Merge "Switch pthread_mutex_t from bionic atomics to <stdatomic.h>."
This commit is contained in:
commit
d57bf449fe
@ -30,22 +30,19 @@
|
||||
|
||||
#include <errno.h>
|
||||
#include <limits.h>
|
||||
#include <stdatomic.h>
|
||||
#include <sys/cdefs.h>
|
||||
#include <sys/mman.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#include "pthread_internal.h"
|
||||
|
||||
#include "private/bionic_atomic_inline.h"
|
||||
#include "private/bionic_constants.h"
|
||||
#include "private/bionic_futex.h"
|
||||
#include "private/bionic_systrace.h"
|
||||
#include "private/bionic_time_conversions.h"
|
||||
#include "private/bionic_tls.h"
|
||||
|
||||
#include "private/bionic_systrace.h"
|
||||
|
||||
extern void pthread_debug_mutex_lock_check(pthread_mutex_t *mutex);
|
||||
extern void pthread_debug_mutex_unlock_check(pthread_mutex_t *mutex);
|
||||
|
||||
/* a mutex is implemented as a 32-bit integer holding the following fields
|
||||
*
|
||||
* bits: name description
|
||||
@ -87,9 +84,6 @@ extern void pthread_debug_mutex_unlock_check(pthread_mutex_t *mutex);
|
||||
#define MUTEX_STATE_LOCKED_UNCONTENDED 1 /* must be 1 due to atomic dec in unlock operation */
|
||||
#define MUTEX_STATE_LOCKED_CONTENDED 2 /* must be 1 + LOCKED_UNCONTENDED due to atomic dec */
|
||||
|
||||
#define MUTEX_STATE_FROM_BITS(v) FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
|
||||
#define MUTEX_STATE_TO_BITS(v) FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
|
||||
|
||||
#define MUTEX_STATE_BITS_UNLOCKED MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED)
|
||||
#define MUTEX_STATE_BITS_LOCKED_UNCONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED)
|
||||
#define MUTEX_STATE_BITS_LOCKED_CONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED)
|
||||
@ -116,10 +110,7 @@ extern void pthread_debug_mutex_unlock_check(pthread_mutex_t *mutex);
|
||||
#define MUTEX_COUNTER_BITS_IS_ZERO(v) (((v) & MUTEX_COUNTER_MASK) == 0)
|
||||
|
||||
/* Used to increment the counter directly after overflow has been checked */
|
||||
#define MUTEX_COUNTER_BITS_ONE FIELD_TO_BITS(1,MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN)
|
||||
|
||||
/* Returns true iff the counter is 0 */
|
||||
#define MUTEX_COUNTER_BITS_ARE_ZERO(v) (((v) & MUTEX_COUNTER_MASK) == 0)
|
||||
#define MUTEX_COUNTER_BITS_ONE FIELD_TO_BITS(1, MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN)
|
||||
|
||||
/* Mutex shared bit flag
|
||||
*
|
||||
@ -267,9 +258,20 @@ int pthread_mutexattr_getpshared(const pthread_mutexattr_t* attr, int* pshared)
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline atomic_int* MUTEX_TO_ATOMIC_POINTER(pthread_mutex_t* mutex) {
|
||||
static_assert(sizeof(atomic_int) == sizeof(mutex->value),
|
||||
"mutex->value should actually be atomic_int in implementation.");
|
||||
|
||||
// We prefer casting to atomic_int instead of declaring mutex->value to be atomic_int directly.
|
||||
// Because using the second method pollutes pthread.h, and causes an error when compiling libcxx.
|
||||
return reinterpret_cast<atomic_int*>(&mutex->value);
|
||||
}
|
||||
|
||||
int pthread_mutex_init(pthread_mutex_t* mutex, const pthread_mutexattr_t* attr) {
|
||||
atomic_int* mutex_value_ptr = MUTEX_TO_ATOMIC_POINTER(mutex);
|
||||
|
||||
if (__predict_true(attr == NULL)) {
|
||||
mutex->value = MUTEX_TYPE_BITS_NORMAL;
|
||||
atomic_init(mutex_value_ptr, MUTEX_TYPE_BITS_NORMAL);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -292,13 +294,13 @@ int pthread_mutex_init(pthread_mutex_t* mutex, const pthread_mutexattr_t* attr)
|
||||
return EINVAL;
|
||||
}
|
||||
|
||||
mutex->value = value;
|
||||
atomic_init(mutex_value_ptr, value);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Lock a non-recursive mutex.
