Use FUTEX_WAIT_BITSET to avoid converting timeouts.

Add unittests for pthread APIs with timeout parameter.

Bug: 17569991

Change-Id: I6b3b9b2feae03680654cd64c3112ce7644632c87
This commit is contained in:
Yabin Cui 2015-11-05 15:36:08 -08:00
parent b804b9d67b
commit c9a659c57b
13 changed files with 346 additions and 203 deletions

View File

@ -109,7 +109,7 @@ extern "C" int __cxa_guard_acquire(_guard_t* gv) {
} }
} }
__futex_wait_ex(&gv->state, false, CONSTRUCTION_UNDERWAY_WITH_WAITER, NULL); __futex_wait_ex(&gv->state, false, CONSTRUCTION_UNDERWAY_WITH_WAITER, false, nullptr);
old_value = atomic_load_explicit(&gv->state, memory_order_relaxed); old_value = atomic_load_explicit(&gv->state, memory_order_relaxed);
} }
} }

View File

@ -52,18 +52,12 @@ void timeval_from_timespec(timeval& tv, const timespec& ts) {
tv.tv_usec = ts.tv_nsec / 1000; tv.tv_usec = ts.tv_nsec / 1000;
} }
// Initializes 'ts' with the difference between 'abs_ts' and the current time void absolute_timespec_from_timespec(timespec& abs_ts, const timespec& ts, clockid_t clock) {
// according to 'clock'. Returns false if abstime already expired, true otherwise. clock_gettime(clock, &abs_ts);
bool timespec_from_absolute_timespec(timespec& ts, const timespec& abs_ts, clockid_t clock) { abs_ts.tv_sec += ts.tv_sec;
clock_gettime(clock, &ts); abs_ts.tv_nsec += ts.tv_nsec;
ts.tv_sec = abs_ts.tv_sec - ts.tv_sec; if (abs_ts.tv_nsec >= NS_PER_S) {
ts.tv_nsec = abs_ts.tv_nsec - ts.tv_nsec; abs_ts.tv_nsec -= NS_PER_S;
if (ts.tv_nsec < 0) { abs_ts.tv_sec++;
ts.tv_sec--;
ts.tv_nsec += NS_PER_S;
} }
if (ts.tv_nsec < 0 || ts.tv_sec < 0) {
return false;
}
return true;
} }

View File

@ -118,7 +118,7 @@ int pthread_barrier_wait(pthread_barrier_t* barrier_interface) {
// threads have left the barrier. Use acquire operation here to synchronize with // threads have left the barrier. Use acquire operation here to synchronize with
// the last thread leaving the previous cycle, so we can read correct wait_count below. // the last thread leaving the previous cycle, so we can read correct wait_count below.
while(atomic_load_explicit(&barrier->state, memory_order_acquire) == RELEASE) { while(atomic_load_explicit(&barrier->state, memory_order_acquire) == RELEASE) {
__futex_wait_ex(&barrier->state, barrier->pshared, RELEASE, nullptr); __futex_wait_ex(&barrier->state, barrier->pshared, RELEASE, false, nullptr);
} }
uint32_t prev_wait_count = atomic_load_explicit(&barrier->wait_count, memory_order_relaxed); uint32_t prev_wait_count = atomic_load_explicit(&barrier->wait_count, memory_order_relaxed);
@ -152,7 +152,7 @@ int pthread_barrier_wait(pthread_barrier_t* barrier_interface) {
// Use acquire operation here to synchronize between the last thread entering the // Use acquire operation here to synchronize between the last thread entering the
// barrier with all threads leaving the barrier. // barrier with all threads leaving the barrier.
while (atomic_load_explicit(&barrier->state, memory_order_acquire) == WAIT) { while (atomic_load_explicit(&barrier->state, memory_order_acquire) == WAIT) {
__futex_wait_ex(&barrier->state, barrier->pshared, WAIT, nullptr); __futex_wait_ex(&barrier->state, barrier->pshared, WAIT, false, nullptr);
} }
} }
// Use release operation here to make it not reordered with previous operations. // Use release operation here to make it not reordered with previous operations.
@ -173,7 +173,7 @@ int pthread_barrier_destroy(pthread_barrier_t* barrier_interface) {
// Use acquire operation here to synchronize with the last thread leaving the barrier. // Use acquire operation here to synchronize with the last thread leaving the barrier.
// So we can read correct wait_count below. // So we can read correct wait_count below.
while (atomic_load_explicit(&barrier->state, memory_order_acquire) == RELEASE) { while (atomic_load_explicit(&barrier->state, memory_order_acquire) == RELEASE) {
__futex_wait_ex(&barrier->state, barrier->pshared, RELEASE, nullptr); __futex_wait_ex(&barrier->state, barrier->pshared, RELEASE, false, nullptr);
} }
if (atomic_load_explicit(&barrier->wait_count, memory_order_relaxed) != 0) { if (atomic_load_explicit(&barrier->wait_count, memory_order_relaxed) != 0) {
return EBUSY; return EBUSY;

