/*
 * Copyright (C) 2008, 2009 The Android Open Source Project
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <dlfcn.h>
#include <errno.h>
#include <fcntl.h>
#include <linux/auxvec.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/atomics.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <unistd.h>

// Private C library headers.
#include <private/bionic_tls.h>
#include <private/logd.h>
#include <private/ScopedPthreadMutexLocker.h>

#include "linker.h"
#include "linker_debug.h"
#include "linker_environ.h"
#include "linker_format.h"
#include "linker_phdr.h"

/* Assume average path length of 64 and max 8 paths */
#define LDPATH_BUFSIZE 512
#define LDPATH_MAX 8

#define LDPRELOAD_BUFSIZE 512
#define LDPRELOAD_MAX 8

/* >>> IMPORTANT NOTE - READ ME BEFORE MODIFYING <<<
 *
 * Do NOT use malloc() and friends or pthread_*() code here.
 * Don't use printf() either; it's caused mysterious memory
 * corruption in the past.
 * The linker runs before we bring up libc and it's easiest
 * to make sure it does not depend on any complex libc features
 *
 * open issues / todo:
 *
 * - are we doing everything we should for ARM_COPY relocations?
 * - cleaner error reporting
 * - after linking, set as much stuff as possible to READONLY
 *   and NOEXEC
 */

static bool soinfo_link_image(soinfo* si);

// We can't use malloc(3) in the dynamic linker. We use a linked list of anonymous
// maps, each a single page in size. The pages are broken up into as many struct soinfo
// objects as will fit, and they're all threaded together on a free list.
#define SOINFO_PER_POOL ((PAGE_SIZE - sizeof(soinfo_pool_t*)) / sizeof(soinfo))
struct soinfo_pool_t {
  soinfo_pool_t* next;
  soinfo info[SOINFO_PER_POOL];
};
static struct soinfo_pool_t* gSoInfoPools = NULL;
static soinfo* gSoInfoFreeList = NULL;

static soinfo *solist = &libdl_info;
static soinfo *sonext = &libdl_info;
static soinfo *somain; /* main process, always the one after libdl_info */

static const char* const gSoPaths[] = {
  "/vendor/lib",
  "/system/lib",
  NULL
};

static char gLdPathsBuffer[LDPATH_BUFSIZE];
static const char* gLdPaths[LDPATH_MAX + 1];

static char gLdPreloadsBuffer[LDPRELOAD_BUFSIZE];
static const char* gLdPreloadNames[LDPRELOAD_MAX + 1];

static soinfo *preloads[LDPRELOAD_MAX + 1];

static int debug_verbosity;

enum RelocationKind {
    kRelocAbsolute = 0,
    kRelocRelative,
    kRelocCopy,
    kRelocSymbol,
    kRelocMax
};

#if STATS
struct linker_stats_t {
    int count[kRelocMax];
};

static linker_stats_t linker_stats;

static void count_relocation(RelocationKind kind) {
    ++linker_stats.count[kind];
}
#else
static void count_relocation(RelocationKind) {
}
#endif

#if COUNT_PAGES
static unsigned bitmask[4096];
#define MARK(offset) \
    do { \
        bitmask[((offset) >> 12) >> 3] |= (1 << (((offset) >> 12) & 7)); \
    } while(0)
#else
#define MARK(x) do {} while (0)
#endif

// You shouldn't try to call memory-allocating functions in the dynamic linker.
// Guard against the most obvious ones.
#define DISALLOW_ALLOCATION(return_type, name, ...)                             \
    return_type name __VA_ARGS__                                                \
    {                                                                           \
        const char* msg = "ERROR: " #name " called from the dynamic linker!\n"; \
         __libc_android_log_write(ANDROID_LOG_FATAL, "linker", msg);            \
        write(2, msg, strlen(msg));                                             \
        abort();                                                                \
    }
#define UNUSED __attribute__((unused))
DISALLOW_ALLOCATION(void*, malloc, (size_t u UNUSED));
DISALLOW_ALLOCATION(void, free, (void* u UNUSED));
DISALLOW_ALLOCATION(void*, realloc, (void* u1 UNUSED, size_t u2 UNUSED));
DISALLOW_ALLOCATION(void*, calloc, (size_t u1 UNUSED, size_t u2 UNUSED));

static char tmp_err_buf[768];
static char __linker_dl_err_buf[768];
#define DL_ERR(fmt, x...) \
    do { \
        format_buffer(__linker_dl_err_buf, sizeof(__linker_dl_err_buf), fmt, ##x); \
        /* If LD_DEBUG is set high enough, send every dlerror(3) message to the log. */ \
        DEBUG(fmt "\n", ##x); \
    } while(0)

const char* linker_get_error() {
  return &__linker_dl_err_buf[0];
}

/*
 * This function is an empty stub where GDB locates a breakpoint to get notified
 * about linker activity.
 */
extern "C" void __attribute__((noinline)) __attribute__((visibility("default"))) rtld_db_dlactivity();

static r_debug _r_debug = {1, NULL, &rtld_db_dlactivity,
                                  RT_CONSISTENT, 0};
static link_map* r_debug_tail = 0;

static pthread_mutex_t gDebugMutex = PTHREAD_MUTEX_INITIALIZER;

static void insert_soinfo_into_debug_map(soinfo * info) {
    // Copy the necessary fields into the debug structure.
    link_map* map = &(info->linkmap);
    map->l_addr = info->base;
    map->l_name = (char*) info->name;
    map->l_ld = (uintptr_t)info->dynamic;

    /* Stick the new library at the end of the list.
     * gdb tends to care more about libc than it does
     * about leaf libraries, and ordering it this way
     * reduces the back-and-forth over the wire.
     */
    if (r_debug_tail) {
        r_debug_tail->l_next = map;
        map->l_prev = r_debug_tail;
        map->l_next = 0;
    } else {
        _r_debug.r_map = map;
        map->l_prev = 0;
        map->l_next = 0;
    }
    r_debug_tail = map;
}

static void remove_soinfo_from_debug_map(soinfo* info) {
    link_map* map = &(info->linkmap);

    if (r_debug_tail == map) {
        r_debug_tail = map->l_prev;
    }

    if (map->l_prev) {
        map->l_prev->l_next = map->l_next;
    }
    if (map->l_next) {
        map->l_next->l_prev = map->l_prev;
    }
}

static void notify_gdb_of_load(soinfo* info) {
    if (info->flags & FLAG_EXE) {
        // GDB already knows about the main executable
        return;
    }

    ScopedPthreadMutexLocker locker(&gDebugMutex);

    _r_debug.r_state = RT_ADD;
    rtld_db_dlactivity();

    insert_soinfo_into_debug_map(info);

    _r_debug.r_state = RT_CONSISTENT;
    rtld_db_dlactivity();
}

static void notify_gdb_of_unload(soinfo* info) {
    if (info->flags & FLAG_EXE) {
        // GDB already knows about the main executable
        return;
    }

    ScopedPthreadMutexLocker locker(&gDebugMutex);

    _r_debug.r_state = RT_DELETE;
    rtld_db_dlactivity();

    remove_soinfo_from_debug_map(info);

    _r_debug.r_state = RT_CONSISTENT;
    rtld_db_dlactivity();
}

void notify_gdb_of_libraries() {
    _r_debug.r_state = RT_ADD;
    rtld_db_dlactivity();
    _r_debug.r_state = RT_CONSISTENT;
    rtld_db_dlactivity();
}

static bool ensure_free_list_non_empty() {
  if (gSoInfoFreeList != NULL) {
    return true;
  }

  // Allocate a new pool.
  soinfo_pool_t* pool = reinterpret_cast<soinfo_pool_t*>(mmap(NULL, sizeof(*pool),
                                                              PROT_READ|PROT_WRITE,
                                                              MAP_PRIVATE|MAP_ANONYMOUS, 0, 0));
  if (pool == MAP_FAILED) {
    return false;
  }

  // Add the pool to our list of pools.
  pool->next = gSoInfoPools;
  gSoInfoPools = pool;

  // Chain the entries in the new pool onto the free list.
  gSoInfoFreeList = &pool->info[0];
  soinfo* next = NULL;
  for (int i = SOINFO_PER_POOL - 1; i >= 0; --i) {
    pool->info[i].next = next;
    next = &pool->info[i];
  }

  return true;
}

static void set_soinfo_pool_protection(int protection) {
  for (soinfo_pool_t* p = gSoInfoPools; p != NULL; p = p->next) {
    if (mprotect(p, sizeof(*p), protection) == -1) {
      abort(); // Can't happen.
    }
  }
}

static soinfo* soinfo_alloc(const char* name) {
  if (strlen(name) >= SOINFO_NAME_LEN) {
    DL_ERR("library name \"%s\" too long", name);
    return NULL;
  }

  if (!ensure_free_list_non_empty()) {
    DL_ERR("out of memory when loading \"%s\"", name);
    return NULL;
  }