|
||||
* Lock a mutex of type NORMAL.
|
||||
*
|
||||
* As noted above, there are three states:
|
||||
* 0 (unlocked, no contention)
|
||||
@ -309,96 +311,75 @@ int pthread_mutex_init(pthread_mutex_t* mutex, const pthread_mutexattr_t* attr)
|
||||
* "type" value is zero, so the only bits that will be set are the ones in
|
||||
* the lock state field.
|
||||
*/
|
||||
static inline void _normal_lock(pthread_mutex_t* mutex, int shared) {
|
||||
static inline void _normal_mutex_lock(atomic_int* mutex_value_ptr, int shared) {
|
||||
/* convenience shortcuts */
|
||||
const int unlocked = shared | MUTEX_STATE_BITS_UNLOCKED;
|
||||
const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
|
||||
/*
|
||||
* The common case is an unlocked mutex, so we begin by trying to
|
||||
* change the lock's state from 0 (UNLOCKED) to 1 (LOCKED).
|
||||
* __bionic_cmpxchg() returns 0 if it made the swap successfully.
|
||||
* If the result is nonzero, this lock is already held by another thread.
|
||||
*/
|
||||
if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) != 0) {
|
||||
const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
|
||||
/*
|
||||
* We want to go to sleep until the mutex is available, which
|
||||
* requires promoting it to state 2 (CONTENDED). We need to
|
||||
* swap in the new state value and then wait until somebody wakes us up.
|
||||
*
|
||||
* __bionic_swap() returns the previous value. We swap 2 in and
|
||||
* see if we got zero back; if so, we have acquired the lock. If
|
||||
* not, another thread still holds the lock and we wait again.
|
||||
*
|
||||
* The second argument to the __futex_wait() call is compared
|
||||
* against the current value. If it doesn't match, __futex_wait()
|
||||
* returns immediately (otherwise, it sleeps for a time specified
|
||||
* by the third argument; 0 means sleep forever). This ensures
|
||||
* that the mutex is in state 2 when we go to sleep on it, which
|
||||
* guarantees a wake-up call.
|
||||
*/
|
||||
|
||||
// The common case is an unlocked mutex, so we begin by trying to
|
||||
// change the lock's state from unlocked to locked_uncontended.
|
||||
// If exchanged successfully, An acquire fence is required to make
|
||||
// all memory accesses made by other threads visible in current CPU.
|
||||
int mvalue = unlocked;
|
||||
if (__predict_true(atomic_compare_exchange_strong_explicit(mutex_value_ptr, &mvalue,
|
||||
locked_uncontended,
|
||||
memory_order_acquire,
|
||||
memory_order_relaxed))) {
|
||||
return;
|
||||
}
|
||||
|
||||
ScopedTrace trace("Contending for pthread mutex");
|
||||
|
||||
// We want to go to sleep until the mutex is available, which requires
|
||||
// promoting it to locked_contended. We need to swap in the new state
|
||||
// value and then wait until somebody wakes us up.
|
||||
// An atomic_exchange is used to compete with other threads for the lock.
|
||||
// If it returns unlocked, we have acquired the lock, otherwise another
|
||||
// thread still holds the lock and we should wait again.
|
||||
// If lock is acquired, an acquire fence is needed to make all memory accesses
|
||||
// made by other threads visible in current CPU.
|
||||
const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
|
||||
while (atomic_exchange_explicit(mutex_value_ptr, locked_contended,
|
||||
memory_order_acquire) != unlocked) {
|
||||
|
||||
while (__bionic_swap(locked_contended, &mutex->value) != unlocked) {
|
||||
__futex_wait_ex(&mutex->value, shared, locked_contended, NULL);
|
||||
__futex_wait_ex(mutex_value_ptr, shared, locked_contended, NULL);
|
||||
}
|
||||
}
|
||||
ANDROID_MEMBAR_FULL();
|
||||
}
|
||||
|
||||
/*
|
||||
* Release a non-recursive mutex. The caller is responsible for determining
|
||||
* Release a mutex of type NORMAL. The caller is responsible for determining
|
||||
* that we are in fact the owner of this lock.
|
||||
*/
|
||||
static inline void _normal_unlock(pthread_mutex_t* mutex, int shared) {
|
||||
ANDROID_MEMBAR_FULL();
|
||||
static inline void _normal_mutex_unlock(atomic_int* mutex_value_ptr, int shared) {
|
||||
const int unlocked = shared | MUTEX_STATE_BITS_UNLOCKED;
|
||||
const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
|
||||
|
||||
/*
|
||||
* The mutex state will be 1 or (rarely) 2. We use an atomic decrement
|
||||
* to release the lock. __bionic_atomic_dec() returns the previous value;
|
||||
* if it wasn't 1 we have to do some additional work.