View File

@ -111,8 +111,8 @@ struct pthread_cond_internal_t {
return COND_IS_SHARED(atomic_load_explicit(&state, memory_order_relaxed)); return COND_IS_SHARED(atomic_load_explicit(&state, memory_order_relaxed));
} }
int get_clock() { bool use_realtime_clock() {
return COND_GET_CLOCK(atomic_load_explicit(&state, memory_order_relaxed)); return COND_GET_CLOCK(atomic_load_explicit(&state, memory_order_relaxed)) == CLOCK_REALTIME;
} }
#if defined(__LP64__) #if defined(__LP64__)
@ -170,12 +170,17 @@ static int __pthread_cond_pulse(pthread_cond_internal_t* cond, int thread_count)
return 0; return 0;
} }
static int __pthread_cond_timedwait_relative(pthread_cond_internal_t* cond, pthread_mutex_t* mutex, static int __pthread_cond_timedwait(pthread_cond_internal_t* cond, pthread_mutex_t* mutex,
const timespec* rel_timeout_or_null) { bool use_realtime_clock, const timespec* abs_timeout_or_null) {
unsigned int old_state = atomic_load_explicit(&cond->state, memory_order_relaxed); int result = check_timespec(abs_timeout_or_null);
if (result != 0) {
return result;
}
unsigned int old_state = atomic_load_explicit(&cond->state, memory_order_relaxed);
pthread_mutex_unlock(mutex); pthread_mutex_unlock(mutex);
int status = __futex_wait_ex(&cond->state, cond->process_shared(), old_state, rel_timeout_or_null); int status = __futex_wait_ex(&cond->state, cond->process_shared(), old_state,
use_realtime_clock, abs_timeout_or_null);
pthread_mutex_lock(mutex); pthread_mutex_lock(mutex);
if (status == -ETIMEDOUT) { if (status == -ETIMEDOUT) {
@ -184,21 +189,6 @@ static int __pthread_cond_timedwait_relative(pthread_cond_internal_t* cond, pthr
return 0; return 0;
} }
static int __pthread_cond_timedwait(pthread_cond_internal_t* cond, pthread_mutex_t* mutex,
const timespec* abs_timeout_or_null, clockid_t clock) {
timespec ts;
timespec* rel_timeout = NULL;
if (abs_timeout_or_null != NULL) {
rel_timeout = &ts;
if (!timespec_from_absolute_timespec(*rel_timeout, *abs_timeout_or_null, clock)) {
return ETIMEDOUT;
}
}
return __pthread_cond_timedwait_relative(cond, mutex, rel_timeout);
}
int pthread_cond_broadcast(pthread_cond_t* cond_interface) { int pthread_cond_broadcast(pthread_cond_t* cond_interface) {
return __pthread_cond_pulse(__get_internal_cond(cond_interface), INT_MAX); return __pthread_cond_pulse(__get_internal_cond(cond_interface), INT_MAX);
} }
@ -209,14 +199,14 @@ int pthread_cond_signal(pthread_cond_t* cond_interface) {
int pthread_cond_wait(pthread_cond_t* cond_interface, pthread_mutex_t* mutex) { int pthread_cond_wait(pthread_cond_t* cond_interface, pthread_mutex_t* mutex) {
pthread_cond_internal_t* cond = __get_internal_cond(cond_interface); pthread_cond_internal_t* cond = __get_internal_cond(cond_interface);
return __pthread_cond_timedwait(cond, mutex, NULL, cond->get_clock()); return __pthread_cond_timedwait(cond, mutex, false, nullptr);
} }
int pthread_cond_timedwait(pthread_cond_t *cond_interface, pthread_mutex_t * mutex, int pthread_cond_timedwait(pthread_cond_t *cond_interface, pthread_mutex_t * mutex,
const timespec *abstime) { const timespec *abstime) {
pthread_cond_internal_t* cond = __get_internal_cond(cond_interface); pthread_cond_internal_t* cond = __get_internal_cond(cond_interface);
return __pthread_cond_timedwait(cond, mutex, abstime, cond->get_clock()); return __pthread_cond_timedwait(cond, mutex, cond->use_realtime_clock(), abstime);
} }
#if !defined(__LP64__) #if !defined(__LP64__)
@ -225,8 +215,7 @@ extern "C" int pthread_cond_timedwait_monotonic(pthread_cond_t* cond_interface,
pthread_mutex_t* mutex, pthread_mutex_t* mutex,
const timespec* abs_timeout) { const timespec* abs_timeout) {
return __pthread_cond_timedwait(__get_internal_cond(cond_interface), mutex, abs_timeout, return __pthread_cond_timedwait(__get_internal_cond(cond_interface), mutex, false, abs_timeout);
CLOCK_MONOTONIC);
} }
extern "C" int pthread_cond_timedwait_monotonic_np(pthread_cond_t* cond_interface, extern "C" int pthread_cond_timedwait_monotonic_np(pthread_cond_t* cond_interface,
@ -238,8 +227,13 @@ extern "C" int pthread_cond_timedwait_monotonic_np(pthread_cond_t* cond_interfac
extern "C" int pthread_cond_timedwait_relative_np(pthread_cond_t* cond_interface, extern "C" int pthread_cond_timedwait_relative_np(pthread_cond_t* cond_interface,
pthread_mutex_t* mutex, pthread_mutex_t* mutex,
const timespec* rel_timeout) { const timespec* rel_timeout) {
timespec ts;
return __pthread_cond_timedwait_relative(__get_internal_cond(cond_interface), mutex, rel_timeout); timespec* abs_timeout = nullptr;
if (rel_timeout != nullptr) {
absolute_timespec_from_timespec(ts, *rel_timeout, CLOCK_REALTIME);
abs_timeout = &ts;
}
return __pthread_cond_timedwait(__get_internal_cond(cond_interface), mutex, true, abs_timeout);
} }
extern "C" int pthread_cond_timeout_np(pthread_cond_t* cond_interface, extern "C" int pthread_cond_timeout_np(pthread_cond_t* cond_interface,

