logging.
|
|
template <typename Ehdr>
|
|
static void VerboseLogElfHeader(const Ehdr* elf_header) {
|
|
VLOG(1) << "e_phoff = " << elf_header->e_phoff;
|
|
VLOG(1) << "e_shoff = " << elf_header->e_shoff;
|
|
VLOG(1) << "e_ehsize = " << elf_header->e_ehsize;
|
|
VLOG(1) << "e_phentsize = " << elf_header->e_phentsize;
|
|
VLOG(1) << "e_phnum = " << elf_header->e_phnum;
|
|
VLOG(1) << "e_shnum = " << elf_header->e_shnum;
|
|
VLOG(1) << "e_shstrndx = " << elf_header->e_shstrndx;
|
|
}
|
|
|
|
// Verbose ELF program header logging.
|
|
template <typename Phdr>
|
|
static void VerboseLogProgramHeader(size_t program_header_index,
|
|
const Phdr* program_header) {
|
|
std::string type;
|
|
switch (program_header->p_type) {
|
|
case PT_NULL: type = "NULL"; break;
|
|
case PT_LOAD: type = "LOAD"; break;
|
|
case PT_DYNAMIC: type = "DYNAMIC"; break;
|
|
case PT_INTERP: type = "INTERP"; break;
|
|
case PT_PHDR: type = "PHDR"; break;
|
|
case PT_GNU_RELRO: type = "GNU_RELRO"; break;
|
|
case PT_GNU_STACK: type = "GNU_STACK"; break;
|
|
case PT_ARM_EXIDX: type = "EXIDX"; break;
|
|
default: type = "(OTHER)"; break;
|
|
}
|
|
VLOG(1) << "phdr[" << program_header_index << "] : " << type;
|
|
VLOG(1) << " p_offset = " << program_header->p_offset;
|
|
VLOG(1) << " p_vaddr = " << program_header->p_vaddr;
|
|
VLOG(1) << " p_paddr = " << program_header->p_paddr;
|
|
VLOG(1) << " p_filesz = " << program_header->p_filesz;
|
|
VLOG(1) << " p_memsz = " << program_header->p_memsz;
|
|
VLOG(1) << " p_flags = " << program_header->p_flags;
|
|
VLOG(1) << " p_align = " << program_header->p_align;
|
|
}
|
|
|
|
// Verbose ELF section header logging.
|
|
template <typename Shdr>
|
|
static void VerboseLogSectionHeader(const std::string& section_name,
|
|
const Shdr* section_header) {
|
|
VLOG(1) << "section " << section_name;
|
|
VLOG(1) << " sh_addr = " << section_header->sh_addr;
|
|
VLOG(1) << " sh_offset = " << section_header->sh_offset;
|
|
VLOG(1) << " sh_size = " << section_header->sh_size;
|
|
VLOG(1) << " sh_entsize = " << section_header->sh_entsize;
|
|
VLOG(1) << " sh_addralign = " << section_header->sh_addralign;
|
|
}
|
|
|
|
// Verbose ELF section data logging.
|
|
static void VerboseLogSectionData(const Elf_Data* data) {
|
|
VLOG(1) << " data";
|
|
VLOG(1) << " d_buf = " << data->d_buf;
|
|
VLOG(1) << " d_off = " << data->d_off;
|
|
VLOG(1) << " d_size = " << data->d_size;
|
|
VLOG(1) << " d_align = " << data->d_align;
|
|
}
|
|
|
|
// Load the complete ELF file into a memory image in libelf, and identify
|
|
// the .rel.dyn or .rela.dyn, .dynamic, and .android.rel.dyn or
|
|
// .android.rela.dyn sections. No-op if the ELF file has already been loaded.
|
|
template <typename ELF>
|
|
bool ElfFile<ELF>::Load() {
|
|
if (elf_)
|
|
return true;
|
|
|
|
Elf* elf = elf_begin(fd_, ELF_C_RDWR, NULL);
|
|
CHECK(elf);
|
|
|
|
if (elf_kind(elf) != ELF_K_ELF) {
|
|
LOG(ERROR) << "File not in ELF format";
|
|
return false;
|
|
}
|
|
|
|
auto elf_header = ELF::getehdr(elf);
|
|
if (!elf_header) {
|
|
LOG(ERROR) << "Failed to load ELF header: " << elf_errmsg(elf_errno());
|
|
return false;
|
|
}
|
|
|
|
if (elf_header->e_type != ET_DYN) {
|
|
LOG(ERROR) << "ELF file is not a shared object";
|
|
return false;
|
|
}
|
|
|
|
// Require that our endianness matches that of the target, and that both
|
|
// are little-endian. Safe for all current build/target combinations.
