* commit '6cec77755ba563f3707f695c99b9d24bff0f1791': Mutex-free implementation of pthread_rwlock
This commit is contained in:
commit
d75b6e2e47
@ -26,8 +26,11 @@
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include "pthread_internal.h"
|
||||
#include <errno.h>
|
||||
#include <sys/atomics.h>
|
||||
|
||||
#include "pthread_internal.h"
|
||||
#include "private/bionic_futex.h"
|
||||
|
||||
/* Technical note:
|
||||
*
|
||||
@ -40,186 +43,169 @@
|
||||
* Additionally:
|
||||
* - trying to get the write-lock while there are any readers blocks
|
||||
* - trying to get the read-lock while there is a writer blocks
|
||||
* - a single thread can acquire the lock multiple times in the same mode
|
||||
* - a single thread can acquire the lock multiple times in read mode
|
||||
*
|
||||
* - Posix states that behavior is undefined it a thread tries to acquire
|
||||
* the lock in two distinct modes (e.g. write after read, or read after write).
|
||||
* - Posix states that behavior is undefined (may deadlock) if a thread tries
|
||||
* to acquire the lock
|
||||
* - in write mode while already holding the lock (whether in read or write mode)
|
||||
* - in read mode while already holding the lock in write mode.
|
||||
* - This implementation will return EDEADLK in "write after write" and "read after
|
||||
* write" cases and will deadlock in write after read case.
|
||||
*
|
||||
* - This implementation tries to avoid writer starvation by making the readers
|
||||
* block as soon as there is a waiting writer on the lock. However, it cannot
|
||||
* completely eliminate it: each time the lock is unlocked, all waiting threads
|
||||
* are woken and battle for it, which one gets it depends on the kernel scheduler
|
||||
* and is semi-random.
|
||||
* TODO: VERY CAREFULLY convert this to use C++11 atomics when possible. All volatile
|
||||
* members of pthread_rwlock_t should be converted to atomics<> and __atomic_cmpxchg
|
||||
* should be changed to compare_exchange_strong accompanied by the proper ordering
|
||||
* constraints (comments have been added with the intending ordering across the code).
|
||||
*
|
||||
* TODO: As it stands now, pendingReaders and pendingWriters could be merged into a
|
||||
* a single waiters variable. Keeping them separate adds a bit of clarity and keeps
|
||||
* the door open for a writer-biased implementation.
|
||||
*
|
||||
*/
|
||||
|
||||
#define RWLOCKATTR_DEFAULT 0
|
||||
#define RWLOCKATTR_SHARED_MASK 0x0010
|
||||
|
||||
#define RWLOCK_IS_SHARED(rwlock) ((rwlock)->attr == PTHREAD_PROCESS_SHARED)
|
||||
|
||||
extern pthread_internal_t* __get_thread(void);
|
||||
|
||||
int pthread_rwlockattr_init(pthread_rwlockattr_t *attr)
|
||||
{
|
||||
*attr = PTHREAD_PROCESS_PRIVATE;
|
||||
return 0;
|
||||
*attr = PTHREAD_PROCESS_PRIVATE;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr)
|
||||
{
|
||||
*attr = -1;
|
||||
return 0;
|
||||
*attr = -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr, int pshared)
|
||||
int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr, int pshared)
|
||||
{
|
||||
switch (pshared) {
|
||||
switch (pshared) {
|
||||
case PTHREAD_PROCESS_PRIVATE:
|
||||
case PTHREAD_PROCESS_SHARED:
|
||||
*attr = pshared;
|
||||
return 0;
|
||||
*attr = pshared;
|
||||
return 0;
|
||||
default:
|
||||
return EINVAL;
|
||||
}
|
||||
return EINVAL;
|
||||
}
|
||||
}
|
||||
|
||||
int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t* attr, int* pshared) {
|
||||
*pshared = *attr;
|
||||
return 0;
|
||||
*pshared = *attr;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int pthread_rwlock_init(pthread_rwlock_t *rwlock, const pthread_rwlockattr_t *attr)
|
||||
{
|
||||
pthread_mutexattr_t* lock_attr = NULL;
|
||||
pthread_condattr_t* cond_attr = NULL;
|
||||
pthread_mutexattr_t lock_attr0;
|
||||
pthread_condattr_t cond_attr0;
|
||||
int ret;
|
||||
|
||||
if (attr && *attr == PTHREAD_PROCESS_SHARED) {
|
||||
lock_attr = &lock_attr0;
|
||||
pthread_mutexattr_init(lock_attr);