View File

@ -296,11 +296,15 @@ static inline __always_inline int __pthread_normal_mutex_trylock(pthread_mutex_i
*/ */
static inline __always_inline int __pthread_normal_mutex_lock(pthread_mutex_internal_t* mutex, static inline __always_inline int __pthread_normal_mutex_lock(pthread_mutex_internal_t* mutex,
uint16_t shared, uint16_t shared,
const timespec* abs_timeout_or_null, bool use_realtime_clock,
clockid_t clock) { const timespec* abs_timeout_or_null) {
if (__predict_true(__pthread_normal_mutex_trylock(mutex, shared) == 0)) { if (__predict_true(__pthread_normal_mutex_trylock(mutex, shared) == 0)) {
return 0; return 0;
} }
int result = check_timespec(abs_timeout_or_null);
if (result != 0) {
return result;
}
ScopedTrace trace("Contending for pthread mutex"); ScopedTrace trace("Contending for pthread mutex");
@ -317,15 +321,8 @@ static inline __always_inline int __pthread_normal_mutex_lock(pthread_mutex_inte
// made by other threads visible to the current CPU. // made by other threads visible to the current CPU.
while (atomic_exchange_explicit(&mutex->state, locked_contended, while (atomic_exchange_explicit(&mutex->state, locked_contended,
memory_order_acquire) != unlocked) { memory_order_acquire) != unlocked) {
timespec ts; if (__futex_wait_ex(&mutex->state, shared, locked_contended, use_realtime_clock,
timespec* rel_timeout = NULL; abs_timeout_or_null) == -ETIMEDOUT) {
if (abs_timeout_or_null != NULL) {
rel_timeout = &ts;
if (!timespec_from_absolute_timespec(*rel_timeout, *abs_timeout_or_null, clock)) {
return ETIMEDOUT;
}
}
if (__futex_wait_ex(&mutex->state, shared, locked_contended, rel_timeout) == -ETIMEDOUT) {
return ETIMEDOUT; return ETIMEDOUT;
} }
} }
@ -396,14 +393,15 @@ static inline __always_inline int __recursive_or_errorcheck_mutex_wait(
pthread_mutex_internal_t* mutex, pthread_mutex_internal_t* mutex,
uint16_t shared, uint16_t shared,
uint16_t old_state, uint16_t old_state,
const timespec* rel_timeout) { bool use_realtime_clock,
const timespec* abs_timeout) {
// __futex_wait always waits on a 32-bit value. But state is 16-bit. For a normal mutex, the owner_tid // __futex_wait always waits on a 32-bit value. But state is 16-bit. For a normal mutex, the owner_tid
// field in mutex is not used. On 64-bit devices, the __pad field in mutex is not used. // field in mutex is not used. On 64-bit devices, the __pad field in mutex is not used.
// But when a recursive or errorcheck mutex is used on 32-bit devices, we need to add the // But when a recursive or errorcheck mutex is used on 32-bit devices, we need to add the
// owner_tid value in the value argument for __futex_wait, otherwise we may always get EAGAIN error. // owner_tid value in the value argument for __futex_wait, otherwise we may always get EAGAIN error.
#if defined(__LP64__) #if defined(__LP64__)
return __futex_wait_ex(&mutex->state, shared, old_state, rel_timeout); return __futex_wait_ex(&mutex->state, shared, old_state, use_realtime_clock, abs_timeout);
#else #else
// This implementation works only when the layout of pthread_mutex_internal_t matches below expectation. // This implementation works only when the layout of pthread_mutex_internal_t matches below expectation.
@ -412,19 +410,21 @@ static inline __always_inline int __recursive_or_errorcheck_mutex_wait(
static_assert(offsetof(pthread_mutex_internal_t, owner_tid) == 2, ""); static_assert(offsetof(pthread_mutex_internal_t, owner_tid) == 2, "");
uint32_t owner_tid = atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed); uint32_t owner_tid = atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed);
return __futex_wait_ex(&mutex->state, shared, (owner_tid << 16) | old_state, rel_timeout); return __futex_wait_ex(&mutex->state, shared, (owner_tid << 16) | old_state,
use_realtime_clock, abs_timeout);
#endif #endif
} }
static int __pthread_mutex_lock_with_timeout(pthread_mutex_internal_t* mutex, static int __pthread_mutex_lock_with_timeout(pthread_mutex_internal_t* mutex,