|
|
const int endian = elf_header->e_ident[EI_DATA];
|
|
CHECK(endian == ELFDATA2LSB);
|
|
CHECK(__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__);
|
|
|
|
const int file_class = elf_header->e_ident[EI_CLASS];
|
|
VLOG(1) << "endian = " << endian << ", file class = " << file_class;
|
|
VerboseLogElfHeader(elf_header);
|
|
|
|
auto elf_program_header = ELF::getphdr(elf);
|
|
CHECK(elf_program_header != nullptr);
|
|
|
|
const typename ELF::Phdr* dynamic_program_header = NULL;
|
|
for (size_t i = 0; i < elf_header->e_phnum; ++i) {
|
|
auto program_header = &elf_program_header[i];
|
|
VerboseLogProgramHeader(i, program_header);
|
|
|
|
if (program_header->p_type == PT_DYNAMIC) {
|
|
CHECK(dynamic_program_header == NULL);
|
|
dynamic_program_header = program_header;
|
|
}
|
|
}
|
|
CHECK(dynamic_program_header != nullptr);
|
|
|
|
size_t string_index;
|
|
elf_getshdrstrndx(elf, &string_index);
|
|
|
|
// Notes of the dynamic relocations, packed relocations, and .dynamic
|
|
// sections. Found while iterating sections, and later stored in class
|
|
// attributes.
|
|
Elf_Scn* found_relocations_section = nullptr;
|
|
Elf_Scn* found_dynamic_section = nullptr;
|
|
|
|
// Notes of relocation section types seen. We require one or the other of
|
|
// these; both is unsupported.
|
|
bool has_rel_relocations = false;
|
|
bool has_rela_relocations = false;
|
|
|
|
Elf_Scn* section = NULL;
|
|
while ((section = elf_nextscn(elf, section)) != nullptr) {
|
|
auto section_header = ELF::getshdr(section);
|
|
std::string name = elf_strptr(elf, string_index, section_header->sh_name);
|
|
VerboseLogSectionHeader(name, section_header);
|
|
|
|
// Note relocation section types.
|
|
if (section_header->sh_type == SHT_REL || section_header->sh_type == SHT_ANDROID_REL) {
|
|
has_rel_relocations = true;
|
|
}
|
|
if (section_header->sh_type == SHT_RELA || section_header->sh_type == SHT_ANDROID_RELA) {
|
|
has_rela_relocations = true;
|
|
}
|
|
|
|
// Note special sections as we encounter them.
|
|
if ((name == ".rel.dyn" || name == ".rela.dyn") &&
|
|
section_header->sh_size > 0) {
|
|
found_relocations_section = section;
|
|
}
|
|
|
|
if (section_header->sh_offset == dynamic_program_header->p_offset) {
|
|
found_dynamic_section = section;
|
|
}
|
|
|
|
// Ensure we preserve alignment, repeated later for the data block(s).
|
|
CHECK(section_header->sh_addralign <= kPreserveAlignment);
|
|
|
|
Elf_Data* data = NULL;
|
|
while ((data = elf_getdata(section, data)) != NULL) {
|
|
CHECK(data->d_align <= kPreserveAlignment);
|
|
VerboseLogSectionData(data);
|
|
}
|
|
}
|
|
|
|
// Loading failed if we did not find the required special sections.
|
|
if (!found_relocations_section) {
|
|
LOG(ERROR) << "Missing or empty .rel.dyn or .rela.dyn section";
|
|
return false;
|
|
}
|
|
if (!found_dynamic_section) {
|
|
LOG(ERROR) << "Missing .dynamic section";
|
|
return false;
|
|
}
|
|
|
|
// Loading failed if we could not identify the relocations type.
|
|
if (!has_rel_relocations && !has_rela_relocations) {
|
|
LOG(ERROR) << "No relocations sections found";
|
|
return false;
|
|
}
|
|
if (has_rel_relocations && has_rela_relocations) {
|
|
LOG(ERROR) << "Multiple relocations sections with different types found, "
|
|
<< "not currently supported";
|
|
return false;
|
|
}
|
|
|
|
elf_ = elf;
|
|
relocations_section_ = found_relocations_section;
|
|
dynamic_section_ = found_dynamic_section;
|
|
relocations_type_ = has_rel_relocations ? REL : RELA;
|
|
return true;
|
|
}
|
|
|
|
// Helper for ResizeSection(). Adjust the main ELF header for the hole.
|
|
template <typename ELF>
|
|
static void AdjustElfHeaderForHole(typename ELF::Ehdr* elf_header,
|
|
typename ELF::Off hole_start,
|
|
ssize_t hole_size) {
|
|
if (elf_header->e_phoff > hole_start) {
|
|
elf_header->e_phoff += hole_size;
|
|
VLOG(1) << "e_phoff adjusted to " << elf_header->e_phoff;
|
|
}
|
|
if (elf_header->e_shoff > hole_start) {
|
|
elf_header->e_shoff += hole_size;
|
|
VLOG(1) << "e_shoff adjusted to " << elf_header->e_shoff;
|
|
}
|
|
}
|
|
|
|
// Helper for ResizeSection(). Adjust all section headers for the hole.
