/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <gtest/gtest.h> #include <errno.h> #include <stdarg.h> #include <stdio.h> #include <string.h> #include <sys/wait.h> #include <time.h> #include <unistd.h> #include <string> #include <tuple> #include <utility> #include <vector> namespace testing { namespace internal { // Reuse of testing::internal::ColoredPrintf in gtest. enum GTestColor { COLOR_DEFAULT, COLOR_RED, COLOR_GREEN, COLOR_YELLOW }; void ColoredPrintf(GTestColor color, const char* fmt, ...); } // namespace internal } // namespace testing using testing::internal::GTestColor; using testing::internal::COLOR_DEFAULT; using testing::internal::COLOR_RED; using testing::internal::COLOR_GREEN; using testing::internal::COLOR_YELLOW; using testing::internal::ColoredPrintf; constexpr int DEFAULT_GLOBAL_TEST_RUN_DEADLINE_IN_MS = 60000; constexpr int DEFAULT_GLOBAL_TEST_RUN_WARNLINE_IN_MS = 2000; // The time each test can run before killed for the reason of timeout. // It takes effect only with --isolate option. static int global_test_run_deadline_in_ms = DEFAULT_GLOBAL_TEST_RUN_DEADLINE_IN_MS; // The time each test can run before be warned for too much running time. // It takes effect only with --isolate option. static int global_test_run_warnline_in_ms = DEFAULT_GLOBAL_TEST_RUN_WARNLINE_IN_MS; // Return deadline duration for a test, in ms. static int GetDeadlineInfo(const std::string& /*test_name*/) { return global_test_run_deadline_in_ms; } // Return warnline duration for a test, in ms. static int GetWarnlineInfo(const std::string& /*test_name*/) { return global_test_run_warnline_in_ms; } static void PrintHelpInfo() { printf("Bionic Unit Test Options:\n" " -j [JOB_COUNT]\n" " Run up to JOB_COUNT tests in parallel.\n" " Use isolation mode, Run each test in a separate process.\n" " If JOB_COUNT is not given, it is set to the count of available processors.\n" " --no-isolate\n" " Don't use isolation mode, run all tests in a single process.\n" " --deadline=[TIME_IN_MS]\n" " Run each test in no longer than [TIME_IN_MS] time.\n" " It takes effect only in isolation mode. Deafult deadline is 60000 ms.\n" " --warnline=[TIME_IN_MS]\n" " Test running longer than [TIME_IN_MS] will be warned.\n" " It takes effect only in isolation mode. Default warnline is 2000 ms.\n" "\nDefault bionic unit test option is -j.\n" "\n"); } enum TestResult { TEST_SUCCESS = 0, TEST_FAILED, TEST_TIMEOUT }; class TestCase { public: TestCase() {} // For std::vector<TestCase>. explicit TestCase(const char* name) : name_(name) {} const std::string& GetName() const { return name_; } void AppendTest(const std::string& test_name) { test_list_.push_back(std::make_tuple(test_name, TEST_FAILED, 0LL)); } size_t TestCount() const { return test_list_.size(); } std::string GetTestName(size_t test_id) const { VerifyTestId(test_id); return name_ + "." + std::get<0>(test_list_[test_id]); } void SetTestResult(size_t test_id, TestResult result) { VerifyTestId(test_id); std::get<1>(test_list_[test_id]) = result; } TestResult GetTestResult(size_t test_id) const { VerifyTestId(test_id); return std::get<1>(test_list_[test_id]); } void SetTestTime(size_t test_id, int64_t elapsed_time) { VerifyTestId(test_id); std::get<2>(test_list_[test_id]) = elapsed_time; } int64_t GetTestTime(size_t test_id) const { VerifyTestId(test_id); return std::get<2>(test_list_[test_id]); } private: void VerifyTestId(size_t test_id) const { if(test_id >= test_list_.size()) { fprintf(stderr, "test_id %zu out of range [0, %zu)\n", test_id, test_list_.size()); exit(1); } } private: const std::string name_; std::vector<std::tuple<std::string, TestResult, int64_t> > test_list_; }; // TestResultPrinter is copied from part of external/gtest/src/gtest.cc:PrettyUnitTestResultPrinter. // The reason for copy is that PrettyUnitTestResultPrinter is defined and used in