const timespec* abs_timeout_or_null, clockid_t clock) { bool use_realtime_clock,
const timespec* abs_timeout_or_null) {
uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed); uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
uint16_t mtype = (old_state & MUTEX_TYPE_MASK); uint16_t mtype = (old_state & MUTEX_TYPE_MASK);
uint16_t shared = (old_state & MUTEX_SHARED_MASK); uint16_t shared = (old_state & MUTEX_SHARED_MASK);
// Handle common case first. // Handle common case first.
if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) ) { if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) ) {
return __pthread_normal_mutex_lock(mutex, shared, abs_timeout_or_null, clock); return __pthread_normal_mutex_lock(mutex, shared, use_realtime_clock, abs_timeout_or_null);
} }
// Do we already own this recursive or error-check mutex? // Do we already own this recursive or error-check mutex?
@ -484,16 +484,13 @@ static int __pthread_mutex_lock_with_timeout(pthread_mutex_internal_t* mutex,
old_state = new_state; old_state = new_state;
} }
// We are in locked_contended state, sleep until someone wakes us up. int result = check_timespec(abs_timeout_or_null);
timespec ts; if (result != 0) {
timespec* rel_timeout = NULL; return result;
if (abs_timeout_or_null != NULL) {
rel_timeout = &ts;
if (!timespec_from_absolute_timespec(*rel_timeout, *abs_timeout_or_null, clock)) {
return ETIMEDOUT;
}
} }
if (__recursive_or_errorcheck_mutex_wait(mutex, shared, old_state, rel_timeout) == -ETIMEDOUT) { // We are in locked_contended state, sleep until someone wakes us up.
if (__recursive_or_errorcheck_mutex_wait(mutex, shared, old_state, use_realtime_clock,
abs_timeout_or_null) == -ETIMEDOUT) {
return ETIMEDOUT; return ETIMEDOUT;
} }
old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed); old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
@ -518,7 +515,7 @@ int pthread_mutex_lock(pthread_mutex_t* mutex_interface) {
return 0; return 0;
} }
} }
return __pthread_mutex_lock_with_timeout(mutex, NULL, 0); return __pthread_mutex_lock_with_timeout(mutex, false, nullptr);
} }
int pthread_mutex_unlock(pthread_mutex_t* mutex_interface) { int pthread_mutex_unlock(pthread_mutex_t* mutex_interface) {
@ -613,17 +610,12 @@ int pthread_mutex_trylock(pthread_mutex_t* mutex_interface) {
#if !defined(__LP64__) #if !defined(__LP64__)
extern "C" int pthread_mutex_lock_timeout_np(pthread_mutex_t* mutex_interface, unsigned ms) { extern "C" int pthread_mutex_lock_timeout_np(pthread_mutex_t* mutex_interface, unsigned ms) {
timespec ts;
timespec_from_ms(ts, ms);
timespec abs_timeout; timespec abs_timeout;
clock_gettime(CLOCK_MONOTONIC, &abs_timeout); absolute_timespec_from_timespec(abs_timeout, ts, CLOCK_MONOTONIC);
abs_timeout.tv_sec += ms / 1000;
abs_timeout.tv_nsec += (ms % 1000) * 1000000;
if (abs_timeout.tv_nsec >= NS_PER_S) {
abs_timeout.tv_sec++;
abs_timeout.tv_nsec -= NS_PER_S;
}
int error = __pthread_mutex_lock_with_timeout(__get_internal_mutex(mutex_interface), int error = __pthread_mutex_lock_with_timeout(__get_internal_mutex(mutex_interface),
&abs_timeout, CLOCK_MONOTONIC); false, &abs_timeout);
if (error == ETIMEDOUT) { if (error == ETIMEDOUT) {
error = EBUSY; error = EBUSY;
} }
@ -633,7 +625,7 @@ extern "C" int pthread_mutex_lock_timeout_np(pthread_mutex_t* mutex_interface, u
int pthread_mutex_timedlock(pthread_mutex_t* mutex_interface, const timespec* abs_timeout) { int pthread_mutex_timedlock(pthread_mutex_t* mutex_interface, const timespec* abs_timeout) {
return __pthread_mutex_lock_with_timeout(__get_internal_mutex(mutex_interface), return __pthread_mutex_lock_with_timeout(__get_internal_mutex(mutex_interface),
abs_timeout, CLOCK_REALTIME); true, abs_timeout);
} }
int pthread_mutex_destroy(pthread_mutex_t* mutex_interface) { int pthread_mutex_destroy(pthread_mutex_t* mutex_interface) {