|
||||
*/
|
||||
if (__bionic_atomic_dec(&mutex->value) != (shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED)) {
|
||||
/*
|
||||
* Start by releasing the lock. The decrement changed it from
|
||||
* "contended lock" to "uncontended lock", which means we still
|
||||
* hold it, and anybody who tries to sneak in will push it back
|
||||
* to state 2.
|
||||
*
|
||||
* Once we set it to zero the lock is up for grabs. We follow
|
||||
* this with a __futex_wake() to ensure that one of the waiting
|
||||
* threads has a chance to grab it.
|
||||
*
|
||||
* This doesn't cause a race with the swap/wait pair in
|
||||
* _normal_lock(), because the __futex_wait() call there will
|
||||
* return immediately if the mutex value isn't 2.
|
||||
*/
|
||||
mutex->value = shared;
|
||||
|
||||
/*
|
||||
* Wake up one waiting thread. We don't know which thread will be
|
||||
* woken or when it'll start executing -- futexes make no guarantees
|
||||
* here. There may not even be a thread waiting.
|
||||
*
|
||||
* The newly-woken thread will replace the 0 we just set above
|
||||
* with 2, which means that when it eventually releases the mutex
|
||||
* it will also call FUTEX_WAKE. This results in one extra wake
|
||||
* call whenever a lock is contended, but lets us avoid forgetting
|
||||
* anyone without requiring us to track the number of sleepers.
|
||||
*
|
||||
* It's possible for another thread to sneak in and grab the lock
|
||||
* between the zero assignment above and the wake call below. If
|
||||
* the new thread is "slow" and holds the lock for a while, we'll
|
||||
* wake up a sleeper, which will swap in a 2 and then go back to
|
||||
* sleep since the lock is still held. If the new thread is "fast",
|
||||
* running to completion before we call wake, the thread we
|
||||
* eventually wake will find an unlocked mutex and will execute.
|
||||
* Either way we have correct behavior and nobody is orphaned on
|
||||
* the wait queue.
|
||||
*/
|
||||
__futex_wake_ex(&mutex->value, shared, 1);
|
||||
// We use an atomic_exchange to release the lock. If locked_contended state
|
||||
// is returned, some threads is waiting for the lock and we need to wake up
|
||||
// one of them.
|
||||
// A release fence is required to make previous stores visible to next
|
||||
// lock owner threads.
|
||||
if (atomic_exchange_explicit(mutex_value_ptr, unlocked,
|
||||
memory_order_release) == locked_contended) {
|
||||
// Wake up one waiting thread. We don't know which thread will be
|
||||
// woken or when it'll start executing -- futexes make no guarantees
|
||||
// here. There may not even be a thread waiting.
|
||||
//
|
||||
// The newly-woken thread will replace the unlocked state we just set above
|
||||
// with locked_contended state, which means that when it eventually releases
|
||||
// the mutex it will also call FUTEX_WAKE. This results in one extra wake
|
||||
// call whenever a lock is contended, but let us avoid forgetting anyone
|
||||
// without requiring us to track the number of sleepers.
|
||||
//
|
||||
// It's possible for another thread to sneak in and grab the lock between
|
||||
// the exchange above and the wake call below. If the new thread is "slow"
|
||||
// and holds the lock for a while, we'll wake up a sleeper, which will swap
|
||||
// in locked_uncontended state and then go back to sleep since the lock is
|
||||
// still held. If the new thread is "fast", running to completion before
|
||||
// we call wake, the thread we eventually wake will find an unlocked mutex
|
||||
// and will execute. Either way we have correct behavior and nobody is
|
||||
// orphaned on the wait queue.
|
||||
__futex_wake_ex(mutex_value_ptr, shared, 1);
|
||||
}
|
||||
}
|
||||
|
||||
@ -414,183 +395,175 @@ static inline void _normal_unlock(pthread_mutex_t* mutex, int shared) {
|
||||
* mvalue is the current mutex value (already loaded)
|
||||
* mutex pointers to the mutex.
|
||||
*/
|
||||
static inline __always_inline int _recursive_increment(pthread_mutex_t* mutex, int mvalue, int mtype) {
|
||||
static inline __always_inline
|
||||
int _recursive_increment(atomic_int* mutex_value_ptr, int mvalue, int mtype) {
|
||||
if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) {
|
||||
/* trying to re-lock a mutex we already acquired */
|
||||
// Trying to re-lock a mutex we already acquired.