  // Take the head element off the free list.
  soinfo* si = gSoInfoFreeList;
  gSoInfoFreeList = gSoInfoFreeList->next;

  // Initialize the new element.
  memset(si, 0, sizeof(soinfo));
  strlcpy(si->name, name, sizeof(si->name));
  sonext->next = si;
  sonext = si;

  TRACE("name %s: allocated soinfo @ %p\n", name, si);
  return si;
}

static void soinfo_free(soinfo* si)
{
    if (si == NULL) {
        return;
    }

    soinfo *prev = NULL, *trav;

    TRACE("name %s: freeing soinfo @ %p\n", si->name, si);

    for(trav = solist; trav != NULL; trav = trav->next){
        if (trav == si)
            break;
        prev = trav;
    }
    if (trav == NULL) {
        /* si was not ni solist */
        DL_ERR("name \"%s\" is not in solist!", si->name);
        return;
    }

    /* prev will never be NULL, because the first entry in solist is
       always the static libdl_info.
    */
    prev->next = si->next;
    if (si == sonext) sonext = prev;
    si->next = gSoInfoFreeList;
    gSoInfoFreeList = si;
}

#ifdef ANDROID_ARM_LINKER

/* For a given PC, find the .so that it belongs to.
 * Returns the base address of the .ARM.exidx section
 * for that .so, and the number of 8-byte entries
 * in that section (via *pcount).
 *
 * Intended to be called by libc's __gnu_Unwind_Find_exidx().
 *
 * This function is exposed via dlfcn.cpp and libdl.so.
 */
_Unwind_Ptr dl_unwind_find_exidx(_Unwind_Ptr pc, int *pcount)
{
    soinfo *si;
    unsigned addr = (unsigned)pc;

    for (si = solist; si != 0; si = si->next){
        if ((addr >= si->base) && (addr < (si->base + si->size))) {
            *pcount = si->ARM_exidx_count;
            return (_Unwind_Ptr)si->ARM_exidx;
        }
    }
   *pcount = 0;
    return NULL;
}

#elif defined(ANDROID_X86_LINKER) || defined(ANDROID_MIPS_LINKER)

/* Here, we only have to provide a callback to iterate across all the
 * loaded libraries. gcc_eh does the rest. */
int
dl_iterate_phdr(int (*cb)(dl_phdr_info *info, size_t size, void *data),
                void *data)
{
    int rv = 0;
    for (soinfo* si = solist; si != NULL; si = si->next) {
        dl_phdr_info dl_info;
        dl_info.dlpi_addr = si->linkmap.l_addr;
        dl_info.dlpi_name = si->linkmap.l_name;
        dl_info.dlpi_phdr = si->phdr;
        dl_info.dlpi_phnum = si->phnum;
        rv = cb(&dl_info, sizeof(dl_phdr_info), data);
        if (rv != 0) {
            break;
        }
    }
    return rv;
}

#endif

static Elf32_Sym *soinfo_elf_lookup(soinfo *si, unsigned hash, const char *name)
{
    Elf32_Sym *s;
    Elf32_Sym *symtab = si->symtab;
    const char *strtab = si->strtab;
    unsigned n;

    TRACE_TYPE(LOOKUP, "SEARCH %s in %s@0x%08x %08x %d\n",
               name, si->name, si->base, hash, hash % si->nbucket);
    n = hash % si->nbucket;

    for(n = si->bucket[hash % si->nbucket]; n != 0; n = si->chain[n]){
        s = symtab + n;
        if(strcmp(strtab + s->st_name, name)) continue;

            /* only concern ourselves with global and weak symbol definitions */
        switch(ELF32_ST_BIND(s->st_info)){
        case STB_GLOBAL:
        case STB_WEAK:
            if(s->st_shndx == SHN_UNDEF)
                continue;

            TRACE_TYPE(LOOKUP, "FOUND %s in %s (%08x) %d\n",
                       name, si->name, s->st_value, s->st_size);
            return s;
        }
    }

    return NULL;
}

static unsigned elfhash(const char *_name)
{
    const unsigned char *name = (const unsigned char *) _name;
    unsigned h = 0, g;

    while(*name) {
        h = (h << 4) + *name++;
        g = h & 0xf0000000;
        h ^= g;
        h ^= g >> 24;
    }
    return h;
}

static Elf32_Sym *
soinfo_do_lookup(soinfo *si, const char *name, soinfo **lsi,
                 soinfo *needed[])
{
    unsigned elf_hash = elfhash(name);
    Elf32_Sym *s = NULL;
    int i;

    if (si != NULL && somain != NULL) {

        /*
         * Local scope is executable scope. Just start looking into it right away
         * for the shortcut.
         */

        if (si == somain) {
            s = soinfo_elf_lookup(si, elf_hash, name);
            if (s != NULL) {
                *lsi = si;
                goto done;
            }
        } else {
            /* Order of symbol lookup is controlled by DT_SYMBOLIC flag */

            /*
             * If this object was built with symbolic relocations disabled, the
             * first place to look to resolve external references is the main
             * executable.
             */

            if (!si->has_DT_SYMBOLIC) {
                DEBUG("%s: looking up %s in executable %s\n",
                      si->name, name, somain->name);
                s = soinfo_elf_lookup(somain, elf_hash, name);
                if (s != NULL) {
                    *lsi = somain;
                    goto done;
                }
            }

            /* Look for symbols in the local scope (the object who is
             * searching). This happens with C++ templates on i386 for some
             * reason.
             *
             * Notes on weak symbols:
             * The ELF specs are ambiguous about treatment of weak definitions in
             * dynamic linking.  Some systems return the first definition found
             * and some the first non-weak definition.   This is system dependent.
             * Here we return the first definition found for simplicity.  */

            s = soinfo_elf_lookup(si, elf_hash, name);
            if (s != NULL) {
                *lsi = si;
                goto done;
            }

            /*
             * If this object was built with -Bsymbolic and symbol is not found
             * in the local scope, try to find the symbol in the main executable.
             */

            if (si->has_DT_SYMBOLIC) {
                DEBUG("%s: looking up %s in executable %s after local scope\n",
                      si->name, name, somain->name);
                s = soinfo_elf_lookup(somain, elf_hash, name);
                if (s != NULL) {
                    *lsi = somain;
                    goto done;
                }
            }
        }
    }

    /* Next, look for it in the preloads list */
    for(i = 0; preloads[i] != NULL; i++) {
        s = soinfo_elf_lookup(preloads[i], elf_hash, name);
        if(s != NULL) {
            *lsi = preloads[i];
            goto done;
        }
    }

    for(i = 0; needed[i] != NULL; i++) {
        DEBUG("%s: looking up %s in %s\n",
              si->name, name, needed[i]->name);
        s = soinfo_elf_lookup(needed[i], elf_hash, name);
        if (s != NULL) {
            *lsi = needed[i];
            goto done;
        }
    }

done:
    if(s != NULL) {
        TRACE_TYPE(LOOKUP, "si %s sym %s s->st_value = 0x%08x, "
                   "found in %s, base = 0x%08x, load bias = 0x%08x\n",
                   si->name, name, s->st_value,
                   (*lsi)->name, (*lsi)->base, (*lsi)->load_bias);
        return s;
    }

    return NULL;
}

/* This is used by dl_sym().  It performs symbol lookup only within the
   specified soinfo object and not in any of its dependencies.
 */
Elf32_Sym *soinfo_lookup(soinfo *si, const char *name)
{
    return soinfo_elf_lookup(si, elfhash(name), name);
}

/* This is used by dl_sym().  It performs a global symbol lookup.
 */
Elf32_Sym *lookup(const char *name, soinfo **found, soinfo *start)
{
    unsigned elf_hash = elfhash(name);
    Elf32_Sym *s = NULL;
    soinfo *si;

    if(start == NULL) {
        start = solist;
    }

    for(si = start; (s == NULL) && (si != NULL); si = si->next)
    {
        if(si->flags & FLAG_ERROR)
            continue;
        s = soinfo_elf_lookup(si, elf_hash, name);
        if (s != NULL) {
            *found = si;
            break;
        }
    }

    if(s != NULL) {
        TRACE_TYPE(LOOKUP, "%s s->st_value = 0x%08x, si->base = 0x%08x\n",
                   name, s->st_value, si->base);
        return s;
    }

    return NULL;
}

soinfo *find_containing_library(const void *addr)
{
    soinfo *si;

    for(si = solist; si != NULL; si = si->next)
    {
        if((unsigned)addr >= si->base && (unsigned)addr - si->base < si->size) {
            return si;
        }
    }

    return NULL;
}

Elf32_Sym *soinfo_find_symbol(soinfo* si, const void *addr)
{
    unsigned int i;
    unsigned soaddr = (unsigned)addr - si->base;

