bionic/tests/thread_local_test.cpp
Chih-Hung Hsieh 5058a005b8 Enable clang for modules failed with TLS.
New 3.8 clang/llvm can compile TLS code now.
* For x86_64, still disable clang due to f128 bug.
* For b/25643775, arm and arm64, disable clang in unit tests.
* Fix thread_local_test.cpp to compile with clang and
  limit gcc workaround only to arm and aarch64.

BUG: 25643775

Change-Id: Iecd006bf1fc417dbcce2c63343a59c4bf1fa77ea
2015-11-11 16:22:38 -08:00

261 lines
7.7 KiB
C++

/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include <stdint.h>
#include <string.h>
#if defined(__GNUC__) && !defined(__clang__) && \
(defined(__arm__) || defined(__aarch64__))
// Gcc has a bug with -O -fdata-section for the arm target: http://b/22772147.
// Until that bug is fixed, disable optimization since
// it is not essential for this test.
#pragma GCC optimize("-O0")
#endif
__thread int local_var = 100;
int shared_var = 200;
static void reset_vars() {
local_var = 1000;
shared_var = 2000;
// local_var should be reset by threads
}
typedef void* (*MyThread)(void*);
static void* inc_shared_var(void* p) {
int *data = reinterpret_cast<int*>(p);
shared_var++;
*data = shared_var;
return nullptr;
}
static void* inc_local_var(void* p) {
int *data = reinterpret_cast<int*>(p);
local_var++;
*data = local_var;
return nullptr;
}
static int run_one_thread(MyThread foo) {
pthread_t t;
int data;
int error = pthread_create(&t, nullptr, foo, &data);
if (!error)
error = pthread_join(t, nullptr);
return error ? error : data;
}
TEST(thread_local_storage, shared) {
reset_vars();
ASSERT_EQ(local_var, 1000);
ASSERT_EQ(shared_var, 2000);
// Update shared_var, local_var remains 1000.
ASSERT_EQ(run_one_thread(inc_shared_var), 2001);
ASSERT_EQ(local_var, 1000);
ASSERT_EQ(shared_var, 2001);
ASSERT_EQ(run_one_thread(inc_shared_var), 2002);
ASSERT_EQ(local_var, 1000);
ASSERT_EQ(shared_var, 2002);
ASSERT_EQ(run_one_thread(inc_shared_var), 2003);
ASSERT_EQ(local_var, 1000);
ASSERT_EQ(shared_var, 2003);
}
TEST(thread_local_storage, local) {
reset_vars();
ASSERT_EQ(local_var, 1000);
ASSERT_EQ(shared_var, 2000);
// When a child thread updates its own TLS variable,
// this thread's local_var and shared_var are not changed.
// TLS local_var is initialized to 100 in a thread.
ASSERT_EQ(run_one_thread(inc_local_var), 101);
ASSERT_EQ(local_var, 1000);
ASSERT_EQ(shared_var, 2000);
ASSERT_EQ(run_one_thread(inc_local_var), 101);
ASSERT_EQ(local_var, 1000);
ASSERT_EQ(shared_var, 2000);
ASSERT_EQ(run_one_thread(inc_local_var), 101);
ASSERT_EQ(local_var, 1000);
ASSERT_EQ(shared_var, 2000);
}
// Test TLS initialization of more complicated type, array of struct.
struct Point {
int x, y;
};
typedef Point Triangle[3];
__thread Triangle local_triangle = {{10,10}, {20,20}, {30,30}};
Triangle shared_triangle = {{1,1}, {2,2}, {3,3}};
static void reset_triangle() {
static const Triangle t1 = {{3,3}, {4,4}, {5,5}};
static const Triangle t2 = {{2,2}, {3,3}, {4,4}};
memcpy(local_triangle, t1, sizeof(local_triangle));
memcpy(shared_triangle, t2, sizeof(shared_triangle));
}
static void* move_shared_triangle(void* p) {
int *data = reinterpret_cast<int*>(p);
shared_triangle[1].y++;
*data = shared_triangle[1].y;
return nullptr;
}
static void* move_local_triangle(void* p) {
int *data = reinterpret_cast<int*>(p);
local_triangle[1].y++;
*data = local_triangle[1].y;
return nullptr;
}
TEST(thread_local_storage, shared_triangle) {
reset_triangle();
ASSERT_EQ(local_triangle[1].y, 4);
ASSERT_EQ(shared_triangle[1].y, 3);
// Update shared_triangle, local_triangle remains 1000.
ASSERT_EQ(run_one_thread(move_shared_triangle), 4);
ASSERT_EQ(local_triangle[1].y, 4);