|
||||
pthread_mutexattr_setpshared(lock_attr, PTHREAD_PROCESS_SHARED);
|
||||
|
||||
cond_attr = &cond_attr0;
|
||||
pthread_condattr_init(cond_attr);
|
||||
pthread_condattr_setpshared(cond_attr, PTHREAD_PROCESS_SHARED);
|
||||
if (attr) {
|
||||
switch (*attr) {
|
||||
case PTHREAD_PROCESS_SHARED:
|
||||
case PTHREAD_PROCESS_PRIVATE:
|
||||
rwlock->attr= *attr;
|
||||
break;
|
||||
default:
|
||||
return EINVAL;
|
||||
}
|
||||
}
|
||||
|
||||
ret = pthread_mutex_init(&rwlock->lock, lock_attr);
|
||||
if (ret != 0)
|
||||
return ret;
|
||||
rwlock->state = 0;
|
||||
rwlock->pendingReaders = 0;
|
||||
rwlock->pendingWriters = 0;
|
||||
rwlock->writerThreadId = 0;
|
||||
|
||||
ret = pthread_cond_init(&rwlock->cond, cond_attr);
|
||||
if (ret != 0) {
|
||||
pthread_mutex_destroy(&rwlock->lock);
|
||||
return ret;
|
||||
}
|
||||
|
||||
rwlock->numLocks = 0;
|
||||
rwlock->pendingReaders = 0;
|
||||
rwlock->pendingWriters = 0;
|
||||
rwlock->writerThreadId = 0;
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int pthread_rwlock_destroy(pthread_rwlock_t *rwlock)
|
||||
{
|
||||
if (rwlock->numLocks > 0)
|
||||
return EBUSY;
|
||||
if (rwlock->state != 0) {
|
||||
return EBUSY;
|
||||
}
|
||||
|
||||
pthread_cond_destroy(&rwlock->cond);
|
||||
pthread_mutex_destroy(&rwlock->lock);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Returns TRUE iff we can acquire a read lock. */
|
||||
static __inline__ int read_precondition(pthread_rwlock_t* rwlock, int tid)
|
||||
{
|
||||
/* We can't have the lock if any writer is waiting for it (writer bias).
|
||||
* This tries to avoid starvation when there are multiple readers racing.
|
||||
*/
|
||||
if (rwlock->pendingWriters > 0)
|
||||
return 0;
|
||||
|
||||
/* We can have the lock if there is no writer, or if we write-own it */
|
||||
/* The second test avoids a self-dead lock in case of buggy code. */
|
||||
if (rwlock->writerThreadId == 0 || rwlock->writerThreadId == tid)
|
||||
return 1;
|
||||
|
||||
/* Otherwise, we can't have it */
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* returns TRUE iff we can acquire a write lock. */
|
||||
static __inline__ int write_precondition(pthread_rwlock_t* rwlock, int tid)
|
||||
{
|
||||
/* We can get the lock if nobody has it */
|
||||
if (rwlock->numLocks == 0)
|
||||
return 1;
|
||||
|
||||
/* Or if we already own it */
|
||||
if (rwlock->writerThreadId == tid)
|
||||
return 1;
|
||||
|
||||
/* Otherwise, not */
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* This function is used to waken any waiting thread contending
|
||||
* for the lock. One of them should be able to grab it after
|
||||
* that.
|
||||
*/
|
||||
static void _pthread_rwlock_pulse(pthread_rwlock_t *rwlock)
|
||||
{
|
||||
if (rwlock->pendingReaders > 0 || rwlock->pendingWriters > 0)
|
||||
pthread_cond_broadcast(&rwlock->cond);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int __pthread_rwlock_timedrdlock(pthread_rwlock_t* rwlock, const timespec* abs_timeout) {
|
||||
int ret = 0;
|
||||
|
||||
pthread_mutex_lock(&rwlock->lock);
|
||||
int tid = __get_thread()->tid;
|
||||
if (__predict_false(!read_precondition(rwlock, tid))) {
|
||||
rwlock->pendingReaders += 1;
|
||||
do {
|
||||
ret = pthread_cond_timedwait(&rwlock->cond, &rwlock->lock, abs_timeout);
|
||||
} while (ret == 0 && !read_precondition(rwlock, tid));
|
||||
rwlock->pendingReaders -= 1;
|
||||
if (ret != 0) {
|
||||
goto EXIT;
|
||||
}
|
||||
if (__predict_false(__get_thread()->tid == rwlock->writerThreadId)) {
|
||||
return EDEADLK;
|
||||
}
|
||||
++rwlock->numLocks;
|
||||
EXIT:
|
||||
pthread_mutex_unlock(&rwlock->lock);
|
||||
return ret;
|
||||
|
||||
bool done = false;
|
||||
do {
|
||||
// This is actually a race read as there's nothing that guarantees the atomicity of integers
|
||||
// reads / writes. However, in practice this "never" happens so until we switch to C++11 this
|
||||
// should work fine. The same applies in the other places this idiom is used.