    /* Search the library's symbol table for any defined symbol which
     * contains this address */
    for(i=0; i<si->nchain; i++) {
        Elf32_Sym *sym = &si->symtab[i];

        if(sym->st_shndx != SHN_UNDEF &&
           soaddr >= sym->st_value &&
           soaddr < sym->st_value + sym->st_size) {
            return sym;
        }
    }

    return NULL;
}

#if 0
static void dump(soinfo *si)
{
    Elf32_Sym *s = si->symtab;
    unsigned n;

    for(n = 0; n < si->nchain; n++) {
        TRACE("%04d> %08x: %02x %04x %08x %08x %s\n", n, s,
               s->st_info, s->st_shndx, s->st_value, s->st_size,
               si->strtab + s->st_name);
        s++;
    }
}
#endif

static int open_library_on_path(const char* name, const char* const paths[]) {
  char buf[512];
  for (size_t i = 0; paths[i] != NULL; ++i) {
    int n = format_buffer(buf, sizeof(buf), "%s/%s", paths[i], name);
    if (n < 0 || n >= static_cast<int>(sizeof(buf))) {
      PRINT("Warning: ignoring very long library path: %s/%s\n", paths[i], name);
      continue;
    }
    int fd = TEMP_FAILURE_RETRY(open(buf, O_RDONLY | O_CLOEXEC));
    if (fd != -1) {
      return fd;
    }
  }
  return -1;
}

static int open_library(const char* name) {
  TRACE("[ opening %s ]\n", name);

  // If the name contains a slash, we should attempt to open it directly and not search the paths.
  if (strchr(name, '/') != NULL) {
    int fd = TEMP_FAILURE_RETRY(open(name, O_RDONLY | O_CLOEXEC));
    if (fd != -1) {
      return fd;
    }
    // ...but nvidia binary blobs (at least) rely on this behavior, so fall through for now.
  }

  // Otherwise we try LD_LIBRARY_PATH first, and fall back to the built-in well known paths.
  int fd = open_library_on_path(name, gLdPaths);
  if (fd == -1) {
    fd = open_library_on_path(name, gSoPaths);
  }
  return fd;
}

// Returns 'true' if the library is prelinked or on failure so we error out
// either way. We no longer support prelinking.
static bool is_prelinked(int fd, const char* name)
{
    struct prelink_info_t {
        long mmap_addr;
        char tag[4]; // "PRE ".
    };

    off_t sz = lseek(fd, -sizeof(prelink_info_t), SEEK_END);
    if (sz < 0) {
        DL_ERR("lseek failed: %s", strerror(errno));
        return true;
    }

    prelink_info_t info;
    int rc = TEMP_FAILURE_RETRY(read(fd, &info, sizeof(info)));
    if (rc != sizeof(info)) {
        DL_ERR("could not read prelink_info_t structure for \"%s\": %s", name, strerror(errno));
        return true;
    }

    if (memcmp(info.tag, "PRE ", 4) == 0) {
        DL_ERR("prelinked libraries no longer supported: %s", name);
        return true;
    }
    return false;
}

/* verify_elf_header
 *      Verifies the content of an ELF header.
 *
 * Args:
 *
 * Returns:
 *       0 on success
 *      -1 if no valid ELF object is found @ base.
 */
static int
verify_elf_header(const Elf32_Ehdr* hdr)
{
    if (hdr->e_ident[EI_MAG0] != ELFMAG0) return -1;
    if (hdr->e_ident[EI_MAG1] != ELFMAG1) return -1;
    if (hdr->e_ident[EI_MAG2] != ELFMAG2) return -1;
    if (hdr->e_ident[EI_MAG3] != ELFMAG3) return -1;
    if (hdr->e_type != ET_DYN) return -1;

    /* TODO: Should we verify anything else in the header? */
#ifdef ANDROID_ARM_LINKER
    if (hdr->e_machine != EM_ARM) return -1;
#elif defined(ANDROID_X86_LINKER)
    if (hdr->e_machine != EM_386) return -1;
#elif defined(ANDROID_MIPS_LINKER)
    if (hdr->e_machine != EM_MIPS) return -1;
#endif
    return 0;
}

struct scoped_fd {
    ~scoped_fd() {
        if (fd != -1) {
            close(fd);
        }
    }
    int fd;
};

struct soinfo_ptr {
    soinfo_ptr(const char* name) {
        const char* bname = strrchr(name, '/');
        ptr = soinfo_alloc(bname ? bname + 1 : name);
    }
    ~soinfo_ptr() {
        soinfo_free(ptr);
    }
    soinfo* release() {
        soinfo* result = ptr;
        ptr = NULL;
        return result;
    }
    soinfo* ptr;
};

// TODO: rewrite linker_phdr.h to use a class, then lose this.
struct phdr_ptr {
    phdr_ptr() : phdr_mmap(NULL) {}
    ~phdr_ptr() {
        if (phdr_mmap != NULL) {
            phdr_table_unload(phdr_mmap, phdr_size);
        }
    }
    void* phdr_mmap;
    Elf32_Addr phdr_size;
};

static soinfo* load_library(const char* name) {
    // Open the file.
    scoped_fd fd;
    fd.fd = open_library(name);
    if (fd.fd == -1) {
        DL_ERR("library \"%s\" not found", name);
        return NULL;
    }

    // Read the ELF header.
    Elf32_Ehdr header[1];
    int ret = TEMP_FAILURE_RETRY(read(fd.fd, (void*)header, sizeof(header)));
    if (ret < 0) {
        DL_ERR("can't read file \"%s\": %s", name, strerror(errno));
        return NULL;
    }
    if (ret != (int)sizeof(header)) {
        DL_ERR("too small to be an ELF executable: %s", name);
        return NULL;
    }
    if (verify_elf_header(header) < 0) {
        DL_ERR("not a valid ELF executable: %s", name);
        return NULL;
    }

    // Read the program header table.
    const Elf32_Phdr* phdr_table;
    phdr_ptr phdr_holder;
    ret = phdr_table_load(fd.fd, header->e_phoff, header->e_phnum,
                          &phdr_holder.phdr_mmap, &phdr_holder.phdr_size, &phdr_table);
    if (ret < 0) {
        DL_ERR("can't load program header table: %s: %s", name, strerror(errno));
        return NULL;
    }
    size_t phdr_count = header->e_phnum;

    // Get the load extents.
    Elf32_Addr ext_sz = phdr_table_get_load_size(phdr_table, phdr_count);
    TRACE("[ '%s' wants sz=0x%08x ]\n", name, ext_sz);
    if (ext_sz == 0) {
        DL_ERR("no loadable segments in file: %s", name);
        return NULL;
    }

    // We no longer support pre-linked libraries.
    if (is_prelinked(fd.fd, name)) {
        return NULL;
    }

    // Reserve address space for all loadable segments.
    void* load_start = NULL;
    Elf32_Addr load_size = 0;
    Elf32_Addr load_bias = 0;
    ret = phdr_table_reserve_memory(phdr_table,
                                    phdr_count,
                                    &load_start,
                                    &load_size,
                                    &load_bias);
    if (ret < 0) {
        DL_ERR("can't reserve %d bytes in address space for \"%s\": %s",
               ext_sz, name, strerror(errno));
        return NULL;
    }

    TRACE("[ allocated memory for %s @ %p (0x%08x) ]\n", name, load_start, load_size);

    /* Map all the segments in our address space with default protections */
    ret = phdr_table_load_segments(phdr_table,
                                   phdr_count,
                                   load_bias,
                                   fd.fd);
    if (ret < 0) {
        DL_ERR("can't map loadable segments for \"%s\": %s",
               name, strerror(errno));
        return NULL;
    }

    soinfo_ptr si(name);
    if (si.ptr == NULL) {
        return NULL;
    }

    si.ptr->base = (Elf32_Addr) load_start;
    si.ptr->size = load_size;
    si.ptr->load_bias = load_bias;
    si.ptr->flags = 0;
    si.ptr->entry = 0;
    si.ptr->dynamic = (unsigned *)-1;
    si.ptr->phnum = phdr_count;
    si.ptr->phdr = phdr_table_get_loaded_phdr(phdr_table, phdr_count, load_bias);
    if (si.ptr->phdr == NULL) {
        DL_ERR("can't find loaded PHDR for \"%s\"", name);
        return NULL;
    }

    return si.release();
}

static soinfo* init_library(soinfo* si) {
  // At this point we know that whatever is loaded @ base is a valid ELF
  // shared library whose segments are properly mapped in.
  TRACE("[ init_library base=0x%08x sz=0x%08x name='%s') ]\n",
        si->base, si->size, si->name);

  if (!soinfo_link_image(si)) {
    munmap((void *)si->base, si->size);
    return NULL;
  }

  return si;
}

static soinfo *find_loaded_library(const char *name)
{
    soinfo *si;
    const char *bname;