gtest.cc, which // is hard to reuse. // TestResultPrinter only print information for a single test, which is used in child process. // The information of test_iteration/environment/testcase is left for parent process to print. class TestResultPrinter : public testing::EmptyTestEventListener { public: TestResultPrinter() : pinfo_(NULL) {} virtual void OnTestStart(const testing::TestInfo& test_info) { pinfo_ = &test_info; // Record test_info for use in OnTestPartResult. } virtual void OnTestPartResult(const testing::TestPartResult& result); virtual void OnTestEnd(const testing::TestInfo& test_info); private: const testing::TestInfo* pinfo_; }; // Called after an assertion failure. void TestResultPrinter::OnTestPartResult(const testing::TestPartResult& result) { // If the test part succeeded, we don't need to do anything. if (result.type() == testing::TestPartResult::kSuccess) return; // Print failure message from the assertion (e.g. expected this and got that). char buf[1024]; snprintf(buf, sizeof(buf), "%s:(%d) Failure in test %s.%s\n%s\n", result.file_name(), result.line_number(), pinfo_->test_case_name(), pinfo_->name(), result.message()); // Use write() to skip line buffer of printf, thus can avoid getting interleaved when // several processes are printing at the same time. int towrite = strlen(buf); char* p = buf; while (towrite > 0) { ssize_t write_count = write(fileno(stdout), p, towrite); if (write_count == -1) { if (errno != EINTR) { fprintf(stderr, "write, errno = %d\n", errno); break; } } else { towrite -= write_count; p += write_count; } } } void TestResultPrinter::OnTestEnd(const testing::TestInfo& test_info) { if (test_info.result()->Passed()) { ColoredPrintf(COLOR_GREEN, "[ OK ] "); } else { ColoredPrintf(COLOR_RED, "[ FAILED ] "); } printf("%s.%s", test_info.test_case_name(), test_info.name()); if (test_info.result()->Failed()) { const char* const type_param = test_info.type_param(); const char* const value_param = test_info.value_param(); if (type_param != NULL || value_param != NULL) { printf(", where "); if (type_param != NULL) { printf("TypeParam = %s", type_param); if (value_param != NULL) { printf(" and "); } } if (value_param != NULL) { printf("GetParam() = %s", value_param); } } } if (testing::GTEST_FLAG(print_time)) { printf(" (%lld ms)\n", test_info.result()->elapsed_time()); } else { printf("\n"); } fflush(stdout); } static int64_t NanoTime() { struct timespec t; t.tv_sec = t.tv_nsec = 0; clock_gettime(CLOCK_MONOTONIC, &t); return static_cast<int64_t>(t.tv_sec) * 1000000000LL + t.tv_nsec; } static bool EnumerateTests(int argc, char** argv, std::vector<TestCase>& testcase_list) { std::string command; for (int i = 0; i < argc; ++i) { command += argv[i]; command += " "; } command += "--gtest_list_tests"; FILE* fp = popen(command.c_str(), "r"); if (fp == NULL) { perror("popen"); return false; } char buf[200]; while (fgets(buf, sizeof(buf), fp) != NULL) { char* p = buf; while (*p != '\0' && isspace(*p)) { ++p; } if (*p == '\0') continue; char* start = p; while (*p != '\0' && !isspace(*p)) { ++p; } char* end = p; while (*p != '\0' && isspace(*p)) { ++p; } if (*p != '\0') { // This is not we want, gtest must meet with some error when parsing the arguments. fprintf(stderr, "argument error, check with --help\n"); return false; } *end = '\0'; if (*(end - 1) == '.') { *(end - 1) = '\0'; testcase_list.push_back(TestCase(start)); } else { testcase_list.back().AppendTest(start); } } int result = pclose(fp); return (result != -1 && WEXITSTATUS(result) == 0); } // Part of the following *Print functions are copied from external/gtest/src/gtest.cc: // PrettyUnitTestResultPrinter. The reason for copy is that PrettyUnitTestResultPrinter // is defined and used in gtest.cc, which is hard to reuse. static void OnTestIterationStartPrint(const std::vector<TestCase>& testcase_list, size_t iteration, size_t iteration_count) { if (iteration_count > 1) { printf("\nRepeating all tests (iteration %zu) . . .