|
||||
int32_t cur_state = rwlock->state; // C++11 relaxed atomic read
|
||||
if (__predict_true(cur_state >= 0)) {
|
||||
// Add as an extra reader.
|
||||
done = __atomic_cmpxchg(cur_state, cur_state + 1, &rwlock->state) == 0; // C++11 memory_order_aquire
|
||||
} else {
|
||||
timespec ts;
|
||||
timespec* tsp = NULL;
|
||||
if (abs_timeout != NULL) {
|
||||
if (__timespec_from_absolute(&ts, abs_timeout, CLOCK_REALTIME) < 0) {
|
||||
return ETIMEDOUT;
|
||||
}
|
||||
tsp = &ts;
|
||||
}
|
||||
// Owner holds it in write mode, hang up.
|
||||
// To avoid loosing wake ups the pendingReaders update and the state read should be
|
||||
// sequentially consistent. (currently enforced by __atomic_inc which creates a full barrier)
|
||||
__atomic_inc(&rwlock->pendingReaders); // C++11 memory_order_relaxed (if the futex_wait ensures the ordering)
|
||||
if (__futex_wait_ex(&rwlock->state, RWLOCK_IS_SHARED(rwlock), cur_state, tsp) != 0) {
|
||||
if (errno == ETIMEDOUT) {
|
||||
__atomic_dec(&rwlock->pendingReaders); // C++11 memory_order_relaxed
|
||||
return ETIMEDOUT;
|
||||
}
|
||||
}
|
||||
__atomic_dec(&rwlock->pendingReaders); // C++11 memory_order_relaxed
|
||||
}
|
||||
} while (!done);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int __pthread_rwlock_timedwrlock(pthread_rwlock_t* rwlock, const timespec* abs_timeout) {
|
||||
int ret = 0;
|
||||
|
||||
pthread_mutex_lock(&rwlock->lock);
|
||||
int tid = __get_thread()->tid;
|
||||
if (__predict_false(!write_precondition(rwlock, tid))) {
|
||||
// If we can't read yet, wait until the rwlock is unlocked
|
||||
// and try again. Increment pendingReaders to get the
|
||||
// cond broadcast when that happens.
|
||||
rwlock->pendingWriters += 1;
|
||||
do {
|
||||
ret = pthread_cond_timedwait(&rwlock->cond, &rwlock->lock, abs_timeout);
|
||||
} while (ret == 0 && !write_precondition(rwlock, tid));
|
||||
rwlock->pendingWriters -= 1;
|
||||
if (ret != 0) {
|
||||
goto EXIT;
|
||||
}
|
||||
if (__predict_false(tid == rwlock->writerThreadId)) {
|
||||
return EDEADLK;
|
||||
}
|
||||
++rwlock->numLocks;
|
||||
|
||||
bool done = false;
|
||||
do {
|
||||
int32_t cur_state = rwlock->state;
|
||||
if (__predict_true(cur_state == 0)) {
|
||||
// Change state from 0 to -1.
|
||||
done = __atomic_cmpxchg(0 /* cur_state */, -1 /* new state */, &rwlock->state) == 0; // C++11 memory_order_aquire
|
||||
} else {
|
||||
timespec ts;
|
||||
timespec* tsp = NULL;
|
||||
if (abs_timeout != NULL) {
|
||||
if (__timespec_from_absolute(&ts, abs_timeout, CLOCK_REALTIME) < 0) {
|
||||
return ETIMEDOUT;
|
||||
}
|
||||
tsp = &ts;
|
||||
}
|
||||
// Failed to acquire, hang up.