|
||||
return EDEADLK;
|
||||
}
|
||||
|
||||
/* Detect recursive lock overflow and return EAGAIN.
|
||||
* This is safe because only the owner thread can modify the
|
||||
* counter bits in the mutex value.
|
||||
*/
|
||||
// Detect recursive lock overflow and return EAGAIN.
|
||||
// This is safe because only the owner thread can modify the
|
||||
// counter bits in the mutex value.
|
||||
if (MUTEX_COUNTER_BITS_WILL_OVERFLOW(mvalue)) {
|
||||
return EAGAIN;
|
||||
}
|
||||
|
||||
/* We own the mutex, but other threads are able to change
|
||||
* the lower bits (e.g. promoting it to "contended"), so we
|
||||
* need to use an atomic cmpxchg loop to update the counter.
|
||||
*/
|
||||
for (;;) {
|
||||
/* increment counter, overflow was already checked */
|
||||
int newval = mvalue + MUTEX_COUNTER_BITS_ONE;
|
||||
if (__predict_true(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
|
||||
/* mutex is still locked, not need for a memory barrier */
|
||||
// We own the mutex, but other threads are able to change the lower bits
|
||||
// (e.g. promoting it to "contended"), so we need to use an atomic exchange
|
||||
// loop to update the counter. The counter will not overflow in the loop,
|
||||
// as only the owner thread can change it.
|
||||
// The mutex is still locked, so we don't need a release fence.
|
||||
while (!atomic_compare_exchange_weak_explicit(mutex_value_ptr, &mvalue,
|
||||
mvalue + MUTEX_COUNTER_BITS_ONE,
|
||||
memory_order_relaxed,
|
||||
memory_order_relaxed)) { }
|
||||
return 0;
|
||||
}
|
||||
/* the value was changed, this happens when another thread changes
|
||||
* the lower state bits from 1 to 2 to indicate contention. This
|
||||
* cannot change the counter, so simply reload and try again.
|
||||
*/
|
||||
mvalue = mutex->value;
|
||||
}
|
||||
}
|
||||
|
||||
int pthread_mutex_lock(pthread_mutex_t* mutex) {
|
||||
atomic_int* mutex_value_ptr = MUTEX_TO_ATOMIC_POINTER(mutex);
|
||||
|
||||
int mvalue, mtype, tid, shared;
|
||||
|
||||
mvalue = mutex->value;
|
||||
mvalue = atomic_load_explicit(mutex_value_ptr, memory_order_relaxed);
|
||||
mtype = (mvalue & MUTEX_TYPE_MASK);
|
||||
shared = (mvalue & MUTEX_SHARED_MASK);
|
||||
|
||||
/* Handle non-recursive case first */
|
||||
// Handle common case first.
|
||||
if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) ) {
|
||||
_normal_lock(mutex, shared);
|
||||
_normal_mutex_lock(mutex_value_ptr, shared);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Do we already own this recursive or error-check mutex ? */
|
||||
// Do we already own this recursive or error-check mutex?
|
||||
tid = __get_thread()->tid;
|
||||
if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
|
||||
return _recursive_increment(mutex, mvalue, mtype);
|
||||
return _recursive_increment(mutex_value_ptr, mvalue, mtype);
|
||||
|
||||
/* Add in shared state to avoid extra 'or' operations below */
|
||||
// Add in shared state to avoid extra 'or' operations below.
|
||||
mtype |= shared;
|
||||
|
||||
/* First, if the mutex is unlocked, try to quickly acquire it.
|
||||
* In the optimistic case where this works, set the state to 1 to
|
||||
* indicate locked with no contention */
|
||||
// First, if the mutex is unlocked, try to quickly acquire it.
|
||||
// In the optimistic case where this works, set the state to locked_uncontended.
|
||||
if (mvalue == mtype) {
|
||||
int newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
|
||||
if (__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0) {
|
||||
ANDROID_MEMBAR_FULL();
|
||||
// If exchanged successfully, An acquire fence is required to make
|
||||
// all memory accesses made by other threads visible in current CPU.