|
|
template <typename ELF>
|
|
static void AdjustSectionHeadersForHole(Elf* elf,
|
|
typename ELF::Off hole_start,
|
|
ssize_t hole_size) {
|
|
size_t string_index;
|
|
elf_getshdrstrndx(elf, &string_index);
|
|
|
|
Elf_Scn* section = NULL;
|
|
while ((section = elf_nextscn(elf, section)) != NULL) {
|
|
auto section_header = ELF::getshdr(section);
|
|
std::string name = elf_strptr(elf, string_index, section_header->sh_name);
|
|
|
|
if (section_header->sh_offset > hole_start) {
|
|
section_header->sh_offset += hole_size;
|
|
VLOG(1) << "section " << name
|
|
<< " sh_offset adjusted to " << section_header->sh_offset;
|
|
} else {
|
|
section_header->sh_addr -= hole_size;
|
|
VLOG(1) << "section " << name
|
|
<< " sh_addr adjusted to " << section_header->sh_addr;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Helper for ResizeSection(). Adjust the offsets of any program headers
|
|
// that have offsets currently beyond the hole start.
|
|
template <typename ELF>
|
|
static void AdjustProgramHeaderOffsets(typename ELF::Phdr* program_headers,
|
|
size_t count,
|
|
typename ELF::Off hole_start,
|
|
ssize_t hole_size) {
|
|
for (size_t i = 0; i < count; ++i) {
|
|
typename ELF::Phdr* program_header = &program_headers[i];
|
|
|
|
if (program_header->p_offset > hole_start) {
|
|
// The hole start is past this segment, so adjust offset.
|
|
program_header->p_offset += hole_size;
|
|
VLOG(1) << "phdr[" << i
|
|
<< "] p_offset adjusted to "<< program_header->p_offset;
|
|
} else {
|
|
program_header->p_vaddr -= hole_size;
|
|
program_header->p_paddr -= hole_size;
|
|
VLOG(1) << "phdr[" << i
|
|
<< "] p_vaddr adjusted to "<< program_header->p_vaddr
|
|
<< "; p_paddr adjusted to "<< program_header->p_paddr;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Helper for ResizeSection(). Find the first loadable segment in the
|
|
// file. We expect it to map from file offset zero.
|
|
template <typename ELF>
|
|
static typename ELF::Phdr* FindLoadSegmentForHole(typename ELF::Phdr* program_headers,
|
|
size_t count,
|
|
typename ELF::Off hole_start) {
|
|
for (size_t i = 0; i < count; ++i) {
|
|
typename ELF::Phdr* program_header = &program_headers[i];
|
|
|
|
if (program_header->p_type == PT_LOAD &&
|
|
program_header->p_offset <= hole_start &&
|
|
(program_header->p_offset + program_header->p_filesz) >= hole_start ) {
|
|
return program_header;
|
|
}
|
|
}
|
|
LOG(FATAL) << "Cannot locate a LOAD segment with hole_start=0x" << std::hex << hole_start;
|
|
NOTREACHED();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// Helper for ResizeSection(). Rewrite program headers.
|
|
template <typename ELF>
|
|
static void RewriteProgramHeadersForHole(Elf* elf,
|
|
typename ELF::Off hole_start,
|
|
ssize_t hole_size) {
|
|
const typename ELF::Ehdr* elf_header = ELF::getehdr(elf);
|
|
CHECK(elf_header);
|
|
|
|
typename ELF::Phdr* elf_program_header = ELF::getphdr(elf);
|
|
CHECK(elf_program_header);
|
|
|
|
const size_t program_header_count = elf_header->e_phnum;
|
|
|
|
// Locate the segment that we can overwrite to form the new LOAD entry,
|
|
// and the segment that we are going to split into two parts.
|
|
typename ELF::Phdr* target_load_header =
|
|
FindLoadSegmentForHole<ELF>(elf_program_header, program_header_count, hole_start);
|
|
|
|
VLOG(1) << "phdr[" << target_load_header - elf_program_header << "] adjust";
|
|
// Adjust PT_LOAD program header memsz and filesz
|
|
target_load_header->p_filesz += hole_size;
|
|
target_load_header->p_memsz += hole_size;
|
|
|
|
// Adjust the offsets and p_vaddrs
|
|
AdjustProgramHeaderOffsets<ELF>(elf_program_header,
|
|
program_header_count,
|
|
hole_start,
|
|
hole_size);
|
|
}
|
|
|
|
// Helper for ResizeSection(). Locate and return the dynamic section.
|
|
template <typename ELF>
|
|
static Elf_Scn* GetDynamicSection(Elf* elf) {
|
|
const typename ELF::Ehdr* elf_header = ELF::getehdr(elf);
|
|
CHECK(elf_header);
|
|
|
|
const typename ELF::Phdr* elf_program_header = ELF::getphdr(elf);
|
|
CHECK(elf_program_header);
|
|
|
|
// Find the program header that describes the dynamic section.
|
|
const typename ELF::Phdr* dynamic_program_header = NULL;
|
|
for (size_t i = 0; i < elf_header->e_phnum; ++i) {
|
|
const typename ELF::Phdr* program_header = &elf_program_header[i];
|
|
|
|
if (program_header->p_type == PT_DYNAMIC) {
|
|
dynamic_program_header = program_header;
|
|
}
|
|
}
|
|
CHECK(dynamic_program_header);
|
|
|
|
// Now find the section with the same offset as this program header.