View File

@ -79,7 +79,7 @@ int pthread_once(pthread_once_t* once_control, void (*init_routine)(void)) {
} }
// The initialization is underway, wait for its finish. // The initialization is underway, wait for its finish.
__futex_wait_ex(once_control_ptr, 0, old_value, NULL); __futex_wait_ex(once_control_ptr, 0, old_value, false, nullptr);
old_value = atomic_load_explicit(once_control_ptr, memory_order_acquire); old_value = atomic_load_explicit(once_control_ptr, memory_order_acquire);
} }
} }

View File

@ -294,9 +294,13 @@ static int __pthread_rwlock_timedrdlock(pthread_rwlock_internal_t* rwlock,
} }
while (true) { while (true) {
int ret = __pthread_rwlock_tryrdlock(rwlock); int result = __pthread_rwlock_tryrdlock(rwlock);
if (ret == 0 || ret == EAGAIN) { if (result == 0 || result == EAGAIN) {
return ret; return result;
}
result = check_timespec(abs_timeout_or_null);
if (result != 0) {
return result;
} }
int old_state = atomic_load_explicit(&rwlock->state, memory_order_relaxed); int old_state = atomic_load_explicit(&rwlock->state, memory_order_relaxed);
@ -304,16 +308,6 @@ static int __pthread_rwlock_timedrdlock(pthread_rwlock_internal_t* rwlock,
continue; continue;
} }
timespec ts;
timespec* rel_timeout = NULL;
if (abs_timeout_or_null != NULL) {
rel_timeout = &ts;
if (!timespec_from_absolute_timespec(*rel_timeout, *abs_timeout_or_null, CLOCK_REALTIME)) {
return ETIMEDOUT;
}
}
rwlock->pending_lock.lock(); rwlock->pending_lock.lock();
rwlock->pending_reader_count++; rwlock->pending_reader_count++;
@ -327,10 +321,10 @@ static int __pthread_rwlock_timedrdlock(pthread_rwlock_internal_t* rwlock,
int old_serial = rwlock->pending_reader_wakeup_serial; int old_serial = rwlock->pending_reader_wakeup_serial;
rwlock->pending_lock.unlock(); rwlock->pending_lock.unlock();
int futex_ret = 0; int futex_result = 0;
if (!__can_acquire_read_lock(old_state, rwlock->writer_nonrecursive_preferred)) { if (!__can_acquire_read_lock(old_state, rwlock->writer_nonrecursive_preferred)) {
futex_ret = __futex_wait_ex(&rwlock->pending_reader_wakeup_serial, rwlock->pshared, futex_result = __futex_wait_ex(&rwlock->pending_reader_wakeup_serial, rwlock->pshared,
old_serial, rel_timeout); old_serial, true, abs_timeout_or_null);
} }
rwlock->pending_lock.lock(); rwlock->pending_lock.lock();
@ -341,7 +335,7 @@ static int __pthread_rwlock_timedrdlock(pthread_rwlock_internal_t* rwlock,
} }
rwlock->pending_lock.unlock(); rwlock->pending_lock.unlock();
if (futex_ret == -ETIMEDOUT) { if (futex_result == -ETIMEDOUT) {
return ETIMEDOUT; return ETIMEDOUT;
} }
} }
@ -372,9 +366,13 @@ static int __pthread_rwlock_timedwrlock(pthread_rwlock_internal_t* rwlock,
return EDEADLK; return EDEADLK;
} }
while (true) { while (true) {
int ret = __pthread_rwlock_trywrlock(rwlock); int result = __pthread_rwlock_trywrlock(rwlock);
if (ret == 0) { if (result == 0) {
return ret; return result;
}
result = check_timespec(abs_timeout_or_null);
if (result != 0) {
return result;
} }
int old_state = atomic_load_explicit(&rwlock->state, memory_order_relaxed); int old_state = atomic_load_explicit(&rwlock->state, memory_order_relaxed);
@ -382,16 +380,6 @@ static int __pthread_rwlock_timedwrlock(pthread_rwlock_internal_t* rwlock,
continue; continue;
} }
timespec ts;
timespec* rel_timeout = NULL;
if (abs_timeout_or_null != NULL) {
rel_timeout = &ts;
if (!timespec_from_absolute_timespec(*rel_timeout, *abs_timeout_or_null, CLOCK_REALTIME)) {
return ETIMEDOUT;
}
}
rwlock->pending_lock.lock(); rwlock->pending_lock.lock();
rwlock->pending_writer_count++; rwlock->pending_writer_count++;
@ -401,10 +389,10 @@ static int __pthread_rwlock_timedwrlock(pthread_rwlock_internal_t* rwlock,
int old_serial = rwlock->pending_writer_wakeup_serial; int old_serial = rwlock->pending_writer_wakeup_serial;
rwlock->pending_lock.unlock(); rwlock->pending_lock.unlock();
int futex_ret = 0; int futex_result = 0;
if (!__can_acquire_write_lock(old_state)) { if (!__can_acquire_write_lock(old_state)) {
futex_ret = __futex_wait_ex(&rwlock->pending_writer_wakeup_serial, rwlock->pshared, futex_result = __futex_wait_ex(&rwlock->pending_writer_wakeup_serial, rwlock->pshared,
old_serial, rel_timeout); old_serial, true, abs_timeout_or_null);
} }
rwlock->pending_lock.lock(); rwlock->pending_lock.lock();
@ -415,7 +403,7 @@ static int __pthread_rwlock_timedwrlock(pthread_rwlock_internal_t* rwlock,
} }
rwlock->pending_lock.unlock(); rwlock->pending_lock.unlock();
if (futex_ret == -ETIMEDOUT) { if (futex_result == -ETIMEDOUT) {
return ETIMEDOUT; return ETIMEDOUT;
} }
} }
@ -427,7 +415,7 @@ int pthread_rwlock_rdlock(pthread_rwlock_t* rwlock_interface) {
if (__predict_true(__pthread_rwlock_tryrdlock(rwlock) == 0)) { if (__predict_true(__pthread_rwlock_tryrdlock(rwlock) == 0)) {
return 0; return 0;
} }
return __pthread_rwlock_timedrdlock(rwlock, NULL); return __pthread_rwlock_timedrdlock(rwlock, nullptr);
} }
int pthread_rwlock_timedrdlock(pthread_rwlock_t* rwlock_interface, const timespec* abs_timeout) { int pthread_rwlock_timedrdlock(pthread_rwlock_t* rwlock_interface, const timespec* abs_timeout) {
@ -446,7 +434,7 @@ int pthread_rwlock_wrlock(pthread_rwlock_t* rwlock_interface) {
if (__predict_true(__pthread_rwlock_trywrlock(rwlock) == 0)) { if (__predict_true(__pthread_rwlock_trywrlock(rwlock) == 0)) {
return 0; return 0;
} }
return __pthread_rwlock_timedwrlock(rwlock, NULL); return __pthread_rwlock_timedwrlock(rwlock, nullptr);
} }
int pthread_rwlock_timedwrlock(pthread_rwlock_t* rwlock_interface, const timespec* abs_timeout) { int pthread_rwlock_timedwrlock(pthread_rwlock_t* rwlock_interface, const timespec* abs_timeout) {