    // TODO: don't use basename only for determining libraries
    // http://code.google.com/p/android/issues/detail?id=6670

    bname = strrchr(name, '/');
    bname = bname ? bname + 1 : name;

    for(si = solist; si != NULL; si = si->next){
        if(!strcmp(bname, si->name)) {
            return si;
        }
    }
    return NULL;
}

static soinfo* find_library_internal(const char* name) {
  if (name == NULL) {
    return somain;
  }

  soinfo* si = find_loaded_library(name);
  if (si != NULL) {
    if (si->flags & FLAG_ERROR) {
      DL_ERR("\"%s\" failed to load previously", name);
      return NULL;
    }
    if (si->flags & FLAG_LINKED) {
      return si;
    }
    DL_ERR("OOPS: recursive link to \"%s\"", si->name);
    return NULL;
  }

  TRACE("[ '%s' has not been loaded yet.  Locating...]\n", name);
  si = load_library(name);
  if (si != NULL) {
    si = init_library(si);
  }

  return si;
}

static soinfo* find_library(const char* name) {
  soinfo* si = find_library_internal(name);
  if (si != NULL) {
    si->refcount++;
  }
  return si;
}

static int soinfo_unload(soinfo* si) {
  if (si->refcount == 1) {
    TRACE("unloading '%s'\n", si->name);
    si->CallDestructors();

    for (unsigned* d = si->dynamic; *d; d += 2) {
      if (d[0] == DT_NEEDED) {
        soinfo* lsi = find_loaded_library(si->strtab + d[1]);
        if (lsi != NULL) {
          TRACE("%s needs to unload %s\n", si->name, lsi->name);
          soinfo_unload(lsi);
        } else {
          // TODO: should we return -1 in this case?
          DL_ERR("\"%s\": could not unload dependent library", si->name);
        }
      }
    }

    munmap(reinterpret_cast<void*>(si->base), si->size);
    notify_gdb_of_unload(si);
    soinfo_free(si);
    si->refcount = 0;
  } else {
    si->refcount--;
    TRACE("not unloading '%s', decrementing refcount to %d\n", si->name, si->refcount);
  }
  return 0;
}

soinfo* do_dlopen(const char* name) {
  set_soinfo_pool_protection(PROT_READ | PROT_WRITE);
  soinfo* si = find_library(name);
  if (si != NULL) {
    si->CallConstructors();
  }
  set_soinfo_pool_protection(PROT_READ);
  return si;
}

int do_dlclose(soinfo* si) {
  set_soinfo_pool_protection(PROT_READ | PROT_WRITE);
  int result = soinfo_unload(si);
  set_soinfo_pool_protection(PROT_READ);
  return result;
}

/* TODO: don't use unsigned for addrs below. It works, but is not
 * ideal. They should probably be either uint32_t, Elf32_Addr, or unsigned
 * long.
 */
static int soinfo_relocate(soinfo *si, Elf32_Rel *rel, unsigned count,
                           soinfo *needed[])
{
    Elf32_Sym *symtab = si->symtab;
    const char *strtab = si->strtab;
    Elf32_Sym *s;
    Elf32_Rel *start = rel;
    soinfo *lsi;

    for (size_t idx = 0; idx < count; ++idx, ++rel) {
        unsigned type = ELF32_R_TYPE(rel->r_info);
        unsigned sym = ELF32_R_SYM(rel->r_info);
        unsigned reloc = (unsigned)(rel->r_offset + si->load_bias);
        unsigned sym_addr = 0;
        char *sym_name = NULL;

        DEBUG("Processing '%s' relocation at index %d\n", si->name, idx);
        if (type == 0) { // R_*_NONE
            continue;
        }
        if(sym != 0) {
            sym_name = (char *)(strtab + symtab[sym].st_name);
            s = soinfo_do_lookup(si, sym_name, &lsi, needed);
            if(s == NULL) {
                /* We only allow an undefined symbol if this is a weak
                   reference..   */
                s = &symtab[sym];
                if (ELF32_ST_BIND(s->st_info) != STB_WEAK) {
                    DL_ERR("cannot locate symbol \"%s\" referenced by \"%s\"...", sym_name, si->name);
                    return -1;
                }

                /* IHI0044C AAELF 4.5.1.1:

                   Libraries are not searched to resolve weak references.
                   It is not an error for a weak reference to remain
                   unsatisfied.

                   During linking, the value of an undefined weak reference is:
                   - Zero if the relocation type is absolute
                   - The address of the place if the relocation is pc-relative
                   - The address of nominal base address if the relocation
                     type is base-relative.
                  */

                switch (type) {
#if defined(ANDROID_ARM_LINKER)
                case R_ARM_JUMP_SLOT:
                case R_ARM_GLOB_DAT:
                case R_ARM_ABS32:
                case R_ARM_RELATIVE:    /* Don't care. */
#elif defined(ANDROID_X86_LINKER)
                case R_386_JMP_SLOT:
                case R_386_GLOB_DAT:
                case R_386_32:
                case R_386_RELATIVE:    /* Dont' care. */
#endif /* ANDROID_*_LINKER */
                    /* sym_addr was initialized to be zero above or relocation
                       code below does not care about value of sym_addr.
                       No need to do anything.  */
                    break;

#if defined(ANDROID_X86_LINKER)
                case R_386_PC32:
                    sym_addr = reloc;
                    break;
#endif /* ANDROID_X86_LINKER */

#if defined(ANDROID_ARM_LINKER)
                case R_ARM_COPY:
                    /* Fall through.  Can't really copy if weak symbol is
                       not found in run-time.  */
#endif /* ANDROID_ARM_LINKER */
                default:
                    DL_ERR("unknown weak reloc type %d @ %p (%d)",
                                 type, rel, (int) (rel - start));
                    return -1;
                }
            } else {
                /* We got a definition.  */
#if 0
                if((base == 0) && (si->base != 0)){
                        /* linking from libraries to main image is bad */
                    DL_ERR("cannot locate \"%s\"...",
                           strtab + symtab[sym].st_name);
                    return -1;
                }
#endif
                sym_addr = (unsigned)(s->st_value + lsi->load_bias);
            }
            count_relocation(kRelocSymbol);
        } else {
            s = NULL;
        }

/* TODO: This is ugly. Split up the relocations by arch into
 * different files.
 */
        switch(type){
#if defined(ANDROID_ARM_LINKER)
        case R_ARM_JUMP_SLOT:
            count_relocation(kRelocAbsolute);
            MARK(rel->r_offset);
            TRACE_TYPE(RELO, "RELO JMP_SLOT %08x <- %08x %s\n", reloc, sym_addr, sym_name);
            *((unsigned*)reloc) = sym_addr;
            break;
        case R_ARM_GLOB_DAT:
            count_relocation(kRelocAbsolute);
            MARK(rel->r_offset);
            TRACE_TYPE(RELO, "RELO GLOB_DAT %08x <- %08x %s\n", reloc, sym_addr, sym_name);
            *((unsigned*)reloc) = sym_addr;
            break;
        case R_ARM_ABS32:
            count_relocation(kRelocAbsolute);
            MARK(rel->r_offset);
            TRACE_TYPE(RELO, "RELO ABS %08x <- %08x %s\n", reloc, sym_addr, sym_name);
            *((unsigned*)reloc) += sym_addr;
            break;
        case R_ARM_REL32:
            count_relocation(kRelocRelative);
            MARK(rel->r_offset);
            TRACE_TYPE(RELO, "RELO REL32 %08x <- %08x - %08x %s\n",
                       reloc, sym_addr, rel->r_offset, sym_name);
            *((unsigned*)reloc) += sym_addr - rel->r_offset;
            break;
#elif defined(ANDROID_X86_LINKER)
        case R_386_JMP_SLOT:
            count_relocation(kRelocAbsolute);
            MARK(rel->r_offset);
            TRACE_TYPE(RELO, "RELO JMP_SLOT %08x <- %08x %s\n", reloc, sym_addr, sym_name);
            *((unsigned*)reloc) = sym_addr;
            break;
        case R_386_GLOB_DAT:
            count_relocation(kRelocAbsolute);
            MARK(rel->r_offset);
            TRACE_TYPE(RELO, "RELO GLOB_DAT %08x <- %08x %s\n", reloc, sym_addr, sym_name);
            *((unsigned*)reloc) = sym_addr;
            break;
#elif defined(ANDROID_MIPS_LINKER)
    case R_MIPS_JUMP_SLOT:
            count_relocation(kRelocAbsolute);
            MARK(rel->r_offset);
            TRACE_TYPE(RELO, "RELO JMP_SLOT %08x <- %08x %s\n", reloc, sym_addr, sym_name);
            *((unsigned*)reloc) = sym_addr;
            break;
    case R_MIPS_REL32:
            count_relocation(kRelocAbsolute);
            MARK(rel->r_offset);
            TRACE_TYPE(RELO, "RELO REL32 %08x <- %08x %s\n",
                       reloc, sym_addr, (sym_name) ? sym_name : "*SECTIONHDR*");
            if (s) {
                *((unsigned*)reloc) += sym_addr;
            } else {
                *((unsigned*)reloc) += si->base;
            }
            break;
#endif /* ANDROID_*_LINKER */