ASSERT_EQ(shared_triangle[1].y, 4);
ASSERT_EQ(run_one_thread(move_shared_triangle), 5);
ASSERT_EQ(local_triangle[1].y, 4);
ASSERT_EQ(shared_triangle[1].y, 5);
ASSERT_EQ(run_one_thread(move_shared_triangle), 6);
ASSERT_EQ(local_triangle[1].y, 4);
ASSERT_EQ(shared_triangle[1].y, 6);
}
TEST(thread_local_storage, local_triangle) {
reset_triangle();
ASSERT_EQ(local_triangle[1].y, 4);
ASSERT_EQ(shared_triangle[1].y, 3);
// Update local_triangle, parent thread's
// shared_triangle and local_triangle are unchanged.
ASSERT_EQ(run_one_thread(move_local_triangle), 21);
ASSERT_EQ(local_triangle[1].y, 4);
ASSERT_EQ(shared_triangle[1].y, 3);
ASSERT_EQ(run_one_thread(move_local_triangle), 21);
ASSERT_EQ(local_triangle[1].y, 4);
ASSERT_EQ(shared_triangle[1].y, 3);
ASSERT_EQ(run_one_thread(move_local_triangle), 21);
ASSERT_EQ(local_triangle[1].y, 4);
ASSERT_EQ(shared_triangle[1].y, 3);
}
// Test emutls runtime data structures and __emutls_get_address function.
typedef unsigned int gcc_word __attribute__((mode(word)));
typedef unsigned int gcc_pointer __attribute__((mode(pointer)));
struct gcc_emutls_object { // for libgcc
gcc_word size;
gcc_word align;
union {
gcc_pointer offset;
void* ptr;
} loc;
void* templ;
};
typedef struct __emutls_control { // for clang/llvm
size_t size;
size_t align;
union {
uintptr_t index;
void* address;
} object;
void* value;
} __emutls_control;
TEST(thread_local_storage, type_size) {
static_assert(sizeof(size_t) == sizeof(gcc_word),
"size_t != gcc_word");
static_assert(sizeof(uintptr_t) == sizeof(gcc_pointer),
"uintptr_t != gcc_pointer");
static_assert(sizeof(uintptr_t) == sizeof(void*),
"sizoeof(uintptr_t) != sizeof(void*)");
static_assert(sizeof(__emutls_control) == sizeof(struct gcc_emutls_object),
"sizeof(__emutls_control) != sizeof(struct gcc_emutls_object)");
}
extern "C" void* __emutls_get_address(__emutls_control*);
TEST(thread_local_storage, init_value) {
char tls_value1[] = "123456789";
char tls_value2[] = "abcdefghi";
constexpr size_t num_saved_values = 10;
__emutls_control tls_var[num_saved_values];
size_t prev_index = 0;
void* saved_gap[num_saved_values];
void* saved_p[num_saved_values];
ASSERT_TRUE(strlen(tls_value2) <= strlen(tls_value1));
__emutls_control c =
{strlen(tls_value1) + 1, 1, {0}, tls_value1};
for (size_t n = 0; n < num_saved_values; n++) {
memcpy(&tls_var[n], &c, sizeof(c));
tls_var[n].align = (1 << n);
}
for (size_t n = 0; n < num_saved_values; n++) {
// Try to mess up malloc space so that the next malloc will not have the
// required alignment, but __emutls_get_address should still return an
// aligned address.
saved_gap[n] = malloc(1);
void* p = __emutls_get_address(&tls_var[n]);
saved_p[n] = p;
ASSERT_TRUE(p != nullptr);
ASSERT_TRUE(tls_var[n].object.index != 0);
// check if p is a new object.
if (n > 0) {
// In single-thread environment, object.address == p.
// In multi-threads environment, object.index is increased.
ASSERT_TRUE(prev_index + 1 == tls_var[n].object.index ||
p == tls_var[n].object.address);
ASSERT_TRUE(p != saved_p[n - 1]);
}
prev_index = tls_var[n].object.index;
// check if p is aligned
uintptr_t align = (1 << n);
uintptr_t address= reinterpret_cast<uintptr_t>(p);
ASSERT_EQ((address & ~(align - 1)), address);
// check if *p is initialized
ASSERT_STREQ(tls_value1, static_cast<char*>(p));
// change value in *p
memcpy(p, tls_value2, strlen(tls_value2) + 1);
}
for (size_t n = 0; n < num_saved_values; n++) {
free(saved_gap[n]);
}
for (size_t n = 0; n < num_saved_values; n++) {
void* p = __emutls_get_address(&tls_var[n]);
ASSERT_EQ(p, saved_p[n]);
// check if *p has the new value
ASSERT_STREQ(tls_value2, static_cast<char*>(p));
}
}