View File

@ -220,7 +220,7 @@ int sem_wait(sem_t* sem) {
return 0; return 0;
} }
__futex_wait_ex(sem_count_ptr, shared, shared | SEMCOUNT_MINUS_ONE, NULL); __futex_wait_ex(sem_count_ptr, shared, shared | SEMCOUNT_MINUS_ONE, false, nullptr);
} }
} }
@ -235,36 +235,29 @@ int sem_timedwait(sem_t* sem, const timespec* abs_timeout) {
} }
// Check it as per POSIX. // Check it as per POSIX.
if (abs_timeout == NULL || abs_timeout->tv_sec < 0 || abs_timeout->tv_nsec < 0 || abs_timeout->tv_nsec >= NS_PER_S) { int result = check_timespec(abs_timeout);
errno = EINVAL; if (result != 0) {
errno = result;
return -1; return -1;
} }
unsigned int shared = SEM_GET_SHARED(sem_count_ptr); unsigned int shared = SEM_GET_SHARED(sem_count_ptr);
while (true) { while (true) {
// POSIX mandates CLOCK_REALTIME here.
timespec ts;
if (!timespec_from_absolute_timespec(ts, *abs_timeout, CLOCK_REALTIME)) {
errno = ETIMEDOUT;
return -1;
}
// Try to grab the semaphore. If the value was 0, this will also change it to -1. // Try to grab the semaphore. If the value was 0, this will also change it to -1.
if (__sem_dec(sem_count_ptr) > 0) { if (__sem_dec(sem_count_ptr) > 0) {
break; return 0;
} }
// Contention detected. Wait for a wakeup event. // Contention detected. Wait for a wakeup event.
int ret = __futex_wait_ex(sem_count_ptr, shared, shared | SEMCOUNT_MINUS_ONE, &ts); int result = __futex_wait_ex(sem_count_ptr, shared, shared | SEMCOUNT_MINUS_ONE, true, abs_timeout);
// Return in case of timeout or interrupt. // Return in case of timeout or interrupt.
if (ret == -ETIMEDOUT || ret == -EINTR) { if (result == -ETIMEDOUT || result == -EINTR) {
errno = -ret; errno = -result;
return -1; return -1;
} }
} }
return 0;
} }
int sem_post(sem_t* sem) { int sem_post(sem_t* sem) {