#if defined(ANDROID_ARM_LINKER)
        case R_ARM_RELATIVE:
#elif defined(ANDROID_X86_LINKER)
        case R_386_RELATIVE:
#endif /* ANDROID_*_LINKER */
            count_relocation(kRelocRelative);
            MARK(rel->r_offset);
            if (sym) {
                DL_ERR("odd RELATIVE form...");
                return -1;
            }
            TRACE_TYPE(RELO, "RELO RELATIVE %08x <- +%08x\n", reloc, si->base);
            *((unsigned*)reloc) += si->base;
            break;

#if defined(ANDROID_X86_LINKER)
        case R_386_32:
            count_relocation(kRelocRelative);
            MARK(rel->r_offset);

            TRACE_TYPE(RELO, "RELO R_386_32 %08x <- +%08x %s\n", reloc, sym_addr, sym_name);
            *((unsigned *)reloc) += (unsigned)sym_addr;
            break;

        case R_386_PC32:
            count_relocation(kRelocRelative);
            MARK(rel->r_offset);
            TRACE_TYPE(RELO, "RELO R_386_PC32 %08x <- +%08x (%08x - %08x) %s\n",
                       reloc, (sym_addr - reloc), sym_addr, reloc, sym_name);
            *((unsigned *)reloc) += (unsigned)(sym_addr - reloc);
            break;
#endif /* ANDROID_X86_LINKER */

#ifdef ANDROID_ARM_LINKER
        case R_ARM_COPY:
            if ((si->flags & FLAG_EXE) == 0) {
                /*
                 * http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044d/IHI0044D_aaelf.pdf
                 *
                 * Section 4.7.1.10 "Dynamic relocations"
                 * R_ARM_COPY may only appear in executable objects where e_type is
                 * set to ET_EXEC.
                 *
                 * TODO: FLAG_EXE is set for both ET_DYN and ET_EXEC executables.
                 * We should explicitly disallow ET_DYN executables from having
                 * R_ARM_COPY relocations.
                 */
                DL_ERR("%s R_ARM_COPY relocations only supported for ET_EXEC", si->name);
                return -1;
            }
            count_relocation(kRelocCopy);
            MARK(rel->r_offset);
            TRACE_TYPE(RELO, "RELO %08x <- %d @ %08x %s\n", reloc, s->st_size, sym_addr, sym_name);
            if (reloc == sym_addr) {
                Elf32_Sym *src = soinfo_do_lookup(NULL, sym_name, &lsi, needed);

                if (src == NULL) {
                    DL_ERR("%s R_ARM_COPY relocation source cannot be resolved", si->name);
                    return -1;
                }
                if (lsi->has_DT_SYMBOLIC) {
                    DL_ERR("%s invalid R_ARM_COPY relocation against DT_SYMBOLIC shared "
                           "library %s (built with -Bsymbolic?)", si->name, lsi->name);
                    return -1;
                }
                if (s->st_size < src->st_size) {
                    DL_ERR("%s R_ARM_COPY relocation size mismatch (%d < %d)",
                           si->name, s->st_size, src->st_size);
                    return -1;
                }
                memcpy((void*)reloc, (void*)(src->st_value + lsi->load_bias), src->st_size);
            } else {
                DL_ERR("%s R_ARM_COPY relocation target cannot be resolved", si->name);
                return -1;
            }
            break;
#endif /* ANDROID_ARM_LINKER */

        default:
            DL_ERR("unknown reloc type %d @ %p (%d)",
                   type, rel, (int) (rel - start));
            return -1;
        }
    }
    return 0;
}

#ifdef ANDROID_MIPS_LINKER
static int mips_relocate_got(soinfo* si, soinfo* needed[]) {
    unsigned *got;
    unsigned local_gotno, gotsym, symtabno;
    Elf32_Sym *symtab, *sym;
    unsigned g;

    got = si->plt_got;
    local_gotno = si->mips_local_gotno;
    gotsym = si->mips_gotsym;
    symtabno = si->mips_symtabno;
    symtab = si->symtab;

    /*
     * got[0] is address of lazy resolver function
     * got[1] may be used for a GNU extension
     * set it to a recognizable address in case someone calls it
     * (should be _rtld_bind_start)
     * FIXME: maybe this should be in a separate routine
     */

    if ((si->flags & FLAG_LINKER) == 0) {
        g = 0;
        got[g++] = 0xdeadbeef;
        if (got[g] & 0x80000000) {
            got[g++] = 0xdeadfeed;
        }
        /*
         * Relocate the local GOT entries need to be relocated
         */
        for (; g < local_gotno; g++) {
            got[g] += si->load_bias;
        }
    }

    /* Now for the global GOT entries */
    sym = symtab + gotsym;
    got = si->plt_got + local_gotno;
    for (g = gotsym; g < symtabno; g++, sym++, got++) {
        const char *sym_name;
        Elf32_Sym *s;
        soinfo *lsi;

        /* This is an undefined reference... try to locate it */
        sym_name = si->strtab + sym->st_name;
        s = soinfo_do_lookup(si, sym_name, &lsi, needed);
        if (s == NULL) {
            /* We only allow an undefined symbol if this is a weak
               reference..   */
            s = &symtab[g];
            if (ELF32_ST_BIND(s->st_info) != STB_WEAK) {
                DL_ERR("cannot locate \"%s\"...", sym_name);
                return -1;
            }
            *got = 0;
        }
        else {
            /* FIXME: is this sufficient?
             * For reference see NetBSD link loader
             * http://cvsweb.netbsd.org/bsdweb.cgi/src/libexec/ld.elf_so/arch/mips/mips_reloc.c?rev=1.53&content-type=text/x-cvsweb-markup
             */
             *got = lsi->load_bias + s->st_value;
        }
    }
    return 0;
}
#endif

/* Please read the "Initialization and Termination functions" functions.
 * of the linker design note in bionic/linker/README.TXT to understand
 * what the following code is doing.
 *
 * The important things to remember are:
 *
 *   DT_PREINIT_ARRAY must be called first for executables, and should
 *   not appear in shared libraries.
 *
 *   DT_INIT should be called before DT_INIT_ARRAY if both are present
 *
 *   DT_FINI should be called after DT_FINI_ARRAY if both are present
 *
 *   DT_FINI_ARRAY must be parsed in reverse order.
 */
void soinfo::CallArray(const char* array_name UNUSED, unsigned* array, int count, bool reverse) {
  if (array == NULL) {
    return;
  }

  int step = 1;
  if (reverse) {
    array += (count-1);
    step = -1;
  }

  TRACE("[ Calling %s @ %p [%d] for '%s' ]\n", array_name, array, count, name);

  for (int n = count; n > 0; n--) {
    TRACE("[ Looking at %s[%d] *%p == 0x%08x ]\n", array_name, n, array, *array);
    void (*func)() = (void (*)()) *array;
    array += step;
    if (((int) func == 0) || ((int) func == -1)) {
      continue;
    }
    TRACE("[ Calling func @ %p ]\n", func);
    func();
  }

  TRACE("[ Done calling %s for '%s' ]\n", array_name, name);
}

void soinfo::CallFunction(const char* function_name UNUSED, void (*function)()) {
  if (function == NULL) {
    return;
  }

