Well, kinda... localtime.c still contains a bunch of Android-specific
hacks, as does strftime.c. But the other files are now exactly the same
as upstream.
This catches up with several years of bug fixes, and fixes most of the
compiler warnings that were in this code. (Just two remain.)
Bug: 1744909
Change-Id: I2ddfecb6fd408c847397c17afb0fff859e27feef
In the old code, the index was a file to itself, so it made sense to
read until you hit the end of the file. In the new code, the index is
followed by hundreds of KiB of data, so we need to just search the
index.
Bug: 8368791
Change-Id: Icf5f8b5516cf3a93679fa849c9f6cd1cb100e0f1
Normally, the C library implicitly caches your timezone by virtue
of the fact that the prehistoric API assumes a single timezone for
the entire process.
The unfortunate mktime_tz and localtime_tz extensions work around
this, but represent timezones as strings to their callers, so code
that makes heavy use of these needs a cache to be able to perform
acceptably until it can hopefully one day be rewritten to use
java.util.Calendar or icu4c.
Bug: 8270865
Change-Id: I92e3964e86dc33ceac925f819cc5e26ff4203f50
Also add missing declarations to misc. functions.
Fix clearerr() implementation (previous was broken).
Handle feature test macros like _POSIX_C_SOURCE properly.
Change-Id: Icdc973a6b9d550a166fc2545f727ea837fe800c4
The problem is that time_t is signed, and the original code relied on the
fact that (X + c < X) in case of overflow for c >= 0. Unfortunately, this
condition is only guaranteed by the standard for unsigned arithmetic, and
the gcc 4.4.0 optimizer did completely remove the corresponding test from
the code. This resulted in a missing boundary check, and an infinite loop.
The problem is solved by testing explicitely for TIME_T_MIN and TIME_T_MAX
in the loop that uses this.
Also fix increment_overflow and long_increment_overflow which were buggy
for exactly the same reasons.
Note: a similar fix is needed for system/core/libcutils