|
||||
if (__predict_true(atomic_compare_exchange_strong_explicit(mutex_value_ptr, &mvalue,
|
||||
newval, memory_order_acquire, memory_order_relaxed))) {
|
||||
return 0;
|
||||
}
|
||||
/* argh, the value changed, reload before entering the loop */
|
||||
mvalue = mutex->value;
|
||||
}
|
||||
|
||||
ScopedTrace trace("Contending for pthread mutex");
|
||||
|
||||
for (;;) {
|
||||
int newval;
|
||||
|
||||
/* if the mutex is unlocked, its value should be 'mtype' and
|
||||
* we try to acquire it by setting its owner and state atomically.
|
||||
* NOTE: We put the state to 2 since we _know_ there is contention
|
||||
* when we are in this loop. This ensures all waiters will be
|
||||
* unlocked.
|
||||
*/
|
||||
while (true) {
|
||||
if (mvalue == mtype) {
|
||||
newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
|
||||
/* TODO: Change this to __bionic_cmpxchg_acquire when we
|
||||
* implement it to get rid of the explicit memory
|
||||
* barrier below.
|
||||
*/
|
||||
if (__predict_false(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
|
||||
mvalue = mutex->value;
|
||||
continue;
|
||||
}
|
||||
ANDROID_MEMBAR_FULL();
|
||||
// If the mutex is unlocked, its value should be 'mtype' and
|
||||
// we try to acquire it by setting its owner and state atomically.
|
||||
// NOTE: We put the state to locked_contended since we _know_ there
|
||||
// is contention when we are in this loop. This ensures all waiters
|
||||
// will be unlocked.
|
||||
|
||||
int newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
|
||||
// If exchanged successfully, An acquire fence is required to make
|
||||
// all memory accesses made by other threads visible in current CPU.
|
||||
if (__predict_true(atomic_compare_exchange_weak_explicit(mutex_value_ptr,
|
||||
&mvalue, newval,
|
||||
memory_order_acquire,
|
||||
memory_order_relaxed))) {
|
||||
return 0;
|
||||
}
|
||||
continue;
|
||||
} else if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
|
||||
// The mutex is already locked by another thread, if the state is locked_uncontended,
|
||||
// we should set it to locked_contended beforing going to sleep. This can make
|
||||
// sure waiters will be woken up eventually.
|
||||
|
||||
/* the mutex is already locked by another thread, if its state is 1
|
||||
* we will change it to 2 to indicate contention. */
|
||||
if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
|
||||
newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue); /* locked state 1 => state 2 */
|
||||
if (__predict_false(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
|
||||
mvalue = mutex->value;
|
||||
int newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue);
|
||||
if (__predict_false(!atomic_compare_exchange_weak_explicit(mutex_value_ptr,
|
||||
&mvalue, newval,
|
||||
memory_order_relaxed,
|
||||
memory_order_relaxed))) {
|
||||
continue;
|
||||
}
|
||||
mvalue = newval;
|
||||
}
|
||||
|
||||
/* wait until the mutex is unlocked */
|
||||
__futex_wait_ex(&mutex->value, shared, mvalue, NULL);
|
||||
|
||||
mvalue = mutex->value;
|
||||
// We are in locked_contended state, sleep until someone wake us up.
|
||||
__futex_wait_ex(mutex_value_ptr, shared, mvalue, NULL);
|
||||
mvalue = atomic_load_explicit(mutex_value_ptr, memory_order_relaxed);
|
||||
}
|
||||
/* NOTREACHED */
|
||||
}
|
||||
|
||||
int pthread_mutex_unlock(pthread_mutex_t* mutex) {
|
||||
atomic_int* mutex_value_ptr = MUTEX_TO_ATOMIC_POINTER(mutex);
|
||||
|
||||
int mvalue, mtype, tid, shared;
|
||||
|
||||
mvalue = mutex->value;
|
||||
mvalue = atomic_load_explicit(mutex_value_ptr, memory_order_relaxed);
|
||||
mtype = (mvalue & MUTEX_TYPE_MASK);
|
||||
shared = (mvalue & MUTEX_SHARED_MASK);
|
||||
|
||||
/* Handle common case first */
|
||||
// Handle common case first.
|
||||
if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
|
||||
_normal_unlock(mutex, shared);
|
||||
_normal_mutex_unlock(mutex_value_ptr, shared);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Do we already own this recursive or error-check mutex ? */
|
||||
// Do we already own this recursive or error-check mutex?
|
||||
tid = __get_thread()->tid;
|
||||
if ( tid != MUTEX_OWNER_FROM_BITS(mvalue) )
|
||||
return EPERM;
|
||||
|
||||
/* If the counter is > 0, we can simply decrement it atomically.
|
||||
* Since other threads can mutate the lower state bits (and only the
|
||||
* lower state bits), use a cmpxchg to do it.
