bionic/linker/linked_list.h
Dmitriy Ivanov ab972b9adf Count references for groups instead of instances
Count references on the group level to avoid
  partially unloading function that might be
  referenced by other libraries in the local_group

  Bonus: with this change we can correctly unload recursively
  linked libraries. is_recursive check is removed.

  Also dynamic executables (not .so) with 0 DT_NEEDED libraries
  are now correctly linked.

Change-Id: Idfa83baef402840599b93a875f2881d9f020dbcd
2014-12-02 10:54:26 -08:00

170 lines
3.7 KiB
C++

/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __LINKED_LIST_H
#define __LINKED_LIST_H
#include "private/bionic_macros.h"
template<typename T>
struct LinkedListEntry {
LinkedListEntry<T>* next;
T* element;
};
/*
* Represents linked list of objects of type T
*/
template<typename T, typename Allocator>
class LinkedList {
public:
LinkedList() : head_(nullptr), tail_(nullptr) {}
~LinkedList() {
clear();
}
LinkedList(LinkedList&& that) {
this->head_ = that.head_;
this->tail_ = that.tail_;
that.head_ = that.tail_ = nullptr;
}
void push_front(T* const element) {
LinkedListEntry<T>* new_entry = Allocator::alloc();
new_entry->next = head_;
new_entry->element = element;
head_ = new_entry;
if (tail_ == nullptr) {
tail_ = new_entry;
}
}
void push_back(T* const element) {
LinkedListEntry<T>* new_entry = Allocator::alloc();
new_entry->next = nullptr;
new_entry->element = element;
if (tail_ == nullptr) {
tail_ = head_ = new_entry;
} else {
tail_->next = new_entry;
tail_ = new_entry;
}
}
T* pop_front() {
if (head_ == nullptr) {
return nullptr;
}
LinkedListEntry<T>* entry = head_;
T* element = entry->element;
head_ = entry->next;
Allocator::free(entry);
if (head_ == nullptr) {
tail_ = nullptr;
}
return element;
}
T* front() const {
if (head_ == nullptr) {
return nullptr;
}
return head_->element;
}
void clear() {
while (head_ != nullptr) {
LinkedListEntry<T>* p = head_;
head_ = head_->next;
Allocator::free(p);
}
tail_ = nullptr;
}
template<typename F>
void for_each(F action) const {
visit([&] (T* si) {
action(si);
return true;
});
}
template<typename F>
bool visit(F action) const {
for (LinkedListEntry<T>* e = head_; e != nullptr; e = e->next) {
if (!action(e->element)) {
return false;
}
}
return true;
}
template<typename F>
void remove_if(F predicate) {
for (LinkedListEntry<T>* e = head_, *p = nullptr; e != nullptr;) {
if (predicate(e->element)) {
LinkedListEntry<T>* next = e->next;
if (p == nullptr) {
head_ = next;
} else {
p->next = next;
}
Allocator::free(e);
e = next;
} else {
p = e;
e = e->next;
}
}
}
size_t copy_to_array(T* array[], size_t array_length) const {
size_t sz = 0;
for (LinkedListEntry<T>* e = head_; sz < array_length && e != nullptr; e = e->next) {
array[sz++] = e->element;
}
return sz;
}
bool contains(const T* el) const {
for (LinkedListEntry<T>* e = head_; e != nullptr; e = e->next) {
if (e->element == el) {
return true;
}
}
return false;
}
static LinkedList make_list(T* const element) {
LinkedList<T, Allocator> one_element_list;
one_element_list.push_back(element);
return one_element_list;
}
private:
LinkedListEntry<T>* head_;
LinkedListEntry<T>* tail_;
DISALLOW_COPY_AND_ASSIGN(LinkedList);
};
#endif // __LINKED_LIST_H