|
|
Elf_Scn* dynamic_section = NULL;
|
|
Elf_Scn* section = NULL;
|
|
while ((section = elf_nextscn(elf, section)) != NULL) {
|
|
typename ELF::Shdr* section_header = ELF::getshdr(section);
|
|
|
|
if (section_header->sh_offset == dynamic_program_header->p_offset) {
|
|
dynamic_section = section;
|
|
}
|
|
}
|
|
CHECK(dynamic_section != NULL);
|
|
|
|
return dynamic_section;
|
|
}
|
|
|
|
// Helper for ResizeSection(). Adjust the .dynamic section for the hole.
|
|
template <typename ELF>
|
|
void ElfFile<ELF>::AdjustDynamicSectionForHole(Elf_Scn* dynamic_section,
|
|
typename ELF::Off hole_start,
|
|
ssize_t hole_size,
|
|
relocations_type_t relocations_type) {
|
|
CHECK(relocations_type != NONE);
|
|
Elf_Data* data = GetSectionData(dynamic_section);
|
|
|
|
auto dynamic_base = reinterpret_cast<typename ELF::Dyn*>(data->d_buf);
|
|
std::vector<typename ELF::Dyn> dynamics(
|
|
dynamic_base,
|
|
dynamic_base + data->d_size / sizeof(dynamics[0]));
|
|
|
|
if (hole_size > 0) { // expanding
|
|
hole_start += hole_size;
|
|
}
|
|
|
|
for (size_t i = 0; i < dynamics.size(); ++i) {
|
|
typename ELF::Dyn* dynamic = &dynamics[i];
|
|
const typename ELF::Sword tag = dynamic->d_tag;
|
|
|
|
// Any tags that hold offsets are adjustment candidates.
|
|
const bool is_adjustable = (tag == DT_PLTGOT ||
|
|
tag == DT_HASH ||
|
|
tag == DT_GNU_HASH ||
|
|
tag == DT_STRTAB ||
|
|
tag == DT_SYMTAB ||
|
|
tag == DT_RELA ||
|
|
tag == DT_INIT ||
|
|
tag == DT_FINI ||
|
|
tag == DT_REL ||
|
|
tag == DT_JMPREL ||
|
|
tag == DT_INIT_ARRAY ||
|
|
tag == DT_FINI_ARRAY ||
|
|
tag == DT_VERSYM ||
|
|
tag == DT_VERNEED ||
|
|
tag == DT_VERDEF ||
|
|
tag == DT_ANDROID_REL||
|
|
tag == DT_ANDROID_RELA);
|
|
|
|
if (is_adjustable && dynamic->d_un.d_ptr <= hole_start) {
|
|
dynamic->d_un.d_ptr -= hole_size;
|
|
VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag
|
|
<< " d_ptr adjusted to " << dynamic->d_un.d_ptr;
|
|
}
|
|
|
|
// DT_RELSZ or DT_RELASZ indicate the overall size of relocations.
|
|
// Only one will be present. Adjust by hole size.
|
|
if (tag == DT_RELSZ || tag == DT_RELASZ || tag == DT_ANDROID_RELSZ || tag == DT_ANDROID_RELASZ) {
|
|
dynamic->d_un.d_val += hole_size;
|
|
VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag
|
|
<< " d_val adjusted to " << dynamic->d_un.d_val;
|
|
}
|
|
|
|
// Ignore DT_RELCOUNT and DT_RELACOUNT: (1) nobody uses them and
|
|
// technically (2) the relative relocation count is not changed.
|
|
|
|
// DT_RELENT and DT_RELAENT don't change, ignore them as well.
|
|
}
|
|
|
|
void* section_data = &dynamics[0];
|
|
size_t bytes = dynamics.size() * sizeof(dynamics[0]);
|
|
RewriteSectionData(dynamic_section, section_data, bytes);
|
|
}
|
|
|
|
// Resize a section. If the new size is larger than the current size, open
|
|
// up a hole by increasing file offsets that come after the hole. If smaller
|
|
// than the current size, remove the hole by decreasing those offsets.
|
|
template <typename ELF>
|
|
void ElfFile<ELF>::ResizeSection(Elf* elf, Elf_Scn* section, size_t new_size,
|
|
typename ELF::Word new_sh_type,
|
|
relocations_type_t relocations_type) {
|
|
|
|
size_t string_index;
|
|
elf_getshdrstrndx(elf, &string_index);
|
|
auto section_header = ELF::getshdr(section);
|
|
std::string name = elf_strptr(elf, string_index, section_header->sh_name);
|
|
|
|
if (section_header->sh_size == new_size) {
|
|
return;
|
|
}
|
|
|
|
// Require that the section size and the data size are the same. True
|
|
// in practice for all sections we resize when packing or unpacking.