|
||||
*/
|
||||
// If the counter is > 0, we can simply decrement it atomically.
|
||||
// Since other threads can mutate the lower state bits (and only the
|
||||
// lower state bits), use a compare_exchange loop to do it.
|
||||
if (!MUTEX_COUNTER_BITS_IS_ZERO(mvalue)) {
|
||||
for (;;) {
|
||||
int newval = mvalue - MUTEX_COUNTER_BITS_ONE;
|
||||
if (__predict_true(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
|
||||
/* success: we still own the mutex, so no memory barrier */
|
||||
// We still own the mutex, so a release fence is not needed.
|
||||
while (!atomic_compare_exchange_weak_explicit(mutex_value_ptr, &mvalue,
|
||||
mvalue - MUTEX_COUNTER_BITS_ONE,
|
||||
memory_order_relaxed,
|
||||
memory_order_relaxed)) { }
|
||||
return 0;
|
||||
}
|
||||
/* the value changed, so reload and loop */
|
||||
mvalue = mutex->value;
|
||||
}
|
||||
}
|
||||
|
||||
/* the counter is 0, so we're going to unlock the mutex by resetting
|
||||
* its value to 'unlocked'. We need to perform a swap in order
|
||||
* to read the current state, which will be 2 if there are waiters
|
||||
* to awake.
|
||||
*
|
||||
* TODO: Change this to __bionic_swap_release when we implement it
|
||||
* to get rid of the explicit memory barrier below.
|
||||
*/
|
||||
ANDROID_MEMBAR_FULL(); /* RELEASE BARRIER */
|
||||
mvalue = __bionic_swap(mtype | shared | MUTEX_STATE_BITS_UNLOCKED, &mutex->value);
|
||||
|
||||
/* Wake one waiting thread, if any */
|
||||
// The counter is 0, so we'are going to unlock the mutex by resetting its
|
||||
// state to unlocked, we need to perform a atomic_exchange inorder to read
|
||||
// the current state, which will be locked_contended if there may have waiters
|
||||
// to awake.
|
||||
// A release fence is required to make previous stores visible to next
|
||||
// lock owner threads.
|
||||
mvalue = atomic_exchange_explicit(mutex_value_ptr,
|
||||
mtype | shared | MUTEX_STATE_BITS_UNLOCKED,
|
||||
memory_order_release);
|
||||
if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
|
||||
__futex_wake_ex(&mutex->value, shared, 1);
|
||||
__futex_wake_ex(mutex_value_ptr, shared, 1);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int pthread_mutex_trylock(pthread_mutex_t* mutex) {
|
||||
int mvalue = mutex->value;
|
||||
atomic_int* mutex_value_ptr = MUTEX_TO_ATOMIC_POINTER(mutex);
|
||||
|
||||
int mvalue = atomic_load_explicit(mutex_value_ptr, memory_order_relaxed);
|
||||
int mtype = (mvalue & MUTEX_TYPE_MASK);
|
||||
int shared = (mvalue & MUTEX_SHARED_MASK);
|
||||
|
||||
// Handle common case first.
|
||||
if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
|
||||
if (__bionic_cmpxchg(shared|MUTEX_STATE_BITS_UNLOCKED,
|
||||
shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED,
|
||||
&mutex->value) == 0) {
|
||||
ANDROID_MEMBAR_FULL();
|
||||
mvalue = shared | MUTEX_STATE_BITS_UNLOCKED;
|
||||
// If exchanged successfully, An acquire fence is required to make
|
||||
// all memory accesses made by other threads visible in current CPU.
|
||||
if (atomic_compare_exchange_strong_explicit(mutex_value_ptr,
|
||||
&mvalue,
|
||||
shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED,
|
||||
memory_order_acquire,
|
||||
memory_order_relaxed)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
return EBUSY;
|
||||
}
|
||||
|
||||
@ -600,28 +573,32 @@ int pthread_mutex_trylock(pthread_mutex_t* mutex) {
|
||||
if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) {
|
||||
return EBUSY;
|
||||
}
|
||||
return _recursive_increment(mutex, mvalue, mtype);
|
||||
return _recursive_increment(mutex_value_ptr, mvalue, mtype);
|
||||
}
|
||||
|
||||
/* Same as pthread_mutex_lock, except that we don't want to wait, and
|
||||
* the only operation that can succeed is a single cmpxchg to acquire the
|
||||
* lock if it is released / not owned by anyone. No need for a complex loop.
