This test is designed to detect code such as:
int main() {
char buf[10];
memcpy(buf, "1234567890", sizeof(buf));
size_t len = strlen(buf); // segfault here with _FORTIFY_SOURCE
printf("%d\n", len);
return 0;
}
or anytime strlen reads beyond an object boundary. This should
help address memory leakage vulnerabilities and make other
unrelated vulnerabilities harder to exploit.
Change-Id: I354b425be7bef4713c85f6bab0e9738445e00182
In our previous FORTIFY_SOURCE change, we started using a custom
inline for memcpy(), rather than using GCC's __builtin_memcpy_chk().
This allowed us to delete our copy of __memcpy_chk(), and replace it
by __memcpy_chk2().
Apparently GCC uses __memcpy_chk() outside of __builtin_memcpy_chk().
Specifically, __memcpy_chk() is used by __builtin__memMOVE_chk() under
certain optimization levels.
Keep the old __memcpy_chk() function around, and have it call into
__memcpy_chk2().
Change-Id: I2453930b24b8a492a3b6ed860e18d92a6b762b80
Two changes:
1) Detect memory read overruns.
For example:
int main() {
char buf[10];
memcpy(buf, "abcde", sizeof(buf));
sprintf("%s\n", buf);
}
because "abcde" is only 6 bytes, copying 10 bytes from it is a bug.
This particular bug will be detected at compile time. Other similar
bugs may be detected at runtime.
2) Detect overlapping buffers on memcpy()
It is a bug to call memcpy() on buffers which overlap. For
example, the following code is buggy:
char buf3[0x800];
char *first_half = &buf3[0x400];
char *second_half = &buf3[1];
memset(buf3, 0, sizeof(buf3));
memcpy(first_half, second_half, 0x400);
printf("1: %s\n", buf3);
We now detect this at compile and run time.
Change-Id: I092bd89f11f18e08e8a9dda0ca903aaea8e06d91
memmove() unconditionally calls memcpy() if "dst" < "src". For
example, in the code below, memmove() would end up calling memcpy(),
even though the regions of memory overlap.
int main() {
char buf3[0x800];
char *dst = &buf3[1];
char *src = &buf3[0x400];
memset(buf3, 0, sizeof(buf3));
memmove(dst, src, 0x400);
printf("1: %s\n", buf3);
return 0;
}
Calling memcpy() on overlaping regions only works if you assume
that memcpy() copies from start to finish. On some architectures,
it's more efficient to call memcpy() from finish to start.
This is also triggering a failure in some of my code.
More reading:
* http://lwn.net/Articles/414467/
* https://bugzilla.redhat.com/show_bug.cgi?id=638477#c31 (comment 31)
Change-Id: I65a51ae3a52dd4af335fe5c278056b8c2cbd8948
Add strlcpy / strlcat support to FORTIFY_SOURCE. This allows
us to do consistency checks on to ensure we don't overflow buffers
when the compiler is able to tell us the size of the buffer we're
dealing with.
Unlike previous changes, this change DOES NOT use the compiler's
builtin support. Instead, we do everything the compiler would
normally do.
Change-Id: I47c099a911382452eafd711f8e9bfe7c2d0a0d22
Ensure that strcat / strncat check for integer overflows
when computing the length of the resulting string.
Change-Id: Ib806ad33a0d3b50876f384bc17787a28f0dddc37
Add _FORTIFY_SOURCE support for the following functions:
* memset
* bzero
Move the __BIONIC_FORTIFY_INLINE definition to cdefs.h so it
can be used from multiple header files.
Change-Id: Iead4d5e35de6ec97786d58ee12573f9b11135bb7
Add initial support for -D_FORTIFY_SOURCE to bionic for the
following functions:
* memcpy
* memmove
* strcpy
* strcat
* strncpy
* strncat
This change adds a new version of the above functions which passes
the size of the destination buffer to __builtin___*_chk.
If the compiler can determine, at compile time, that the destination
buffer is large enough, or the destination buffer can point to an object
of unknown size, then the check call is bypassed.
If the compiler can't make a compile time decision, then it calls
the __*_chk() function, which does a runtime buffer size check
These options are only enabled if the code is compiled with
-D_FORTIFY_SOURCE=1 or 2, and only when optimizations are enabled.
Please see
* http://gcc.gnu.org/onlinedocs/gcc/Object-Size-Checking.html
* http://gcc.gnu.org/ml/gcc-patches/2004-09/msg02055.html
for additional details on FORTIFY_SOURCE.
Testing: Compiled the entire Android tree with -D_FORTIFY_SOURCE=1,
and verified that everything appears to be working properly.
Also created a test buffer overflow, and verified that it was
caught by this change.
Change-Id: I4fddb445bafe92b16845b22458d72e6dedd24fbc
Chars are signed for x86 -- correct the comparison semantics.
Change-Id: I2049e98eb063c0b4e83ea973d3fcae49c6817dde
Author: Liubov Dmitrieva <liubov.dmitrieva@intel.com>
Signed-off-by: Bruce Beare <bruce.j.beare@intel.com>
On ARM there is currently no assembler optimized memmove in libc.
There is however a more optimized bcopy which copies long instead
of bytes where possible. This almost doubles the performance in
best case.
Change-Id: I1f1cd27529443358047c385730deaf938ce4e642
This reverts commit 80fba9a2fe,
which caused the system to not boot anymore, aborting with:
"java.lang.RuntimeException: Missing static main on com.android.server.SystemServer".
Change-Id: I745e0a23c728cccf5f95a3c7642d544478a4e57e
Return a valid pointer (not NULL) when the character "c" is at the end of "src".
Change-Id: Iab0b677943f2c8a9fbb255c44689f5d6dc3535d7
Example:
memccpy(dest, "xzy", 'y', 3) should return dest+3 rather than null.
It decreases code size:
text data bss dec hex filename
161 0 0 161 a1 strndup-BEFORE.o
153 0 0 153 99 strndup-AFTER.o
Signed-off-by: André Goddard Rosa <andre.goddard@gmail.com>