|
|
Elf_Data* data = GetSectionData(section);
|
|
CHECK(data->d_off == 0 && data->d_size == section_header->sh_size);
|
|
|
|
// Require that the section is not zero-length (that is, has allocated
|
|
// data that we can validly expand).
|
|
CHECK(data->d_size && data->d_buf);
|
|
|
|
const auto hole_start = section_header->sh_offset;
|
|
const ssize_t hole_size = new_size - data->d_size;
|
|
|
|
VLOG_IF(1, (hole_size > 0)) << "expand section (" << name << ") size: " <<
|
|
data->d_size << " -> " << (data->d_size + hole_size);
|
|
VLOG_IF(1, (hole_size < 0)) << "shrink section (" << name << ") size: " <<
|
|
data->d_size << " -> " << (data->d_size + hole_size);
|
|
|
|
// libelf overrides sh_entsize for known sh_types, so it does not matter what we set
|
|
// for SHT_REL/SHT_RELA.
|
|
typename ELF::Xword new_entsize =
|
|
(new_sh_type == SHT_ANDROID_REL || new_sh_type == SHT_ANDROID_RELA) ? 1 : 0;
|
|
|
|
VLOG(1) << "Update section (" << name << ") entry size: " <<
|
|
section_header->sh_entsize << " -> " << new_entsize;
|
|
|
|
// Resize the data and the section header.
|
|
data->d_size += hole_size;
|
|
section_header->sh_size += hole_size;
|
|
section_header->sh_entsize = new_entsize;
|
|
section_header->sh_type = new_sh_type;
|
|
|
|
// Add the hole size to all offsets in the ELF file that are after the
|
|
// start of the hole. If the hole size is positive we are expanding the
|
|
// section to create a new hole; if negative, we are closing up a hole.
|
|
|
|
// Start with the main ELF header.
|
|
typename ELF::Ehdr* elf_header = ELF::getehdr(elf);
|
|
AdjustElfHeaderForHole<ELF>(elf_header, hole_start, hole_size);
|
|
|
|
// Adjust all section headers.
|
|
AdjustSectionHeadersForHole<ELF>(elf, hole_start, hole_size);
|
|
|
|
// Rewrite the program headers to either split or coalesce segments,
|
|
// and adjust dynamic entries to match.
|
|
RewriteProgramHeadersForHole<ELF>(elf, hole_start, hole_size);
|
|
|
|
Elf_Scn* dynamic_section = GetDynamicSection<ELF>(elf);
|
|
AdjustDynamicSectionForHole(dynamic_section, hole_start, hole_size, relocations_type);
|
|
}
|
|
|
|
// Find the first slot in a dynamics array with the given tag. The array
|
|
// always ends with a free (unused) element, and which we exclude from the
|
|
// search. Returns dynamics->size() if not found.
|
|
template <typename ELF>
|
|
static size_t FindDynamicEntry(typename ELF::Sword tag,
|
|
std::vector<typename ELF::Dyn>* dynamics) {
|
|
// Loop until the penultimate entry. We exclude the end sentinel.
|
|
for (size_t i = 0; i < dynamics->size() - 1; ++i) {
|
|
if (dynamics->at(i).d_tag == tag) {
|
|
return i;
|
|
}
|
|
}
|
|
|
|
// The tag was not found.
|
|
return dynamics->size();
|
|
}
|
|
|
|
// Replace dynamic entry.
|
|
template <typename ELF>
|
|
static void ReplaceDynamicEntry(typename ELF::Sword tag,
|
|
const typename ELF::Dyn& dyn,
|
|
std::vector<typename ELF::Dyn>* dynamics) {
|
|
const size_t slot = FindDynamicEntry<ELF>(tag, dynamics);
|
|
if (slot == dynamics->size()) {
|
|
LOG(FATAL) << "Dynamic slot is not found for tag=" << tag;
|
|
}
|
|
|
|
// Replace this entry with the one supplied.
|
|
dynamics->at(slot) = dyn;
|
|
VLOG(1) << "dynamic[" << slot << "] overwritten with " << dyn.d_tag;
|
|
}
|
|
|
|
// Remove relative entries from dynamic relocations and write as packed
|
|
// data into android packed relocations.
|
|
template <typename ELF>
|
|
bool ElfFile<ELF>::PackRelocations() {
|
|
// Load the ELF file into libelf.
|
|
if (!Load()) {
|
|
LOG(ERROR) << "Failed to load as ELF";
|
|
return false;
|
|
}
|
|
|
|
// Retrieve the current dynamic relocations section data.
|
|
Elf_Data* data = GetSectionData(relocations_section_);
|
|
// we always pack rela, because packed format is pretty much the same
|
|
std::vector<typename ELF::Rela> relocations;
|
|
|
|
if (relocations_type_ == REL) {
|
|
// Convert data to a vector of relocations.
|
|
const typename ELF::Rel* relocations_base = reinterpret_cast<typename ELF::Rel*>(data->d_buf);
|
|
ConvertRelArrayToRelaVector(relocations_base,
|
|
data->d_size / sizeof(typename ELF::Rel), &relocations);
|
|
VLOG(1) << "Relocations : REL";
|
|
} else if (relocations_type_ == RELA) {
|
|
// Convert data to a vector of relocations with addends.