|
||||
// To avoid loosing wake ups the pendingWriters update and the state read should be
|
||||
// sequentially consistent. (currently enforced by __atomic_inc which creates a full barrier)
|
||||
__atomic_inc(&rwlock->pendingWriters); // C++11 memory_order_relaxed (if the futex_wait ensures the ordering)
|
||||
if (__futex_wait_ex(&rwlock->state, RWLOCK_IS_SHARED(rwlock), cur_state, tsp) != 0) {
|
||||
if (errno == ETIMEDOUT) {
|
||||
__atomic_dec(&rwlock->pendingWriters); // C++11 memory_order_relaxed
|
||||
return ETIMEDOUT;
|
||||
}
|
||||
}
|
||||
__atomic_dec(&rwlock->pendingWriters); // C++11 memory_order_relaxed
|
||||
}
|
||||
} while (!done);
|
||||
|
||||
rwlock->writerThreadId = tid;
|
||||
EXIT:
|
||||
pthread_mutex_unlock(&rwlock->lock);
|
||||
return ret;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int pthread_rwlock_rdlock(pthread_rwlock_t* rwlock) {
|
||||
@ -228,16 +214,15 @@ int pthread_rwlock_rdlock(pthread_rwlock_t* rwlock) {
|
||||
|
||||
int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
pthread_mutex_lock(&rwlock->lock);
|
||||
if (__predict_false(!read_precondition(rwlock, __get_thread()->tid)))
|
||||
ret = EBUSY;
|
||||
else
|
||||
++rwlock->numLocks;
|
||||
pthread_mutex_unlock(&rwlock->lock);
|
||||
|
||||
return ret;
|
||||
int32_t cur_state = rwlock->state;
|
||||
if (cur_state >= 0) {
|
||||
if(__atomic_cmpxchg(cur_state, cur_state + 1, &rwlock->state) != 0) { // C++11 memory_order_acquire
|
||||
return EBUSY;
|
||||
}
|
||||
} else {
|
||||
return EBUSY;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int pthread_rwlock_timedrdlock(pthread_rwlock_t* rwlock, const timespec* abs_timeout) {
|
||||
@ -250,18 +235,18 @@ int pthread_rwlock_wrlock(pthread_rwlock_t* rwlock) {
|
||||
|
||||
int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
pthread_mutex_lock(&rwlock->lock);
|
||||
int tid = __get_thread()->tid;
|
||||
if (__predict_false(!write_precondition(rwlock, tid))) {
|
||||
ret = EBUSY;
|
||||
} else {
|
||||
++rwlock->numLocks;
|
||||
rwlock->writerThreadId = tid;
|
||||
int tid = __get_thread()->tid;
|
||||
int32_t cur_state = rwlock->state;
|
||||
if (cur_state == 0) {
|
||||
if(__atomic_cmpxchg(0, -1, &rwlock->state) != 0) { // C++11 memory_order_acquire
|
||||
return EBUSY;
|
||||
}
|
||||
pthread_mutex_unlock(&rwlock->lock);
|
||||
return ret;
|
||||
} else {
|
||||
return EBUSY;
|
||||
}
|
||||
|
||||
rwlock->writerThreadId = tid;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int pthread_rwlock_timedwrlock(pthread_rwlock_t* rwlock, const timespec* abs_timeout) {
|
||||
@ -270,35 +255,43 @@ int pthread_rwlock_timedwrlock(pthread_rwlock_t* rwlock, const timespec* abs_tim
|
||||
|
||||
int pthread_rwlock_unlock(pthread_rwlock_t *rwlock)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
pthread_mutex_lock(&rwlock->lock);
|
||||
|
||||
/* The lock must be held */
|
||||
if (rwlock->numLocks == 0) {
|
||||
ret = EPERM;
|
||||
goto EXIT;
|
||||
int tid = __get_thread()->tid;
|
||||
bool done = false;
|
||||
do {
|
||||
int32_t cur_state = rwlock->state;
|
||||
if (cur_state == 0) {
|
||||
return EPERM;
|
||||
}
|
||||
if (cur_state == -1) {
|
||||
if (rwlock->writerThreadId != tid) {
|
||||
return EPERM;
|
||||
}
|
||||
// We're no longer the owner.
|
||||
rwlock->writerThreadId = 0;
|
||||
// Change state from -1 to 0.
|
||||
// We use __atomic_cmpxchg to achieve sequential consistency of the state store and
|
||||
// the following pendingX loads. A simple store with memory_order_release semantics
|
||||
// is not enough to guarantee that the pendingX loads are not reordered before the
|
||||
// store (which may lead to a lost wakeup).
|
||||
__atomic_cmpxchg(-1 /* cur_state*/, 0 /* new state */, &rwlock->state); // C++11 maybe memory_order_seq_cst?
|
||||
|
||||
/* If it has only readers, writerThreadId is 0 */
|
||||
if (rwlock->writerThreadId == 0) {
|
||||
if (--rwlock->numLocks == 0)
|
||||
_pthread_rwlock_pulse(rwlock);
|
||||
}
|
||||
/* Otherwise, it has only a single writer, which
|
||||
* must be ourselves.