  TRACE("[ Calling %s @ %p for '%s' ]\n", function_name, function, name);
  function();
  TRACE("[ Done calling %s for '%s' ]\n", function_name, name);
}

void soinfo::CallPreInitConstructors() {
  CallArray("DT_PREINIT_ARRAY", preinit_array, preinit_array_count, false);
}

void soinfo::CallConstructors() {
  if (constructors_called) {
    return;
  }

  // We set constructors_called before actually calling the constructors, otherwise it doesn't
  // protect against recursive constructor calls. One simple example of constructor recursion
  // is the libc debug malloc, which is implemented in libc_malloc_debug_leak.so:
  // 1. The program depends on libc, so libc's constructor is called here.
  // 2. The libc constructor calls dlopen() to load libc_malloc_debug_leak.so.
  // 3. dlopen() calls the constructors on the newly created
  //    soinfo for libc_malloc_debug_leak.so.
  // 4. The debug .so depends on libc, so CallConstructors is
  //    called again with the libc soinfo. If it doesn't trigger the early-
  //    out above, the libc constructor will be called again (recursively!).
  constructors_called = true;

  if (!(flags & FLAG_EXE) && preinit_array) {
    DL_ERR("shared library \"%s\" has a preinit_array table @ %p", name, preinit_array);
    return;
  }

  if (dynamic) {
    for (unsigned* d = dynamic; *d; d += 2) {
      if (d[0] == DT_NEEDED) {
        soinfo* lsi = find_loaded_library(strtab + d[1]);
        if (lsi == NULL) {
          DL_ERR("\"%s\": could not initialize dependent library", name);
        } else {
          lsi->CallConstructors();
        }
      }
    }
  }

  CallFunction("DT_INIT", init_func);
  CallArray("DT_INIT_ARRAY", init_array, init_array_count, false);
}

void soinfo::CallDestructors() {
  CallArray("DT_FINI_ARRAY", fini_array, fini_array_count, true);
  CallFunction("DT_FINI", fini_func);
}

/* Force any of the closed stdin, stdout and stderr to be associated with
   /dev/null. */
static int nullify_closed_stdio() {
    int dev_null, i, status;
    int return_value = 0;

    dev_null = TEMP_FAILURE_RETRY(open("/dev/null", O_RDWR));
    if (dev_null < 0) {
        DL_ERR("cannot open /dev/null: %s", strerror(errno));
        return -1;
    }
    TRACE("[ Opened /dev/null file-descriptor=%d]\n", dev_null);

    /* If any of the stdio file descriptors is valid and not associated
       with /dev/null, dup /dev/null to it.  */
    for (i = 0; i < 3; i++) {
        /* If it is /dev/null already, we are done. */
        if (i == dev_null) {
            continue;
        }

        TRACE("[ Nullifying stdio file descriptor %d]\n", i);
        status = TEMP_FAILURE_RETRY(fcntl(i, F_GETFL));

        /* If file is opened, we are good. */
        if (status != -1) {
            continue;
        }

        /* The only error we allow is that the file descriptor does not
           exist, in which case we dup /dev/null to it. */
        if (errno != EBADF) {
            DL_ERR("fcntl failed: %s", strerror(errno));
            return_value = -1;
            continue;
        }

        /* Try dupping /dev/null to this stdio file descriptor and
           repeat if there is a signal.  Note that any errors in closing
           the stdio descriptor are lost.  */
        status = TEMP_FAILURE_RETRY(dup2(dev_null, i));
        if (status < 0) {
            DL_ERR("dup2 failed: %s", strerror(errno));
            return_value = -1;
            continue;
        }
    }

    /* If /dev/null is not one of the stdio file descriptors, close it. */
    if (dev_null > 2) {
        TRACE("[ Closing /dev/null file-descriptor=%d]\n", dev_null);
        status = TEMP_FAILURE_RETRY(close(dev_null));
        if (status == -1) {
            DL_ERR("close failed: %s", strerror(errno));
            return_value = -1;
        }
    }

    return return_value;
}

static bool soinfo_link_image(soinfo* si) {
    si->flags |= FLAG_ERROR;

    /* "base" might wrap around UINT32_MAX. */
    Elf32_Addr base = si->load_bias;
    const Elf32_Phdr *phdr = si->phdr;
    int phnum = si->phnum;
    int relocating_linker = (si->flags & FLAG_LINKER) != 0;
    soinfo **needed, **pneeded;

    /* We can't debug anything until the linker is relocated */
    if (!relocating_linker) {
        INFO("[ linking %s ]\n", si->name);
        DEBUG("si->base = 0x%08x si->flags = 0x%08x\n", si->base, si->flags);
    }

    /* Extract dynamic section */
    size_t dynamic_count;
    phdr_table_get_dynamic_section(phdr, phnum, base, &si->dynamic,
                                   &dynamic_count);
    if (si->dynamic == NULL) {
        if (!relocating_linker) {
            DL_ERR("missing PT_DYNAMIC in \"%s\"", si->name);
        }
        return false;
    } else {
        if (!relocating_linker) {
            DEBUG("dynamic = %p\n", si->dynamic);
        }
    }

#ifdef ANDROID_ARM_LINKER
    (void) phdr_table_get_arm_exidx(phdr, phnum, base,
                                    &si->ARM_exidx, &si->ARM_exidx_count);
#endif

    /* extract useful information from dynamic section */
    for (unsigned* d = si->dynamic; *d; ++d) {
        DEBUG("d = %p, d[0] = 0x%08x d[1] = 0x%08x\n", d, d[0], d[1]);
        switch(*d++){
        case DT_HASH:
            si->nbucket = ((unsigned *) (base + *d))[0];
            si->nchain = ((unsigned *) (base + *d))[1];
            si->bucket = (unsigned *) (base + *d + 8);
            si->chain = (unsigned *) (base + *d + 8 + si->nbucket * 4);
            break;
        case DT_STRTAB:
            si->strtab = (const char *) (base + *d);
            break;
        case DT_SYMTAB:
            si->symtab = (Elf32_Sym *) (base + *d);
            break;
        case DT_PLTREL:
            if(*d != DT_REL) {
                DL_ERR("unsupported DT_RELA in \"%s\"", si->name);
                return false;
            }
            break;
        case DT_JMPREL:
            si->plt_rel = (Elf32_Rel*) (base + *d);
            break;
        case DT_PLTRELSZ:
            si->plt_rel_count = *d / 8;
            break;
        case DT_REL:
            si->rel = (Elf32_Rel*) (base + *d);
            break;
        case DT_RELSZ:
            si->rel_count = *d / 8;
            break;
        case DT_PLTGOT:
            /* Save this in case we decide to do lazy binding. We don't yet. */
            si->plt_got = (unsigned *)(base + *d);
            break;
        case DT_DEBUG:
#if !defined(ANDROID_MIPS_LINKER)
            // Set the DT_DEBUG entry to the address of _r_debug for GDB
            *d = (int) &_r_debug;
#endif
            break;
         case DT_RELA:
            DL_ERR("unsupported DT_RELA in \"%s\"", si->name);
            return false;
        case DT_INIT:
            si->init_func = (void (*)(void))(base + *d);
            DEBUG("%s constructors (init func) found at %p\n", si->name, si->init_func);
            break;
        case DT_FINI:
            si->fini_func = (void (*)(void))(base + *d);
            DEBUG("%s destructors (fini func) found at %p\n", si->name, si->fini_func);
            break;
        case DT_INIT_ARRAY:
            si->init_array = (unsigned *)(base + *d);
            DEBUG("%s constructors (init_array) found at %p\n", si->name, si->init_array);
            break;
        case DT_INIT_ARRAYSZ:
            si->init_array_count = ((unsigned)*d) / sizeof(Elf32_Addr);
            break;
        case DT_FINI_ARRAY:
            si->fini_array = (unsigned *)(base + *d);
            DEBUG("%s destructors (fini_array) found at %p\n", si->name, si->fini_array);
            break;
        case DT_FINI_ARRAYSZ:
            si->fini_array_count = ((unsigned)*d) / sizeof(Elf32_Addr);
            break;
        case DT_PREINIT_ARRAY:
            si->preinit_array = (unsigned *)(base + *d);
            DEBUG("%s constructors (preinit_array) found at %p\n", si->name, si->preinit_array);
            break;
        case DT_PREINIT_ARRAYSZ:
            si->preinit_array_count = ((unsigned)*d) / sizeof(Elf32_Addr);
            break;
        case DT_TEXTREL:
            si->has_text_relocations = true;
            break;
        case DT_SYMBOLIC:
            si->has_DT_SYMBOLIC = true;
            break;
#if defined(DT_FLAGS)
        case DT_FLAGS:
            if (*d & DF_TEXTREL) {
                si->has_text_relocations = true;
            }
            if (*d & DF_SYMBOLIC) {
                si->has_DT_SYMBOLIC = true;
            }
            break;
#endif
#if defined(ANDROID_MIPS_LINKER)
        case DT_NEEDED:
        case DT_STRSZ:
        case DT_SYMENT:
        case DT_RELENT:
             break;
        case DT_MIPS_RLD_MAP:
            // Set the DT_MIPS_RLD_MAP entry to the address of _r_debug for GDB.
            {
              r_debug** dp = (r_debug**) *d;
              *dp = &_r_debug;
            }
            break;
        case DT_MIPS_RLD_VERSION:
        case DT_MIPS_FLAGS:
        case DT_MIPS_BASE_ADDRESS:
        case DT_MIPS_UNREFEXTNO:
        case DT_MIPS_RWPLT:
            break;