|
|
const typename ELF::Rela* relocations_base = reinterpret_cast<typename ELF::Rela*>(data->d_buf);
|
|
relocations = std::vector<typename ELF::Rela>(
|
|
relocations_base,
|
|
relocations_base + data->d_size / sizeof(relocations[0]));
|
|
|
|
VLOG(1) << "Relocations : RELA";
|
|
} else {
|
|
NOTREACHED();
|
|
}
|
|
|
|
return PackTypedRelocations(&relocations);
|
|
}
|
|
|
|
// Helper for PackRelocations(). Rel type is one of ELF::Rel or ELF::Rela.
|
|
template <typename ELF>
|
|
bool ElfFile<ELF>::PackTypedRelocations(std::vector<typename ELF::Rela>* relocations) {
|
|
typedef typename ELF::Rela Rela;
|
|
|
|
// If no relocations then we have nothing packable. Perhaps
|
|
// the shared object has already been packed?
|
|
if (relocations->empty()) {
|
|
LOG(ERROR) << "No relocations found (already packed?)";
|
|
return false;
|
|
}
|
|
|
|
const size_t rel_size =
|
|
relocations_type_ == RELA ? sizeof(typename ELF::Rela) : sizeof(typename ELF::Rel);
|
|
const size_t initial_bytes = relocations->size() * rel_size;
|
|
|
|
VLOG(1) << "Unpacked : " << initial_bytes << " bytes";
|
|
std::vector<uint8_t> packed;
|
|
RelocationPacker<ELF> packer;
|
|
|
|
// Pack relocations: dry run to estimate memory savings.
|
|
packer.PackRelocations(*relocations, &packed);
|
|
const size_t packed_bytes_estimate = packed.size() * sizeof(packed[0]);
|
|
VLOG(1) << "Packed (no padding): " << packed_bytes_estimate << " bytes";
|
|
|
|
if (packed.empty()) {
|
|
LOG(INFO) << "Too few relocations to pack";
|
|
return true;
|
|
}
|
|
|
|
// Pre-calculate the size of the hole we will close up when we rewrite
|
|
// dynamic relocations. We have to adjust relocation addresses to
|
|
// account for this.
|
|
typename ELF::Shdr* section_header = ELF::getshdr(relocations_section_);
|
|
ssize_t hole_size = initial_bytes - packed_bytes_estimate;
|
|
|
|
// hole_size needs to be page_aligned.
|
|
hole_size -= hole_size % kPreserveAlignment;
|
|
|
|
LOG(INFO) << "Compaction : " << hole_size << " bytes";
|
|
|
|
// Adjusting for alignment may have removed any packing benefit.
|
|
if (hole_size == 0) {
|
|
LOG(INFO) << "Too few relocations to pack after alignment";
|
|
return true;
|
|
}
|
|
|
|
if (hole_size <= 0) {
|
|
LOG(INFO) << "Packing relocations saves no space";
|
|
return false;
|
|
}
|
|
|
|
size_t data_padding_bytes = is_padding_relocations_ ?
|
|
initial_bytes - packed_bytes_estimate :
|
|
initial_bytes - hole_size - packed_bytes_estimate;
|
|
|
|
// pad data
|
|
std::vector<uint8_t> padding(data_padding_bytes, 0);
|
|
packed.insert(packed.end(), padding.begin(), padding.end());
|
|
|
|
const void* packed_data = &packed[0];
|
|
|
|
// Run a loopback self-test as a check that packing is lossless.
|
|
std::vector<Rela> unpacked;
|
|
packer.UnpackRelocations(packed, &unpacked);
|
|
CHECK(unpacked.size() == relocations->size());
|
|
CHECK(!memcmp(&unpacked[0],
|
|
&relocations->at(0),
|
|
unpacked.size() * sizeof(unpacked[0])));
|
|
|
|
// Rewrite the current dynamic relocations section with packed one then shrink it to size.
|
|
const size_t bytes = packed.size() * sizeof(packed[0]);
|
|
ResizeSection(elf_, relocations_section_, bytes,
|
|
relocations_type_ == REL ? SHT_ANDROID_REL : SHT_ANDROID_RELA, relocations_type_);
|
|
RewriteSectionData(relocations_section_, packed_data, bytes);
|
|
|
|
// TODO (dimitry): fix string table and replace .rel.dyn/plt with .android.rel.dyn/plt
|
|
|
|
// Rewrite .dynamic and rename relocation tags describing the packed android
|
|
// relocations.