|
||||
*/
|
||||
// Same as pthread_mutex_lock, except that we don't want to wait, and
|
||||
// the only operation that can succeed is a single compare_exchange to acquire the
|
||||
// lock if it is released / not owned by anyone. No need for a complex loop.
|
||||
// If exchanged successfully, An acquire fence is required to make
|
||||
// all memory accesses made by other threads visible in current CPU.
|
||||
mtype |= shared | MUTEX_STATE_BITS_UNLOCKED;
|
||||
mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
|
||||
|
||||
if (__predict_true(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
|
||||
ANDROID_MEMBAR_FULL();
|
||||
if (__predict_true(atomic_compare_exchange_strong_explicit(mutex_value_ptr,
|
||||
&mtype, mvalue,
|
||||
memory_order_acquire,
|
||||
memory_order_relaxed))) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
return EBUSY;
|
||||
}
|
||||
|
||||
static int __pthread_mutex_timedlock(pthread_mutex_t* mutex, const timespec* abs_ts, clockid_t clock) {
|
||||
atomic_int* mutex_value_ptr = MUTEX_TO_ATOMIC_POINTER(mutex);
|
||||
|
||||
timespec ts;
|
||||
|
||||
int mvalue = mutex->value;
|
||||
int mvalue = atomic_load_explicit(mutex_value_ptr, memory_order_relaxed);
|
||||
int mtype = (mvalue & MUTEX_TYPE_MASK);
|
||||
int shared = (mvalue & MUTEX_SHARED_MASK);
|
||||
|
||||
@ -631,96 +608,95 @@ static int __pthread_mutex_timedlock(pthread_mutex_t* mutex, const timespec* abs
|
||||
const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
|
||||
const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
|
||||
|
||||
// Fast path for uncontended lock. Note: MUTEX_TYPE_BITS_NORMAL is 0.
|
||||
if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) == 0) {
|
||||
ANDROID_MEMBAR_FULL();
|
||||
// If exchanged successfully, An acquire fence is required to make
|
||||
// all memory accesses made by other threads visible in current CPU.
|
||||
mvalue = unlocked;
|
||||
if (atomic_compare_exchange_strong_explicit(mutex_value_ptr, &mvalue, locked_uncontended,
|
||||
memory_order_acquire, memory_order_relaxed)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
ScopedTrace trace("Contending for timed pthread mutex");
|
||||
|
||||
// Loop while needed.
|
||||
while (__bionic_swap(locked_contended, &mutex->value) != unlocked) {
|
||||
// Same as pthread_mutex_lock, except that we can only wait for a specified
|
||||
// time interval. If lock is acquired, an acquire fence is needed to make
|
||||
// all memory accesses made by other threads visible in current CPU.
|
||||
while (atomic_exchange_explicit(mutex_value_ptr, locked_contended,
|
||||
memory_order_acquire) != unlocked) {
|
||||
if (!timespec_from_absolute_timespec(ts, *abs_ts, clock)) {
|
||||
return ETIMEDOUT;
|
||||
}
|
||||
__futex_wait_ex(&mutex->value, shared, locked_contended, &ts);
|
||||
__futex_wait_ex(mutex_value_ptr, shared, locked_contended, &ts);
|
||||
}
|
||||
ANDROID_MEMBAR_FULL();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Do we already own this recursive or error-check mutex?
|
||||
pid_t tid = __get_thread()->tid;
|
||||
if (tid == MUTEX_OWNER_FROM_BITS(mvalue)) {
|
||||
return _recursive_increment(mutex, mvalue, mtype);
|
||||
return _recursive_increment(mutex_value_ptr, mvalue, mtype);
|
||||
}
|
||||
|
||||
// The following implements the same loop as pthread_mutex_lock_impl
|
||||
// but adds checks to ensure that the operation never exceeds the
|
||||
// absolute expiration time.
|
||||
mtype |= shared;
|
||||
|
||||
// First try a quick lock.
|
||||
if (mvalue == mtype) {
|
||||
mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
|
||||
if (__predict_true(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
|
||||
ANDROID_MEMBAR_FULL();
|
||||
int newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
|
||||
// If exchanged successfully, An acquire fence is required to make
|
||||
// all memory accesses made by other threads visible in current CPU.