        case DT_MIPS_PLTGOT:
#if 0
            /* not yet... */
            si->mips_pltgot = (unsigned *)(si->base + *d);
#endif
            break;

        case DT_MIPS_SYMTABNO:
            si->mips_symtabno = *d;
            break;

        case DT_MIPS_LOCAL_GOTNO:
            si->mips_local_gotno = *d;
            break;

        case DT_MIPS_GOTSYM:
            si->mips_gotsym = *d;
            break;

        default:
            DEBUG("Unused DT entry: type 0x%08x arg 0x%08x\n", d[-1], d[0]);
            break;
#endif
        }
    }

    DEBUG("si->base = 0x%08x, si->strtab = %p, si->symtab = %p\n",
          si->base, si->strtab, si->symtab);

    // Sanity checks.
    if (si->nbucket == 0) {
        DL_ERR("empty/missing DT_HASH in \"%s\" (built with --hash-style=gnu?)", si->name);
        return false;
    }
    if (si->strtab == 0) {
        DL_ERR("empty/missing DT_STRTAB in \"%s\"", si->name);
        return false;
    }
    if (si->symtab == 0) {
        DL_ERR("empty/missing DT_SYMTAB in \"%s\"", si->name);
        return false;
    }

    /* if this is the main executable, then load all of the preloads now */
    if (si->flags & FLAG_EXE) {
        memset(preloads, 0, sizeof(preloads));
        for (size_t i = 0; gLdPreloadNames[i] != NULL; i++) {
            soinfo* lsi = find_library(gLdPreloadNames[i]);
            if (lsi == NULL) {
                strlcpy(tmp_err_buf, linker_get_error(), sizeof(tmp_err_buf));
                DL_ERR("could not load library \"%s\" needed by \"%s\"; caused by %s",
                       gLdPreloadNames[i], si->name, tmp_err_buf);
                return false;
            }
            preloads[i] = lsi;
        }
    }

    /* dynamic_count is an upper bound for the number of needed libs */
    pneeded = needed = (soinfo**) alloca((1 + dynamic_count) * sizeof(soinfo*));

    for (unsigned* d = si->dynamic; *d; d += 2) {
        if (d[0] == DT_NEEDED) {
            DEBUG("%s needs %s\n", si->name, si->strtab + d[1]);
            soinfo* lsi = find_library(si->strtab + d[1]);
            if (lsi == NULL) {
                strlcpy(tmp_err_buf, linker_get_error(), sizeof(tmp_err_buf));
                DL_ERR("could not load library \"%s\" needed by \"%s\"; caused by %s",
                       si->strtab + d[1], si->name, tmp_err_buf);
                return false;
            }
            *pneeded++ = lsi;
        }
    }
    *pneeded = NULL;

    if (si->has_text_relocations) {
        /* Unprotect the segments, i.e. make them writable, to allow
         * text relocations to work properly. We will later call
         * phdr_table_protect_segments() after all of them are applied
         * and all constructors are run.
         */
        if (phdr_table_unprotect_segments(si->phdr, si->phnum, si->load_bias) < 0) {
            DL_ERR("can't unprotect loadable segments for \"%s\": %s",
                   si->name, strerror(errno));
            return false;
        }
    }

    if (si->plt_rel) {
        DEBUG("[ relocating %s plt ]\n", si->name );
        if(soinfo_relocate(si, si->plt_rel, si->plt_rel_count, needed)) {
            return false;
        }
    }
    if (si->rel) {
        DEBUG("[ relocating %s ]\n", si->name );
        if(soinfo_relocate(si, si->rel, si->rel_count, needed)) {
            return false;
        }
    }

#ifdef ANDROID_MIPS_LINKER
    if (mips_relocate_got(si, needed)) {
        return false;
    }
#endif

    si->flags |= FLAG_LINKED;
    DEBUG("[ finished linking %s ]\n", si->name);

    if (si->has_text_relocations) {
        /* All relocations are done, we can protect our segments back to
         * read-only. */
        if (phdr_table_protect_segments(si->phdr, si->phnum, si->load_bias) < 0) {
            DL_ERR("can't protect segments for \"%s\": %s",
                   si->name, strerror(errno));
            return false;
        }
    }

    /* We can also turn on GNU RELRO protection */
    if (phdr_table_protect_gnu_relro(si->phdr, si->phnum, si->load_bias) < 0) {
        DL_ERR("can't enable GNU RELRO protection for \"%s\": %s",
               si->name, strerror(errno));
        return false;
    }

    // If this is a setuid/setgid program, close the security hole described in
    // ftp://ftp.freebsd.org/pub/FreeBSD/CERT/advisories/FreeBSD-SA-02:23.stdio.asc
    if (get_AT_SECURE()) {
        nullify_closed_stdio();
    }
    notify_gdb_of_load(si);
    si->flags &= ~FLAG_ERROR;
    return true;
}

static void parse_path(const char* path, const char* delimiters,
                       const char** array, char* buf, size_t buf_size, size_t max_count)
{
    if (path == NULL) {
        return;
    }

    size_t len = strlcpy(buf, path, buf_size);

    size_t i = 0;
    char* buf_p = buf;
    while (i < max_count && (array[i] = strsep(&buf_p, delimiters))) {
        if (*array[i] != '\0') {
            ++i;
        }
    }

    // Forget the last path if we had to truncate; this occurs if the 2nd to
    // last char isn't '\0' (i.e. wasn't originally a delimiter).
    if (i > 0 && len >= buf_size && buf[buf_size - 2] != '\0') {
        array[i - 1] = NULL;
    } else {
        array[i] = NULL;
    }
}

static void parse_LD_LIBRARY_PATH(const char* path) {
    parse_path(path, ":", gLdPaths,
               gLdPathsBuffer, sizeof(gLdPathsBuffer), LDPATH_MAX);
}

static void parse_LD_PRELOAD(const char* path) {
    // We have historically supported ':' as well as ' ' in LD_PRELOAD.
    parse_path(path, " :", gLdPreloadNames,
               gLdPreloadsBuffer, sizeof(gLdPreloadsBuffer), LDPRELOAD_MAX);
}

/*
 * This code is called after the linker has linked itself and
 * fixed it's own GOT. It is safe to make references to externs
 * and other non-local data at this point.
 */
static unsigned __linker_init_post_relocation(unsigned **elfdata, unsigned linker_base)
{
    static soinfo linker_soinfo;

    int argc = (int) *elfdata;
    char **argv = (char**) (elfdata + 1);
    unsigned *vecs = (unsigned*) (argv + argc + 1);

    /* NOTE: we store the elfdata pointer on a special location
     *       of the temporary TLS area in order to pass it to
     *       the C Library's runtime initializer.
     *
     *       The initializer must clear the slot and reset the TLS
     *       to point to a different location to ensure that no other
     *       shared library constructor can access it.
     */
    __libc_init_tls(elfdata);

#if TIMING
    struct timeval t0, t1;
    gettimeofday(&t0, 0);
#endif

    // Initialize environment functions, and get to the ELF aux vectors table.
    vecs = linker_env_init(vecs);

    debugger_init();

    // Get a few environment variables.
    const char* LD_DEBUG = linker_env_get("LD_DEBUG");
    if (LD_DEBUG != NULL) {
      debug_verbosity = atoi(LD_DEBUG);
    }

    // Normally, these are cleaned by linker_env_init, but the test
    // doesn't cost us anything.
    const char* ldpath_env = NULL;
    const char* ldpreload_env = NULL;
    if (!get_AT_SECURE()) {
      ldpath_env = linker_env_get("LD_LIBRARY_PATH");
      ldpreload_env = linker_env_get("LD_PRELOAD");
    }

    INFO("[ android linker & debugger ]\n");
    DEBUG("elfdata @ 0x%08x\n", (unsigned)elfdata);

    soinfo* si = soinfo_alloc(argv[0]);
    if (si == NULL) {
        exit(EXIT_FAILURE);
    }