|
|
Elf_Data* data = GetSectionData(dynamic_section_);
|
|
const typename ELF::Dyn* dynamic_base = reinterpret_cast<typename ELF::Dyn*>(data->d_buf);
|
|
std::vector<typename ELF::Dyn> dynamics(
|
|
dynamic_base,
|
|
dynamic_base + data->d_size / sizeof(dynamics[0]));
|
|
section_header = ELF::getshdr(relocations_section_);
|
|
{
|
|
typename ELF::Dyn dyn;
|
|
dyn.d_tag = relocations_type_ == REL ? DT_ANDROID_REL : DT_ANDROID_RELA;
|
|
dyn.d_un.d_ptr = section_header->sh_addr;
|
|
ReplaceDynamicEntry<ELF>(relocations_type_ == REL ? DT_REL : DT_RELA, dyn, &dynamics);
|
|
}
|
|
{
|
|
typename ELF::Dyn dyn;
|
|
dyn.d_tag = relocations_type_ == REL ? DT_ANDROID_RELSZ : DT_ANDROID_RELASZ;
|
|
dyn.d_un.d_val = section_header->sh_size;
|
|
ReplaceDynamicEntry<ELF>(relocations_type_ == REL ? DT_RELSZ : DT_RELASZ, dyn, &dynamics);
|
|
}
|
|
|
|
const void* dynamics_data = &dynamics[0];
|
|
const size_t dynamics_bytes = dynamics.size() * sizeof(dynamics[0]);
|
|
RewriteSectionData(dynamic_section_, dynamics_data, dynamics_bytes);
|
|
|
|
Flush();
|
|
return true;
|
|
}
|
|
|
|
// Find packed relative relocations in the packed android relocations
|
|
// section, unpack them, and rewrite the dynamic relocations section to
|
|
// contain unpacked data.
|
|
template <typename ELF>
|
|
bool ElfFile<ELF>::UnpackRelocations() {
|
|
// Load the ELF file into libelf.
|
|
if (!Load()) {
|
|
LOG(ERROR) << "Failed to load as ELF";
|
|
return false;
|
|
}
|
|
|
|
typename ELF::Shdr* section_header = ELF::getshdr(relocations_section_);
|
|
// Retrieve the current packed android relocations section data.
|
|
Elf_Data* data = GetSectionData(relocations_section_);
|
|
|
|
// Convert data to a vector of bytes.
|
|
const uint8_t* packed_base = reinterpret_cast<uint8_t*>(data->d_buf);
|
|
std::vector<uint8_t> packed(
|
|
packed_base,
|
|
packed_base + data->d_size / sizeof(packed[0]));
|
|
|
|
if ((section_header->sh_type == SHT_ANDROID_RELA || section_header->sh_type == SHT_ANDROID_REL) &&
|
|
packed.size() > 3 &&
|
|
packed[0] == 'A' &&
|
|
packed[1] == 'P' &&
|
|
(packed[2] == 'U' || packed[2] == 'S') &&
|
|
packed[3] == '2') {
|
|
LOG(INFO) << "Relocations : " << (relocations_type_ == REL ? "REL" : "RELA");
|
|
} else {
|
|
LOG(ERROR) << "Packed relocations not found (not packed?)";
|
|
return false;
|
|
}
|
|
|
|
return UnpackTypedRelocations(packed);
|
|
}
|
|
|
|
// Helper for UnpackRelocations(). Rel type is one of ELF::Rel or ELF::Rela.
|
|
template <typename ELF>
|
|
bool ElfFile<ELF>::UnpackTypedRelocations(const std::vector<uint8_t>& packed) {
|
|
// Unpack the data to re-materialize the relative relocations.
|
|
const size_t packed_bytes = packed.size() * sizeof(packed[0]);
|
|
LOG(INFO) << "Packed : " << packed_bytes << " bytes";
|
|
std::vector<typename ELF::Rela> unpacked_relocations;
|
|
RelocationPacker<ELF> packer;
|
|
packer.UnpackRelocations(packed, &unpacked_relocations);
|
|
|
|
const size_t relocation_entry_size =
|
|
relocations_type_ == REL ? sizeof(typename ELF::Rel) : sizeof(typename ELF::Rela);
|
|
const size_t unpacked_bytes = unpacked_relocations.size() * relocation_entry_size;
|
|
LOG(INFO) << "Unpacked : " << unpacked_bytes << " bytes";
|
|
|
|
// Retrieve the current dynamic relocations section data.
|
|
Elf_Data* data = GetSectionData(relocations_section_);
|
|
|
|
LOG(INFO) << "Relocations : " << unpacked_relocations.size() << " entries";
|
|
|
|
// If we found the same number of null relocation entries in the dynamic
|
|
// relocations section as we hold as unpacked relative relocations, then
|
|
// this is a padded file.
|
|
|
|
const bool is_padded = packed_bytes == unpacked_bytes;
|
|
|
|
// Unless padded, pre-apply relative relocations to account for the
|
|
// hole, and pre-adjust all relocation offsets accordingly.
|
|
typename ELF::Shdr* section_header = ELF::getshdr(relocations_section_);
|
|
|
|
if (!is_padded) {
|
|
LOG(INFO) << "Expansion : " << unpacked_bytes - packed_bytes << " bytes";
|
|
}
|
|
|
|
// Rewrite the current dynamic relocations section with unpacked version of
|
|
// relocations.
