/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include TEST(pthread, pthread_key_create) { pthread_key_t key; ASSERT_EQ(0, pthread_key_create(&key, NULL)); ASSERT_EQ(0, pthread_key_delete(key)); // Can't delete a key that's already been deleted. ASSERT_EQ(EINVAL, pthread_key_delete(key)); } #if !defined(__GLIBC__) // glibc uses keys internally that its sysconf value doesn't account for. TEST(pthread, pthread_key_create_lots) { // We can allocate _SC_THREAD_KEYS_MAX keys. std::vector keys; for (int i = 0; i < sysconf(_SC_THREAD_KEYS_MAX); ++i) { pthread_key_t key; // If this fails, it's likely that GLOBAL_INIT_THREAD_LOCAL_BUFFER_COUNT is wrong. ASSERT_EQ(0, pthread_key_create(&key, NULL)) << i << " of " << sysconf(_SC_THREAD_KEYS_MAX); keys.push_back(key); } // ...and that really is the maximum. pthread_key_t key; ASSERT_EQ(EAGAIN, pthread_key_create(&key, NULL)); // (Don't leak all those keys!) for (size_t i = 0; i < keys.size(); ++i) { ASSERT_EQ(0, pthread_key_delete(keys[i])); } } #endif static void* IdFn(void* arg) { return arg; } static void* SleepFn(void* arg) { sleep(reinterpret_cast(arg)); return NULL; } static void* SpinFn(void* arg) { volatile bool* b = reinterpret_cast(arg); while (!*b) { } return NULL; } static void* JoinFn(void* arg) { return reinterpret_cast(pthread_join(reinterpret_cast(arg), NULL)); } static void AssertDetached(pthread_t t, bool is_detached) { pthread_attr_t attr; ASSERT_EQ(0, pthread_getattr_np(t, &attr)); int detach_state; ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state)); pthread_attr_destroy(&attr); ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED)); } static void MakeDeadThread(pthread_t& t) { ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, NULL)); void* result; ASSERT_EQ(0, pthread_join(t, &result)); } TEST(pthread, pthread_create) { void* expected_result = reinterpret_cast(123); // Can we create a thread? pthread_t t; ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, expected_result)); // If we join, do we get the expected value back? void* result; ASSERT_EQ(0, pthread_join(t, &result)); ASSERT_EQ(expected_result, result); } TEST(pthread, pthread_create_EAGAIN) { pthread_attr_t attributes; ASSERT_EQ(0, pthread_attr_init(&attributes)); ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast(-1) & ~(getpagesize() - 1))); pthread_t t; ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, NULL)); } TEST(pthread, pthread_no_join_after_detach) { pthread_t t1; ASSERT_EQ(0, pthread_create(&t1, NULL, SleepFn, reinterpret_cast(5))); // After a pthread_detach... ASSERT_EQ(0, pthread_detach(t1)); AssertDetached(t1, true); // ...pthread_join should fail. void* result; ASSERT_EQ(EINVAL, pthread_join(t1, &result)); } TEST(pthread, pthread_no_op_detach_after_join) { bool done = false; pthread_t t1; ASSERT_EQ(0, pthread_create(&t1, NULL, SpinFn, &done)); // If thread 2 is already waiting to join thread 1... pthread_t t2; ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast(t1))); sleep(1); // (Give t2 a chance to call pthread_join.) // ...a call to pthread_detach on thread 1 will "succeed" (silently fail)... ASSERT_EQ(0, pthread_detach(t1)); AssertDetached(t1, false); done = true; // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes). void* join_result; ASSERT_EQ(0, pthread_join(t2, &join_result)); ASSERT_EQ(0U, reinterpret_cast(join_result)); } TEST(pthread, pthread_join_self) { void* result; ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), &result)); } #if __BIONIC__ // For some reason, gtest on bionic can cope with this but gtest on glibc can't. static void TestBug37410() { pthread_t t1; ASSERT_EQ(0, pthread_create(&t1, NULL, JoinFn, reinterpret_cast(pthread_self()))); pthread_exit(NULL); } // Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to // run this test (which exits normally) in its own process. TEST(pthread_DeathTest, pthread_bug_37410) { // http://code.google.com/p/android/issues/detail?id=37410 ::testing::FLAGS_gtest_death_test_style = "threadsafe"; ASSERT_EXIT(TestBug37410(), ::testing::ExitedWithCode(0), ""); } #endif static void* SignalHandlerFn(void* arg) { sigset_t wait_set; sigfillset(&wait_set); return reinterpret_cast(sigwait(&wait_set, reinterpret_cast(arg))); } TEST(pthread, pthread_sigmask) { // Check that SIGUSR1 isn't blocked. sigset_t original_set; sigemptyset(&original_set); ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &original_set)); ASSERT_FALSE(sigismember(&original_set, SIGUSR1)); // Block SIGUSR1. sigset_t set; sigemptyset(&set); sigaddset(&set, SIGUSR1); ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, NULL)); // Check that SIGUSR1 is blocked. sigset_t final_set; sigemptyset(&final_set); ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &final_set)); ASSERT_TRUE(sigismember(&final_set, SIGUSR1)); // ...and that sigprocmask agrees with pthread_sigmask. sigemptyset(&final_set); ASSERT_EQ(0, sigprocmask(SIG_BLOCK, NULL, &final_set)); ASSERT_TRUE(sigismember(&final_set, SIGUSR1)); // Spawn a thread that calls sigwait and tells us what it received. pthread_t signal_thread; int received_signal = -1; ASSERT_EQ(0, pthread_create(&signal_thread, NULL, SignalHandlerFn, &received_signal)); // Send that thread SIGUSR1. pthread_kill(signal_thread, SIGUSR1); // See what it got. void* join_result; ASSERT_EQ(0, pthread_join(signal_thread, &join_result)); ASSERT_EQ(SIGUSR1, received_signal); ASSERT_EQ(0U, reinterpret_cast(join_result)); // Restore the original signal mask. ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, NULL)); } #if __BIONIC__ extern "C" int __pthread_clone(void* (*fn)(void*), void* child_stack, int flags, void* arg); TEST(pthread, __pthread_clone) { uintptr_t fake_child_stack[16]; errno = 0; ASSERT_EQ(-1, __pthread_clone(NULL, &fake_child_stack[0], CLONE_THREAD, NULL)); ASSERT_EQ(EINVAL, errno); } #endif #if __BIONIC__ // Not all build servers have a new enough glibc? TODO: remove when they're on gprecise. TEST(pthread, pthread_setname_np__too_long) { ASSERT_EQ(ERANGE, pthread_setname_np(pthread_self(), "this name is far too long for linux")); } #endif #if __BIONIC__ // Not all build servers have a new enough glibc? TODO: remove when they're on gprecise. TEST(pthread, pthread_setname_np__self) { ASSERT_EQ(0, pthread_setname_np(pthread_self(), "short 1")); } #endif #if __BIONIC__ // Not all build servers have a new enough glibc? TODO: remove when they're on gprecise. TEST(pthread, pthread_setname_np__other) { // Emulator kernels don't currently support setting the name of other threads. char* filename = NULL; asprintf(&filename, "/proc/self/task/%d/comm", gettid()); struct stat sb; bool has_comm = (stat(filename, &sb) != -1); free(filename); if (has_comm) { pthread_t t1; ASSERT_EQ(0, pthread_create(&t1, NULL, SleepFn, reinterpret_cast(5))); ASSERT_EQ(0, pthread_setname_np(t1, "short 2")); } else { fprintf(stderr, "skipping test: this kernel doesn't have /proc/self/task/tid/comm files!\n"); } } #endif #if __BIONIC__ // Not all build servers have a new enough glibc? TODO: remove when they're on gprecise. TEST(pthread, pthread_setname_np__no_such_thread) { pthread_t dead_thread; MakeDeadThread(dead_thread); // Call pthread_setname_np after thread has already exited. ASSERT_EQ(ESRCH, pthread_setname_np(dead_thread, "short 3")); } #endif TEST(pthread, pthread_kill__0) { // Signal 0 just tests that the thread exists, so it's safe to call on ourselves. ASSERT_EQ(0, pthread_kill(pthread_self(), 0)); } TEST(pthread, pthread_kill__invalid_signal) { ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1)); } static void pthread_kill__in_signal_handler_helper(int signal_number) { static int count = 0; ASSERT_EQ(SIGALRM, signal_number); if (++count == 1) { // Can we call pthread_kill from a signal handler? ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM)); } } TEST(pthread, pthread_kill__in_signal_handler) { struct sigaction action; struct sigaction original_action; sigemptyset(&action.sa_mask); action.sa_flags = 0; action.sa_handler = pthread_kill__in_signal_handler_helper; ASSERT_EQ(0, sigaction(SIGALRM, &action, &original_action)); ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM)); ASSERT_EQ(0, sigaction(SIGALRM, &original_action, NULL)); } TEST(pthread, pthread_detach__no_such_thread) { pthread_t dead_thread; MakeDeadThread(dead_thread); ASSERT_EQ(ESRCH, pthread_detach(dead_thread)); } TEST(pthread, pthread_getcpuclockid__clock_gettime) { pthread_t t; ASSERT_EQ(0, pthread_create(&t, NULL, SleepFn, reinterpret_cast(5))); clockid_t c; ASSERT_EQ(0, pthread_getcpuclockid(t, &c)); timespec ts; ASSERT_EQ(0, clock_gettime(c, &ts)); } TEST(pthread, pthread_getcpuclockid__no_such_thread) { pthread_t dead_thread; MakeDeadThread(dead_thread); clockid_t c; ASSERT_EQ(ESRCH, pthread_getcpuclockid(dead_thread, &c)); } TEST(pthread, pthread_getschedparam__no_such_thread) { pthread_t dead_thread; MakeDeadThread(dead_thread); int policy; sched_param param; ASSERT_EQ(ESRCH, pthread_getschedparam(dead_thread, &policy, ¶m)); } TEST(pthread, pthread_setschedparam__no_such_thread) { pthread_t dead_thread; MakeDeadThread(dead_thread); int policy = 0; sched_param param; ASSERT_EQ(ESRCH, pthread_setschedparam(dead_thread, policy, ¶m)); } TEST(pthread, pthread_join__no_such_thread) { pthread_t dead_thread; MakeDeadThread(dead_thread); void* result; ASSERT_EQ(ESRCH, pthread_join(dead_thread, &result)); } TEST(pthread, pthread_kill__no_such_thread) { pthread_t dead_thread; MakeDeadThread(dead_thread); ASSERT_EQ(ESRCH, pthread_kill(dead_thread, 0)); } TEST(pthread, pthread_join__multijoin) { bool done = false; pthread_t t1; ASSERT_EQ(0, pthread_create(&t1, NULL, SpinFn, &done)); pthread_t t2; ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast(t1))); sleep(1); // (Give t2 a chance to call pthread_join.) // Multiple joins to the same thread should fail. ASSERT_EQ(EINVAL, pthread_join(t1, NULL)); done = true; // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes). void* join_result; ASSERT_EQ(0, pthread_join(t2, &join_result)); ASSERT_EQ(0U, reinterpret_cast(join_result)); } static void* GetActualGuardSizeFn(void* arg) { pthread_attr_t attributes; pthread_getattr_np(pthread_self(), &attributes); pthread_attr_getguardsize(&attributes, reinterpret_cast(arg)); return NULL; } static size_t GetActualGuardSize(const pthread_attr_t& attributes) { size_t result; pthread_t t; pthread_create(&t, &attributes, GetActualGuardSizeFn, &result); void* join_result; pthread_join(t, &join_result); return result; } static void* GetActualStackSizeFn(void* arg) { pthread_attr_t attributes; pthread_getattr_np(pthread_self(), &attributes); pthread_attr_getstacksize(&attributes, reinterpret_cast(arg)); return NULL; } static size_t GetActualStackSize(const pthread_attr_t& attributes) { size_t result; pthread_t t; pthread_create(&t, &attributes, GetActualStackSizeFn, &result); void* join_result; pthread_join(t, &join_result); return result; } TEST(pthread, pthread_attr_setguardsize) { pthread_attr_t attributes; ASSERT_EQ(0, pthread_attr_init(&attributes)); // Get the default guard size. size_t default_guard_size; ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &default_guard_size)); // No such thing as too small: will be rounded up to one page by pthread_create. ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128)); size_t guard_size; ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); ASSERT_EQ(128U, guard_size); ASSERT_EQ(4096U, GetActualGuardSize(attributes)); // Large enough and a multiple of the page size. ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024)); ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); ASSERT_EQ(32*1024U, guard_size); // Large enough but not a multiple of the page size; will be rounded up by pthread_create. ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1)); ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); ASSERT_EQ(32*1024U + 1, guard_size); } TEST(pthread, pthread_attr_setstacksize) { pthread_attr_t attributes; ASSERT_EQ(0, pthread_attr_init(&attributes)); // Get the default stack size. size_t default_stack_size; ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size)); // Too small. ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128)); size_t stack_size; ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size)); ASSERT_EQ(default_stack_size, stack_size); ASSERT_GE(GetActualStackSize(attributes), default_stack_size); // Large enough and a multiple of the page size. ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024)); ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size)); ASSERT_EQ(32*1024U, stack_size); ASSERT_EQ(GetActualStackSize(attributes), 32*1024U); // Large enough but not a multiple of the page size; will be rounded up by pthread_create. ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1)); ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size)); ASSERT_EQ(32*1024U + 1, stack_size); #if __BIONIC__ // Bionic rounds up, which is what POSIX allows. ASSERT_EQ(GetActualStackSize(attributes), (32 + 4)*1024U); #else // glibc rounds down, in violation of POSIX. They document this in their BUGS section. ASSERT_EQ(GetActualStackSize(attributes), 32*1024U); #endif } TEST(pthread, pthread_rwlock_smoke) { pthread_rwlock_t l; ASSERT_EQ(0, pthread_rwlock_init(&l, NULL)); ASSERT_EQ(0, pthread_rwlock_rdlock(&l)); ASSERT_EQ(0, pthread_rwlock_unlock(&l)); ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); ASSERT_EQ(0, pthread_rwlock_unlock(&l)); ASSERT_EQ(0, pthread_rwlock_destroy(&l)); } static int gOnceFnCallCount = 0; static void OnceFn() { ++gOnceFnCallCount; } TEST(pthread, pthread_once_smoke) { pthread_once_t once_control = PTHREAD_ONCE_INIT; ASSERT_EQ(0, pthread_once(&once_control, OnceFn)); ASSERT_EQ(0, pthread_once(&once_control, OnceFn)); ASSERT_EQ(1, gOnceFnCallCount); } static int gAtForkPrepareCalls = 0; static void AtForkPrepare1() { gAtForkPrepareCalls = (gAtForkPrepareCalls << 4) | 1; } static void AtForkPrepare2() { gAtForkPrepareCalls = (gAtForkPrepareCalls << 4) | 2; } static int gAtForkParentCalls = 0; static void AtForkParent1() { gAtForkParentCalls = (gAtForkParentCalls << 4) | 1; } static void AtForkParent2() { gAtForkParentCalls = (gAtForkParentCalls << 4) | 2; } static int gAtForkChildCalls = 0; static void AtForkChild1() { gAtForkChildCalls = (gAtForkChildCalls << 4) | 1; } static void AtForkChild2() { gAtForkChildCalls = (gAtForkChildCalls << 4) | 2; } TEST(pthread, pthread_atfork) { ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1)); ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2)); int pid = fork(); ASSERT_NE(-1, pid) << strerror(errno); // Child and parent calls are made in the order they were registered. if (pid == 0) { ASSERT_EQ(0x12, gAtForkChildCalls); _exit(0); } ASSERT_EQ(0x12, gAtForkParentCalls); // Prepare calls are made in the reverse order. ASSERT_EQ(0x21, gAtForkPrepareCalls); } TEST(pthread, pthread_attr_getscope) { pthread_attr_t attr; ASSERT_EQ(0, pthread_attr_init(&attr)); int scope; ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope)); ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope); }