|
||||
*/
|
||||
else {
|
||||
if (rwlock->writerThreadId != __get_thread()->tid) {
|
||||
ret = EPERM;
|
||||
goto EXIT;
|
||||
}
|
||||
if (--rwlock->numLocks == 0) {
|
||||
rwlock->writerThreadId = 0;
|
||||
_pthread_rwlock_pulse(rwlock);
|
||||
// Wake any waiters.
|
||||
if (__predict_false(rwlock->pendingReaders > 0 || rwlock->pendingWriters > 0)) {
|
||||
__futex_wake_ex(&rwlock->state, RWLOCK_IS_SHARED(rwlock), INT_MAX);
|
||||
}
|
||||
done = true;
|
||||
} else { // cur_state > 0
|
||||
// Reduce state by 1.
|
||||
// See the above comment on why we need __atomic_cmpxchg.
|
||||
done = __atomic_cmpxchg(cur_state, cur_state - 1, &rwlock->state) == 0; // C++11 maybe memory_order_seq_cst?
|
||||
if (done && (cur_state - 1) == 0) {
|
||||
// There are no more readers, wake any waiters.
|
||||
if (__predict_false(rwlock->pendingReaders > 0 || rwlock->pendingWriters > 0)) {
|
||||
__futex_wake_ex(&rwlock->state, RWLOCK_IS_SHARED(rwlock), INT_MAX);
|
||||
}
|
||||
}
|
||||
}
|
||||
EXIT:
|
||||
pthread_mutex_unlock(&rwlock->lock);
|
||||
return ret;
|
||||
} while (!done);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -94,16 +94,17 @@ typedef long pthread_condattr_t;
|
||||
typedef long pthread_rwlockattr_t;
|
||||
|
||||
typedef struct {
|
||||
pthread_mutex_t lock;
|
||||
pthread_cond_t cond;
|
||||
int numLocks;
|
||||
int writerThreadId;
|
||||
int pendingReaders;
|
||||
int pendingWriters;
|
||||
void* __reserved[4];
|
||||
pthread_mutex_t __unused_lock;
|
||||
pthread_cond_t __unused_cond;
|
||||
volatile int32_t state; // 0=unlock, -1=writer lock, +n=reader lock
|
||||
volatile int32_t writerThreadId;
|
||||
volatile int32_t pendingReaders;
|
||||
volatile int32_t pendingWriters;
|
||||
int32_t attr;
|
||||
void* __reserved[3];
|
||||
} pthread_rwlock_t;
|
||||
|
||||
#define PTHREAD_RWLOCK_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, PTHREAD_COND_INITIALIZER, 0, 0, 0, 0, { NULL, NULL, NULL, NULL } }
|
||||
#define PTHREAD_RWLOCK_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, PTHREAD_COND_INITIALIZER, 0, 0, 0, 0, 0, { NULL, NULL, NULL } }
|
||||
|
||||
typedef int pthread_key_t;
|
||||
typedef long pthread_t;
|
||||
|
@ -551,12 +551,49 @@ TEST(pthread, pthread_rwlock_smoke) {
|
||||
pthread_rwlock_t l;
|
||||
ASSERT_EQ(0, pthread_rwlock_init(&l, NULL));
|
||||
|
||||
// Single read lock
|
||||
ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
|
||||
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
||||
|
||||
// Multiple read lock
|
||||
ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
|
||||
ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
|
||||
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
||||
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
||||
|
||||
// Write lock
|
||||
ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
|
||||
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
||||
|
||||
// Try writer lock
|
||||
ASSERT_EQ(0, pthread_rwlock_trywrlock(&l));
|
||||
ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
|
||||
ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l));
|
||||
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
||||
|
||||
// Try reader lock
|
||||
ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
|
||||
ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
|
||||
ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
|
||||
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
||||
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
||||
|
||||
// Try writer lock after unlock
|
||||
ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
|
||||
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
||||
|
||||
#ifdef __BIONIC__
|
||||
// EDEADLK in "read after write"
|
||||
ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
|
||||
ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l));
|
||||
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
||||
|
||||
// EDEADLK in "write after write"
|
||||
ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
|
||||
ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l));
|
||||
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
||||
#endif
|
||||
|
||||
ASSERT_EQ(0, pthread_rwlock_destroy(&l));
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user