    /* bootstrap the link map, the main exe always needs to be first */
    si->flags |= FLAG_EXE;
    link_map* map = &(si->linkmap);

    map->l_addr = 0;
    map->l_name = argv[0];
    map->l_prev = NULL;
    map->l_next = NULL;

    _r_debug.r_map = map;
    r_debug_tail = map;

        /* gdb expects the linker to be in the debug shared object list.
         * Without this, gdb has trouble locating the linker's ".text"
         * and ".plt" sections. Gdb could also potentially use this to
         * relocate the offset of our exported 'rtld_db_dlactivity' symbol.
         * Don't use soinfo_alloc(), because the linker shouldn't
         * be on the soinfo list.
         */
    strlcpy((char*) linker_soinfo.name, "/system/bin/linker", sizeof linker_soinfo.name);
    linker_soinfo.flags = 0;
    linker_soinfo.base = linker_base;
    /*
     * Set the dynamic field in the link map otherwise gdb will complain with
     * the following:
     *   warning: .dynamic section for "/system/bin/linker" is not at the
     *   expected address (wrong library or version mismatch?)
     */
    Elf32_Ehdr *elf_hdr = (Elf32_Ehdr *) linker_base;
    Elf32_Phdr *phdr =
        (Elf32_Phdr *)((unsigned char *) linker_base + elf_hdr->e_phoff);
    phdr_table_get_dynamic_section(phdr, elf_hdr->e_phnum, linker_base,
                                   &linker_soinfo.dynamic, NULL);
    insert_soinfo_into_debug_map(&linker_soinfo);

    /* extract information passed from the kernel */
    while (vecs[0] != 0){
        switch(vecs[0]){
        case AT_PHDR:
            si->phdr = (Elf32_Phdr*) vecs[1];
            break;
        case AT_PHNUM:
            si->phnum = (int) vecs[1];
            break;
        case AT_ENTRY:
            si->entry = vecs[1];
            break;
        }
        vecs += 2;
    }

    /* Compute the value of si->base. We can't rely on the fact that
     * the first entry is the PHDR because this will not be true
     * for certain executables (e.g. some in the NDK unit test suite)
     */
    int nn;
    si->base = 0;
    si->size = phdr_table_get_load_size(si->phdr, si->phnum);
    si->load_bias = 0;
    for ( nn = 0; nn < si->phnum; nn++ ) {
        if (si->phdr[nn].p_type == PT_PHDR) {
            si->load_bias = (Elf32_Addr)si->phdr - si->phdr[nn].p_vaddr;
            si->base = (Elf32_Addr) si->phdr - si->phdr[nn].p_offset;
            break;
        }
    }
    si->dynamic = (unsigned *)-1;
    si->refcount = 1;

    // Use LD_LIBRARY_PATH and LD_PRELOAD (but only if we aren't setuid/setgid).
    parse_LD_LIBRARY_PATH(ldpath_env);
    parse_LD_PRELOAD(ldpreload_env);

    somain = si;

    if (!soinfo_link_image(si)) {
        const char* msg = "CANNOT LINK EXECUTABLE\n";
        write(2, __linker_dl_err_buf, strlen(__linker_dl_err_buf));
        write(2, msg, strlen(msg));
        exit(EXIT_FAILURE);
    }

    si->CallPreInitConstructors();

    for (size_t i = 0; preloads[i] != NULL; ++i) {
        preloads[i]->CallConstructors();
    }

    /*After the link_image, the si->load_bias is initialized.
     *For so lib, the map->l_addr will be updated in notify_gdb_of_load.
     *We need to update this value for so exe here. So Unwind_Backtrace
     *for some arch like x86 could work correctly within so exe.
     */
    map->l_addr = si->load_bias;
    si->CallConstructors();

#if TIMING
    gettimeofday(&t1,NULL);
    PRINT("LINKER TIME: %s: %d microseconds\n", argv[0], (int) (
               (((long long)t1.tv_sec * 1000000LL) + (long long)t1.tv_usec) -
               (((long long)t0.tv_sec * 1000000LL) + (long long)t0.tv_usec)
               ));
#endif
#if STATS
    PRINT("RELO STATS: %s: %d abs, %d rel, %d copy, %d symbol\n", argv[0],
           linker_stats.count[kRelocAbsolute],
           linker_stats.count[kRelocRelative],
           linker_stats.count[kRelocCopy],
           linker_stats.count[kRelocSymbol]);
#endif
#if COUNT_PAGES
    {
        unsigned n;
        unsigned i;
        unsigned count = 0;
        for(n = 0; n < 4096; n++){
            if(bitmask[n]){
                unsigned x = bitmask[n];
                for(i = 0; i < 8; i++){
                    if(x & 1) count++;
                    x >>= 1;
                }
            }
        }
        PRINT("PAGES MODIFIED: %s: %d (%dKB)\n", argv[0], count, count * 4);
    }
#endif

#if TIMING || STATS || COUNT_PAGES
    fflush(stdout);
#endif

    TRACE("[ Ready to execute '%s' @ 0x%08x ]\n", si->name, si->entry);
    return si->entry;
}

/*
 * Find the value of AT_BASE passed to us by the kernel. This is the load
 * location of the linker.
 */
static unsigned find_linker_base(unsigned **elfdata) {
    int argc = (int) *elfdata;
    char **argv = (char**) (elfdata + 1);
    unsigned *vecs = (unsigned*) (argv + argc + 1);
    while (vecs[0] != 0) {
        vecs++;
    }

    /* The end of the environment block is marked by two NULL pointers */
    vecs++;

    while(vecs[0]) {
        if (vecs[0] == AT_BASE) {
            return vecs[1];
        }
        vecs += 2;
    }

    return 0; // should never happen
}

/* Compute the load-bias of an existing executable. This shall only
 * be used to compute the load bias of an executable or shared library
 * that was loaded by the kernel itself.
 *
 * Input:
 *    elf    -> address of ELF header, assumed to be at the start of the file.
 * Return:
 *    load bias, i.e. add the value of any p_vaddr in the file to get
 *    the corresponding address in memory.
 */
static Elf32_Addr
get_elf_exec_load_bias(const Elf32_Ehdr* elf)
{
    Elf32_Addr        offset     = elf->e_phoff;
    const Elf32_Phdr* phdr_table = (const Elf32_Phdr*)((char*)elf + offset);
    const Elf32_Phdr* phdr_end   = phdr_table + elf->e_phnum;
    const Elf32_Phdr* phdr;

    for (phdr = phdr_table; phdr < phdr_end; phdr++) {
        if (phdr->p_type == PT_LOAD) {
            return (Elf32_Addr)elf + phdr->p_offset - phdr->p_vaddr;
        }
    }
    return 0;
}

/*
 * This is the entry point for the linker, called from begin.S. This
 * method is responsible for fixing the linker's own relocations, and
 * then calling __linker_init_post_relocation().
 *
 * Because this method is called before the linker has fixed it's own
 * relocations, any attempt to reference an extern variable, extern
 * function, or other GOT reference will generate a segfault.
 */
extern "C" unsigned __linker_init(unsigned **elfdata) {
    unsigned linker_addr = find_linker_base(elfdata);
    Elf32_Ehdr *elf_hdr = (Elf32_Ehdr *) linker_addr;
    Elf32_Phdr *phdr =
        (Elf32_Phdr *)((unsigned char *) linker_addr + elf_hdr->e_phoff);

    soinfo linker_so;
    memset(&linker_so, 0, sizeof(soinfo));

    linker_so.base = linker_addr;
    linker_so.size = phdr_table_get_load_size(phdr, elf_hdr->e_phnum);
    linker_so.load_bias = get_elf_exec_load_bias(elf_hdr);
    linker_so.dynamic = (unsigned *) -1;
    linker_so.phdr = phdr;
    linker_so.phnum = elf_hdr->e_phnum;
    linker_so.flags |= FLAG_LINKER;

    if (!soinfo_link_image(&linker_so)) {
        // It would be nice to print an error message, but if the linker
        // can't link itself, there's no guarantee that we'll be able to
        // call write() (because it involves a GOT reference).
        //
        // This situation should never occur unless the linker itself
        // is corrupt.
        exit(EXIT_FAILURE);
    }

    // We have successfully fixed our own relocations. It's safe to run
    // the main part of the linker now.
    unsigned start_address = __linker_init_post_relocation(elfdata, linker_addr);

    set_soinfo_pool_protection(PROT_READ);

    // Return the address that the calling assembly stub should jump to.
    return start_address;
}