View File

@ -40,10 +40,12 @@ __BEGIN_DECLS
struct timespec; struct timespec;
static inline __always_inline int __futex(volatile void* ftx, int op, int value, const struct timespec* timeout) { static inline __always_inline int __futex(volatile void* ftx, int op, int value,
const struct timespec* timeout,
int bitset) {
// Our generated syscall assembler sets errno, but our callers (pthread functions) don't want to. // Our generated syscall assembler sets errno, but our callers (pthread functions) don't want to.
int saved_errno = errno; int saved_errno = errno;
int result = syscall(__NR_futex, ftx, op, value, timeout); int result = syscall(__NR_futex, ftx, op, value, timeout, NULL, bitset);
if (__predict_false(result == -1)) { if (__predict_false(result == -1)) {
result = -errno; result = -errno;
errno = saved_errno; errno = saved_errno;
@ -52,19 +54,22 @@ static inline __always_inline int __futex(volatile void* ftx, int op, int value,
} }
static inline int __futex_wake(volatile void* ftx, int count) { static inline int __futex_wake(volatile void* ftx, int count) {
return __futex(ftx, FUTEX_WAKE, count, NULL); return __futex(ftx, FUTEX_WAKE, count, NULL, 0);
} }
static inline int __futex_wake_ex(volatile void* ftx, bool shared, int count) { static inline int __futex_wake_ex(volatile void* ftx, bool shared, int count) {
return __futex(ftx, shared ? FUTEX_WAKE : FUTEX_WAKE_PRIVATE, count, NULL); return __futex(ftx, shared ? FUTEX_WAKE : FUTEX_WAKE_PRIVATE, count, NULL, 0);
} }
static inline int __futex_wait(volatile void* ftx, int value, const struct timespec* timeout) { static inline int __futex_wait(volatile void* ftx, int value, const struct timespec* timeout) {
return __futex(ftx, FUTEX_WAIT, value, timeout); return __futex(ftx, FUTEX_WAIT, value, timeout, 0);
} }
static inline int __futex_wait_ex(volatile void* ftx, bool shared, int value, const struct timespec* timeout) { static inline int __futex_wait_ex(volatile void* ftx, bool shared, int value,
return __futex(ftx, shared ? FUTEX_WAIT : FUTEX_WAIT_PRIVATE, value, timeout); bool use_realtime_clock, const struct timespec* abs_timeout) {
return __futex(ftx, (shared ? FUTEX_WAIT_BITSET : FUTEX_WAIT_BITSET_PRIVATE) |
(use_realtime_clock ? FUTEX_CLOCK_REALTIME : 0), value, abs_timeout,
FUTEX_BITSET_MATCH_ANY);
} }
__END_DECLS __END_DECLS

View File

@ -57,7 +57,7 @@ class Lock {
} }
while (atomic_exchange_explicit(&state, LockedWithWaiter, memory_order_acquire) != Unlocked) { while (atomic_exchange_explicit(&state, LockedWithWaiter, memory_order_acquire) != Unlocked) {
// TODO: As the critical section is brief, it is a better choice to spin a few times befor sleeping. // TODO: As the critical section is brief, it is a better choice to spin a few times befor sleeping.
__futex_wait_ex(&state, process_shared, LockedWithWaiter, NULL); __futex_wait_ex(&state, process_shared, LockedWithWaiter, false, nullptr);
} }
return; return;
} }

View File

@ -29,9 +29,12 @@
#ifndef _BIONIC_TIME_CONVERSIONS_H #ifndef _BIONIC_TIME_CONVERSIONS_H
#define _BIONIC_TIME_CONVERSIONS_H #define _BIONIC_TIME_CONVERSIONS_H
#include <errno.h>
#include <time.h> #include <time.h>
#include <sys/cdefs.h> #include <sys/cdefs.h>
#include "private/bionic_constants.h"
__BEGIN_DECLS __BEGIN_DECLS
__LIBC_HIDDEN__ bool timespec_from_timeval(timespec& ts, const timeval& tv); __LIBC_HIDDEN__ bool timespec_from_timeval(timespec& ts, const timeval& tv);
@ -39,8 +42,21 @@ __LIBC_HIDDEN__ void timespec_from_ms(timespec& ts, const int ms);
__LIBC_HIDDEN__ void timeval_from_timespec(timeval& tv, const timespec& ts); __LIBC_HIDDEN__ void timeval_from_timespec(timeval& tv, const timespec& ts);
__LIBC_HIDDEN__ bool timespec_from_absolute_timespec(timespec& ts, const timespec& abs_ts, clockid_t clock); __LIBC_HIDDEN__ void absolute_timespec_from_timespec(timespec& abs_ts, const timespec& ts,
clockid_t clock);
__END_DECLS __END_DECLS
static inline int check_timespec(const timespec* ts) {
if (ts != nullptr) {
if (ts->tv_nsec < 0 || ts->tv_nsec >= NS_PER_S) {
return EINVAL;
}
if (ts->tv_sec < 0) {
return ETIMEDOUT;
}
}
return 0;
}
#endif #endif