\n\n", iteration); } ColoredPrintf(COLOR_GREEN, "[==========] "); size_t testcase_count = testcase_list.size(); size_t test_count = 0; for (const auto& testcase : testcase_list) { test_count += testcase.TestCount(); } printf("Running %zu %s from %zu %s.\n", test_count, (test_count == 1) ? "test" : "tests", testcase_count, (testcase_count == 1) ? "test case" : "test cases"); fflush(stdout); } static void OnTestTerminatedPrint(const TestCase& testcase, size_t test_id, int sig) { ColoredPrintf(COLOR_RED, "[ FAILED ] "); printf("%s terminated by signal: %s\n", testcase.GetTestName(test_id).c_str(), strsignal(sig)); fflush(stdout); } static void OnTestTimeoutPrint(const TestCase& testcase, size_t test_id) { ColoredPrintf(COLOR_RED, "[ TIMEOUT ] "); printf("%s (killed by timeout at %lld ms)\n", testcase.GetTestName(test_id).c_str(), testcase.GetTestTime(test_id) / 1000000LL); fflush(stdout); } static void OnTestIterationEndPrint(const std::vector<TestCase>& testcase_list, size_t /*iteration*/, int64_t elapsed_time) { std::vector<std::string> fail_test_name_list; std::vector<std::pair<std::string, int64_t>> timeout_test_list; // For tests run exceed warnline but not timeout. std::vector<std::tuple<std::string, int64_t, int>> timewarn_test_list; size_t testcase_count = testcase_list.size(); size_t test_count = 0; size_t success_test_count = 0; for (const auto& testcase : testcase_list) { test_count += testcase.TestCount(); for (size_t i = 0; i < testcase.TestCount(); ++i) { TestResult result = testcase.GetTestResult(i); if (result == TEST_SUCCESS) { ++success_test_count; } else if (result == TEST_FAILED) { fail_test_name_list.push_back(testcase.GetTestName(i)); } else if (result == TEST_TIMEOUT) { timeout_test_list.push_back(std::make_pair(testcase.GetTestName(i), testcase.GetTestTime(i))); } if (result != TEST_TIMEOUT && testcase.GetTestTime(i) / 1000000 >= GetWarnlineInfo(testcase.GetTestName(i))) { timewarn_test_list.push_back(std::make_tuple(testcase.GetTestName(i), testcase.GetTestTime(i), GetWarnlineInfo(testcase.GetTestName(i)))); } } } ColoredPrintf(COLOR_GREEN, "[==========] "); printf("%zu %s from %zu %s ran.", test_count, (test_count == 1) ? "test" : "tests", testcase_count, (testcase_count == 1) ? "test case" : "test cases"); if (testing::GTEST_FLAG(print_time)) { printf(" (%lld ms total)", elapsed_time / 1000000LL); } printf("\n"); ColoredPrintf(COLOR_GREEN, "[ PASSED ] "); printf("%zu %s.\n", success_test_count, (success_test_count == 1) ? "test" : "tests"); // Print tests failed. size_t fail_test_count = fail_test_name_list.size(); if (fail_test_count > 0) { ColoredPrintf(COLOR_RED, "[ FAILED ] "); printf("%zu %s, listed below:\n", fail_test_count, (fail_test_count == 1) ? "test" : "tests"); for (const auto& name : fail_test_name_list) { ColoredPrintf(COLOR_RED, "[ FAILED ] "); printf("%s\n", name.c_str()); } } // Print tests run timeout. size_t timeout_test_count = timeout_test_list.size(); if (timeout_test_count > 0) { ColoredPrintf(COLOR_RED, "[ TIMEOUT ] "); printf("%zu %s, listed below:\n", timeout_test_count, (timeout_test_count == 1) ? "test" : "tests"); for (const auto& timeout_pair : timeout_test_list) { ColoredPrintf(COLOR_RED, "[ TIMEOUT ] "); printf("%s (stopped at %lld ms)\n", timeout_pair.first.c_str(), timeout_pair.second / 1000000LL); } } // Print tests run exceed warnline. size_t timewarn_test_count = timewarn_test_list.size(); if (timewarn_test_count > 0) { ColoredPrintf(COLOR_YELLOW, "[ TIMEWARN ] "); printf("%zu %s, listed below:\n", timewarn_test_count, (timewarn_test_count == 1) ? "test" : "tests"); for (const auto& timewarn_tuple : timewarn_test_list) { ColoredPrintf(COLOR_YELLOW, "[ TIMEWARN ] "); printf("%s (%lld ms, exceed