|
|
const void* section_data = nullptr;
|
|
std::vector<typename ELF::Rel> unpacked_rel_relocations;
|
|
if (relocations_type_ == RELA) {
|
|
section_data = &unpacked_relocations[0];
|
|
} else if (relocations_type_ == REL) {
|
|
ConvertRelaVectorToRelVector(unpacked_relocations, &unpacked_rel_relocations);
|
|
section_data = &unpacked_rel_relocations[0];
|
|
} else {
|
|
NOTREACHED();
|
|
}
|
|
|
|
ResizeSection(elf_, relocations_section_, unpacked_bytes,
|
|
relocations_type_ == REL ? SHT_REL : SHT_RELA, relocations_type_);
|
|
RewriteSectionData(relocations_section_, section_data, unpacked_bytes);
|
|
|
|
// Rewrite .dynamic to remove two tags describing packed android relocations.
|
|
data = GetSectionData(dynamic_section_);
|
|
const typename ELF::Dyn* dynamic_base = reinterpret_cast<typename ELF::Dyn*>(data->d_buf);
|
|
std::vector<typename ELF::Dyn> dynamics(
|
|
dynamic_base,
|
|
dynamic_base + data->d_size / sizeof(dynamics[0]));
|
|
{
|
|
typename ELF::Dyn dyn;
|
|
dyn.d_tag = relocations_type_ == REL ? DT_REL : DT_RELA;
|
|
dyn.d_un.d_ptr = section_header->sh_addr;
|
|
ReplaceDynamicEntry<ELF>(relocations_type_ == REL ? DT_ANDROID_REL : DT_ANDROID_RELA,
|
|
dyn, &dynamics);
|
|
}
|
|
|
|
{
|
|
typename ELF::Dyn dyn;
|
|
dyn.d_tag = relocations_type_ == REL ? DT_RELSZ : DT_RELASZ;
|
|
dyn.d_un.d_val = section_header->sh_size;
|
|
ReplaceDynamicEntry<ELF>(relocations_type_ == REL ? DT_ANDROID_RELSZ : DT_ANDROID_RELASZ,
|
|
dyn, &dynamics);
|
|
}
|
|
|
|
const void* dynamics_data = &dynamics[0];
|
|
const size_t dynamics_bytes = dynamics.size() * sizeof(dynamics[0]);
|
|
RewriteSectionData(dynamic_section_, dynamics_data, dynamics_bytes);
|
|
|
|
Flush();
|
|
return true;
|
|
}
|
|
|
|
// Flush rewritten shared object file data.
|
|
template <typename ELF>
|
|
void ElfFile<ELF>::Flush() {
|
|
// Flag all ELF data held in memory as needing to be written back to the
|
|
// file, and tell libelf that we have controlled the file layout.
|
|
elf_flagelf(elf_, ELF_C_SET, ELF_F_DIRTY);
|
|
elf_flagelf(elf_, ELF_C_SET, ELF_F_LAYOUT);
|
|
|
|
// Write ELF data back to disk.
|
|
const off_t file_bytes = elf_update(elf_, ELF_C_WRITE);
|
|
if (file_bytes == -1) {
|
|
LOG(ERROR) << "elf_update failed: " << elf_errmsg(elf_errno());
|
|
}
|
|
|
|
CHECK(file_bytes > 0);
|
|
VLOG(1) << "elf_update returned: " << file_bytes;
|
|
|
|
// Clean up libelf, and truncate the output file to the number of bytes
|
|
// written by elf_update().
|
|
elf_end(elf_);
|
|
elf_ = NULL;
|
|
const int truncate = ftruncate(fd_, file_bytes);
|
|
CHECK(truncate == 0);
|
|
}
|
|
|
|
template <typename ELF>
|
|
void ElfFile<ELF>::ConvertRelArrayToRelaVector(const typename ELF::Rel* rel_array,
|
|
size_t rel_array_size,
|
|
std::vector<typename ELF::Rela>* rela_vector) {
|
|
for (size_t i = 0; i<rel_array_size; ++i) {
|
|
typename ELF::Rela rela;
|
|
rela.r_offset = rel_array[i].r_offset;
|
|
rela.r_info = rel_array[i].r_info;
|
|
rela.r_addend = 0;
|
|
rela_vector->push_back(rela);
|
|
}
|
|
}
|
|
|
|
template <typename ELF>
|
|
void ElfFile<ELF>::ConvertRelaVectorToRelVector(const std::vector<typename ELF::Rela>& rela_vector,
|
|
std::vector<typename ELF::Rel>* rel_vector) {
|
|
for (auto rela : rela_vector) {
|
|
typename ELF::Rel rel;
|
|
rel.r_offset = rela.r_offset;
|
|
rel.r_info = rela.r_info;
|
|
CHECK(rela.r_addend == 0);
|
|
rel_vector->push_back(rel);
|
|
}
|
|
}
|
|
|
|
template class ElfFile<ELF32_traits>;
|
|
template class ElfFile<ELF64_traits>;
|
|
|
|
} // namespace relocation_packer
|