|
||||
if (__predict_true(atomic_compare_exchange_strong_explicit(mutex_value_ptr,
|
||||
&mvalue, newval,
|
||||
memory_order_acquire,
|
||||
memory_order_relaxed))) {
|
||||
return 0;
|
||||
}
|
||||
mvalue = mutex->value;
|
||||
}
|
||||
|
||||
ScopedTrace trace("Contending for timed pthread mutex");
|
||||
|
||||
// The following implements the same loop as pthread_mutex_lock,
|
||||
// but adds checks to ensure that the operation never exceeds the
|
||||
// absolute expiration time.
|
||||
while (true) {
|
||||
// If the value is 'unlocked', try to acquire it directly.
|
||||
// NOTE: put state to 2 since we know there is contention.
|
||||
if (mvalue == mtype) { // Unlocked.
|
||||
mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
|
||||
if (__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0) {
|
||||
ANDROID_MEMBAR_FULL();
|
||||
return 0;
|
||||
int newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
|
||||
// An acquire fence is needed for successful exchange.
|
||||
if (!atomic_compare_exchange_strong_explicit(mutex_value_ptr, &mvalue, newval,
|
||||
memory_order_acquire,
|
||||
memory_order_relaxed)) {
|
||||
goto check_time;
|
||||
}
|
||||
// The value changed before we could lock it. We need to check
|
||||
// the time to avoid livelocks, reload the value, then loop again.
|
||||
|
||||
return 0;
|
||||
} else if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
|
||||
// The value is locked. If the state is locked_uncontended, we need to switch
|
||||
// it to locked_contended before sleep, so we can get woken up later.
|
||||
int newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue);
|
||||
if (!atomic_compare_exchange_strong_explicit(mutex_value_ptr, &mvalue, newval,
|
||||
memory_order_relaxed,
|
||||
memory_order_relaxed)) {
|
||||
goto check_time;
|
||||
}
|
||||
mvalue = newval;
|
||||
}
|
||||
|
||||
if (!timespec_from_absolute_timespec(ts, *abs_ts, clock)) {
|
||||
return ETIMEDOUT;
|
||||
}
|
||||
|
||||
mvalue = mutex->value;
|
||||
continue;
|
||||
}
|
||||
|
||||
// The value is locked. If 'uncontended', try to switch its state
|
||||
// to 'contented' to ensure we get woken up later.
|
||||
if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
|
||||
int newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue);
|
||||
if (__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0) {
|
||||
// This failed because the value changed, reload it.
|
||||
mvalue = mutex->value;
|
||||
} else {
|
||||
// This succeeded, update mvalue.
|
||||
mvalue = newval;
|
||||
}
|
||||
}
|
||||
|
||||
// Check time and update 'ts'.
|
||||
if (timespec_from_absolute_timespec(ts, *abs_ts, clock)) {
|
||||
if (__futex_wait_ex(mutex_value_ptr, shared, mvalue, &ts) == -ETIMEDOUT) {
|
||||
return ETIMEDOUT;
|
||||
}
|
||||
|
||||
// Only wait to be woken up if the state is '2', otherwise we'll
|
||||
// simply loop right now. This can happen when the second cmpxchg
|
||||
// in our loop failed because the mutex was unlocked by another thread.
|
||||
if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
|
||||
if (__futex_wait_ex(&mutex->value, shared, mvalue, &ts) == -ETIMEDOUT) {
|
||||
check_time:
|
||||
if (!timespec_from_absolute_timespec(ts, *abs_ts, clock)) {
|
||||
return ETIMEDOUT;
|
||||
}
|
||||
mvalue = mutex->value;
|
||||
// After futex_wait or time costly timespec_from_absolte_timespec,
|
||||
// we'd better read mvalue again in case it is changed.
|
||||
mvalue = atomic_load_explicit(mutex_value_ptr, memory_order_relaxed);
|
||||
}
|
||||
}
|
||||
/* NOTREACHED */
|
||||
}
|
||||
|
||||
#if !defined(__LP64__)
|
||||
@ -752,6 +728,8 @@ int pthread_mutex_destroy(pthread_mutex_t* mutex) {
|
||||
if (error != 0) {
|
||||
return error;
|
||||
}
|
||||
mutex->value = 0xdead10cc;
|
||||
|
||||
atomic_int* mutex_value_ptr = MUTEX_TO_ATOMIC_POINTER(mutex);
|
||||
atomic_store_explicit(mutex_value_ptr, 0xdead10cc, memory_order_relaxed);
|
||||
return 0;
|
||||
}
|
||||
|
@ -43,7 +43,7 @@
|
||||
#endif
|
||||
|
||||
typedef struct {
|
||||
int volatile value;
|
||||
int value;
|
||||
#ifdef __LP64__
|
||||
char __reserved[36];
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user