warnline %d ms)\n", std::get<0>(timewarn_tuple).c_str(), std::get<1>(timewarn_tuple) / 1000000LL, std::get<2>(timewarn_tuple)); } } if (fail_test_count > 0) { printf("\n%2zu FAILED %s\n", fail_test_count, (fail_test_count == 1) ? "TEST" : "TESTS"); } if (timeout_test_count > 0) { printf("%2zu TIMEOUT %s\n", timeout_test_count, (timeout_test_count == 1) ? "TEST" : "TESTS"); } if (timewarn_test_count > 0) { printf("%2zu TIMEWARN %s\n", timewarn_test_count, (timewarn_test_count == 1) ? "TEST" : "TESTS"); } fflush(stdout); } // Forked Child process, run the single test. static void ChildProcessFn(int argc, char** argv, const std::string& test_name) { char** new_argv = new char*[argc + 1]; memcpy(new_argv, argv, sizeof(char*) * argc); char* filter_arg = new char [test_name.size() + 20]; strcpy(filter_arg, "--gtest_filter="); strcat(filter_arg, test_name.c_str()); new_argv[argc] = filter_arg; int new_argc = argc + 1; testing::InitGoogleTest(&new_argc, new_argv); int result = RUN_ALL_TESTS(); exit(result); } struct ChildProcInfo { pid_t pid; int64_t start_time; int64_t deadline_time; size_t testcase_id, test_id; bool done_flag; bool timeout_flag; int exit_status; ChildProcInfo() : pid(0) {} }; static void WaitChildProcs(std::vector<ChildProcInfo>& child_proc_list) { pid_t result; int status; bool loop_flag = true; while (true) { while ((result = waitpid(-1, &status, WNOHANG)) == -1) { if (errno != EINTR) { break; } } if (result == -1) { perror("waitpid"); exit(1); } else if (result == 0) { // Check child timeout. int64_t current_time = NanoTime(); for (size_t i = 0; i < child_proc_list.size(); ++i) { if (child_proc_list[i].deadline_time <= current_time) { child_proc_list[i].done_flag = true; child_proc_list[i].timeout_flag = true; loop_flag = false; } } } else { // Check child finish. for (size_t i = 0; i < child_proc_list.size(); ++i) { if (child_proc_list[i].pid == result) { child_proc_list[i].done_flag = true; child_proc_list[i].timeout_flag = false; child_proc_list[i].exit_status = status; loop_flag = false; break; } } } if (!loop_flag) break; // sleep 1 ms to avoid busy looping. timespec sleep_time; sleep_time.tv_sec = 0; sleep_time.tv_nsec = 1000000; nanosleep(&sleep_time, NULL); } } static TestResult WaitChildProc(pid_t pid) { pid_t result; int exit_status; while ((result = waitpid(pid, &exit_status, 0)) == -1) { if (errno != EINTR) { break; } } TestResult test_result = TEST_SUCCESS; if (result != pid || WEXITSTATUS(exit_status) != 0) { test_result = TEST_FAILED; } return test_result; } // We choose to use multi-fork and multi-wait here instead of multi-thread, because it always // makes deadlock to use fork in multi-thread. static void RunTestInSeparateProc(int argc, char** argv, std::vector<TestCase>& testcase_list, size_t iteration_count, size_t job_count) { // Stop default result printer to avoid environment setup/teardown information for each test. testing::UnitTest::GetInstance()->listeners().Release( testing::UnitTest::GetInstance()->listeners().default_result_printer()); testing::UnitTest::GetInstance()->listeners().Append(new TestResultPrinter); for (size_t iteration = 1; iteration <= iteration_count; ++iteration) { OnTestIterationStartPrint(testcase_list, iteration, iteration_count); int64_t iteration_start_time = NanoTime(); // Run up to job_count tests in parallel, each test in a child process. std::vector<ChildProcInfo> child_proc_list(job_count); // Next test to run is [next_testcase_id:next_test_id]. size_t next_testcase_id = 0; size_t next_test_id = 0; // Record how many tests are finished. std::vector<size_t> finished_test_count_list(testcase_list.size(), 0); size_t finished_testcase_count = 0; while (finished_testcase_count < testcase_list.size()) { // Fork up to job_count child processes. for (auto& child_proc : child_proc_list) { if (child_proc.pid == 0 && next_testcase_id < testcase_list.size()) { std::string test_name = testcase_list[next_testcase_id].GetTestName(next_test_id); pid_t pid = fork(); if (pid == -1) { perror("fork in RunTestInSeparateProc"); exit(1); } else if (pid == 0) { // Run child process test, never return. ChildProcessFn(argc, argv, test_name); } // Parent process child_proc.pid = pid; child_proc.start_time = NanoTime(); child_proc.deadline_time = child_proc.start_time + GetDeadlineInfo(test_name) * 1000000LL; child_proc.testcase_id = next_testcase_id; child_proc.test_id = next_test_id; child_proc.done_flag = false; if (++next_test_id == testcase_list[next_testcase_id].TestCount()) { next_test_id = 0; ++next_testcase_id; } } } // Wait for any child proc finish or timeout. WaitChildProcs(child_proc_list); // Collect result. for (auto& child_proc : child_proc_list) { if (child_proc.pid != 0 && child_proc.done_flag == true) { size_t testcase_id = child_proc.testcase_id; size_t test_id = child_proc.test_id; TestCase& testcase = testcase_list[testcase_id]; testcase.SetTestTime(test_id, NanoTime() - child_proc.start_time); if (child_proc.timeout_flag) { // Kill and wait the timeout child process. kill(child_proc.pid, SIGKILL); WaitChildProc(child_proc.pid); testcase.SetTestResult(test_id, TEST_TIMEOUT); OnTestTimeoutPrint(testcase, test_id); } else if (WIFSIGNALED(child_proc.exit_status)) { // Record signal terminated test as failed. testcase.SetTestResult(test_id, TEST_FAILED); OnTestTerminatedPrint(testcase, test_id, WTERMSIG(child_proc.exit_status)); } else { testcase.SetTestResult(test_id, WEXITSTATUS(child_proc.exit_status) == 0 ? TEST_SUCCESS : TEST_FAILED); // TestResultPrinter::OnTestEnd has already printed result for normal exit. } if (++finished_test_count_list[testcase_id] == testcase.TestCount()) { ++finished_testcase_count; } child_proc.pid = 0; child_proc.done_flag = false; } } } OnTestIterationEndPrint(testcase_list, iteration, NanoTime() - iteration_start_time); } } static size_t GetProcessorCount() { return static_cast<size_t>(sysconf(_SC_NPROCESSORS_ONLN)); } // Pick options not for gtest: There are two parts in argv, one part is handled by PickOptions() // as described in PrintHelpInfo(), the other part is handled by testing::InitGoogleTest() in // gtest. PickOptions() picks the first part of options and change them into flags and operations, // lefting the second part in argv. // Arguments: // argv is used to pass in all command arguments, and pass out only the part of options for gtest. // exit_flag is to indicate whether we need to run gtest workflow after PickOptions. // Return false if run error. static bool PickOptions(std::vector<char*>& argv, bool* exit_flag) { *exit_flag = false; for (size_t i = 1; i < argv.size() - 1; ++i) { if (strcmp(argv[i], "--help") == 0 || strcmp(argv[i], "-h") == 0) { PrintHelpInfo(); return true; } } // Move --gtest_filter option to last, and add "-bionic_selftest*" to disable self test. std::string gtest_filter_str = "--gtest_filter=-bionic_selftest*"; for (size_t i = argv.size() - 2; i >= 1; --i) { if (strncmp(argv[i], "--gtest_filter=", sizeof("--gtest_filter=") - 1) == 0) { gtest_filter_str = std::string(argv[i]) + ":-bionic_selftest*"; argv.erase(argv.begin() + i); break; } } argv.insert(argv.end() - 1, strdup(gtest_filter_str.c_str())); // Init default bionic_gtest option. bool isolate_option = true; size_t job_count_option = GetProcessorCount(); size_t deadline_option_len = strlen("--deadline="); size_t warnline_option_len = strlen("--warnline="); size_t gtest_color_option_len = strlen("--gtest_color="); // Parse bionic_gtest specific options in arguments. for (size_t i = 1; i < argv.size() - 1; ++i) { if (strcmp(argv[i], "-j") == 0) { isolate_option = true; // Enable isolation mode when -j is used. int tmp; if (argv[i + 1] != NULL && (tmp = atoi(argv[i + 1])) > 0) { job_count_option = tmp; argv.erase(argv.begin() + i); } else { job_count_option = GetProcessorCount(); } argv.erase(argv.begin() + i); --i; } else if (strcmp(argv[i], "--no-isolate") == 0) { isolate_option = false; argv.erase(argv.begin() + i); --i; } else if (strncmp(argv[i], "--deadline=", deadline_option_len) == 0) { global_test_run_deadline_in_ms = atoi(argv[i] + deadline_option_len); if (global_test_run_deadline_in_ms <= 0) { fprintf(stderr, "value for --deadline option should be positive: %s\n", argv[i] + deadline_option_len); exit(1); } argv.erase(argv.begin() + i); --i; } else if (strncmp(argv[i], "--warnline=", warnline_option_len) == 0) { global_test_run_warnline_in_ms = atoi(argv[i] + warnline_option_len); if (global_test_run_warnline_in_ms <= 0) { fprintf(stderr, "value for --warnline option should be positive: %s\n", argv[i] + warnline_option_len); exit(1); } argv.erase(argv.begin() + i); --i; } else if (strncmp(argv[i], "--gtest_color=", gtest_color_option_len) == 0) { // If running in isolation mode, main process doesn't call testing::InitGoogleTest(&argc, argv). // So we should parse gtest options for printing by ourselves. testing::GTEST_FLAG(color) = argv[i] + gtest_color_option_len; } else if (strcmp(argv[i], "--gtest_print_time=0") == 0) { testing::GTEST_FLAG(print_time) = false; } else if (strcmp(argv[i], "--gtest_list_tests") == 0) { // Disable isolation mode in gtest_list_tests option. isolate_option = false; } else if (strcmp(argv[i], "--bionic-selftest") == 0) { // This option is to enable "bionic_selftest*" for self test, and not shown in help informantion. // Don't remove this option from argument list. argv[argv.size() - 2] = strdup("--gtest_filter=bionic_selftest*"); } } // Handle --gtest_repeat=[COUNT] option if we are in isolation mode. // We should check and remove this option to avoid child process running single test for several // iterations. size_t gtest_repeat_count = 1; if (isolate_option == true) { int len = sizeof("--gtest_repeat=") - 1; for (size_t i = 1; i < argv.size() - 1; ++i) { if (strncmp(argv[i], "--gtest_repeat=", len) == 0) { int tmp = atoi(argv[i] + len); if (tmp < 0) { fprintf(stderr, "error count for option --gtest_repeat=[COUNT]\n"); return false; } gtest_repeat_count = tmp; argv.erase(argv.begin() + i); break; } } } // Add --no-isolate option in argv to suppress subprocess running in isolation mode again. // As DeathTest will try to execve again, this option should always be set. argv.insert(argv.begin() + 1, strdup("--no-isolate")); // Run tests in isolation mode. if (isolate_option) { *exit_flag = true; std::vector<TestCase> testcase_list; int argc = static_cast<int>(argv.size()) - 1; if (EnumerateTests(argc, argv.data(), testcase_list) == false) { return false; } RunTestInSeparateProc(argc, argv.data(), testcase_list, gtest_repeat_count, job_count_option); return true; } return true; } int main(int argc, char** argv) { std::vector<char*> arg_list; for (int i = 0; i < argc; ++i) { arg_list.push_back(argv[i]); } arg_list.push_back(NULL); bool exit_flag; int return_result = 0; if (PickOptions(arg_list, &exit_flag) == false) { return_result = 1; } else if (!exit_flag) { argc = static_cast<int>(arg_list.size()) - 1; testing::InitGoogleTest(&argc, arg_list.data()); return_result = RUN_ALL_TESTS(); } return return_result; } //################################################################################ // Bionic Gtest self test, run this by --bionic-selftest option. TEST(bionic_selftest, test_success) { ASSERT_EQ(1, 1); } TEST(bionic_selftest, test_fail) { ASSERT_EQ(0, 1); } TEST(bionic_selftest, test_time_warn) { sleep(4); } TEST(bionic_selftest, test_timeout) { while (1) {} } TEST(bionic_selftest, test_signal_SEGV_terminated) { char* p = reinterpret_cast<char*>(static_cast<intptr_t>(atoi("0"))); *p = 3; }