View File

@ -36,6 +36,7 @@
#include <base/file.h> #include <base/file.h>
#include <base/stringprintf.h> #include <base/stringprintf.h>
#include "private/bionic_constants.h"
#include "private/bionic_macros.h" #include "private/bionic_macros.h"
#include "private/ScopeGuard.h" #include "private/ScopeGuard.h"
#include "BionicDeathTest.h" #include "BionicDeathTest.h"
@ -744,35 +745,41 @@ struct RwlockWakeupHelperArg {
LOCK_INITIALIZED, LOCK_INITIALIZED,
LOCK_WAITING, LOCK_WAITING,
LOCK_RELEASED, LOCK_RELEASED,
LOCK_ACCESSED LOCK_ACCESSED,
LOCK_TIMEDOUT,
}; };
std::atomic<Progress> progress; std::atomic<Progress> progress;
std::atomic<pid_t> tid; std::atomic<pid_t> tid;
std::function<int (pthread_rwlock_t*)> trylock_function;
std::function<int (pthread_rwlock_t*)> lock_function;
std::function<int (pthread_rwlock_t*, const timespec*)> timed_lock_function;
}; };
static void pthread_rwlock_reader_wakeup_writer_helper(RwlockWakeupHelperArg* arg) { static void pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg* arg) {
arg->tid = gettid(); arg->tid = gettid();
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress); ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
arg->progress = RwlockWakeupHelperArg::LOCK_WAITING; arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&arg->lock)); ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
ASSERT_EQ(0, pthread_rwlock_wrlock(&arg->lock)); ASSERT_EQ(0, arg->lock_function(&arg->lock));
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress); ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock)); ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED; arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
} }
TEST(pthread, pthread_rwlock_reader_wakeup_writer) { static void test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t*)> lock_function) {
RwlockWakeupHelperArg wakeup_arg; RwlockWakeupHelperArg wakeup_arg;
ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL)); ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock)); ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED; wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
wakeup_arg.tid = 0; wakeup_arg.tid = 0;
wakeup_arg.trylock_function = pthread_rwlock_trywrlock;
wakeup_arg.lock_function = lock_function;
pthread_t thread; pthread_t thread;
ASSERT_EQ(0, pthread_create(&thread, NULL, ASSERT_EQ(0, pthread_create(&thread, NULL,
reinterpret_cast<void* (*)(void*)>(pthread_rwlock_reader_wakeup_writer_helper), &wakeup_arg)); reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
WaitUntilThreadSleep(wakeup_arg.tid); WaitUntilThreadSleep(wakeup_arg.tid);
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress); ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
@ -784,29 +791,31 @@ TEST(pthread, pthread_rwlock_reader_wakeup_writer) {
ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock)); ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
} }
static void pthread_rwlock_writer_wakeup_reader_helper(RwlockWakeupHelperArg* arg) { TEST(pthread, pthread_rwlock_reader_wakeup_writer) {
arg->tid = gettid(); test_pthread_rwlock_reader_wakeup_writer(pthread_rwlock_wrlock);
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&arg->lock));
ASSERT_EQ(0, pthread_rwlock_rdlock(&arg->lock));
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
} }
TEST(pthread, pthread_rwlock_writer_wakeup_reader) { TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait) {
timespec ts;
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
ts.tv_sec += 1;
test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) {
return pthread_rwlock_timedwrlock(lock, &ts);
});
}
static void test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t*)> lock_function) {
RwlockWakeupHelperArg wakeup_arg; RwlockWakeupHelperArg wakeup_arg;
ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL)); ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock)); ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED; wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
wakeup_arg.tid = 0; wakeup_arg.tid = 0;
wakeup_arg.trylock_function = pthread_rwlock_tryrdlock;
wakeup_arg.lock_function = lock_function;
pthread_t thread; pthread_t thread;
ASSERT_EQ(0, pthread_create(&thread, NULL, ASSERT_EQ(0, pthread_create(&thread, NULL,
reinterpret_cast<void* (*)(void*)>(pthread_rwlock_writer_wakeup_reader_helper), &wakeup_arg)); reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
WaitUntilThreadSleep(wakeup_arg.tid); WaitUntilThreadSleep(wakeup_arg.tid);
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress); ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
@ -818,6 +827,85 @@ TEST(pthread, pthread_rwlock_writer_wakeup_reader) {
ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock)); ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
} }
TEST(pthread, pthread_rwlock_writer_wakeup_reader) {
test_pthread_rwlock_writer_wakeup_reader(pthread_rwlock_rdlock);
}
TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait) {
timespec ts;
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
ts.tv_sec += 1;
test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) {
return pthread_rwlock_timedrdlock(lock, &ts);
});
}
static void pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg* arg) {
arg->tid = gettid();
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
timespec ts;
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
ts.tv_nsec = -1;
ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
ts.tv_nsec = NS_PER_S;
ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
ts.tv_nsec = NS_PER_S - 1;
ts.tv_sec = -1;
ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
ts.tv_sec += 1;
ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, arg->progress);
arg->progress = RwlockWakeupHelperArg::LOCK_TIMEDOUT;
}
TEST(pthread, pthread_rwlock_timedrdlock_timeout) {
RwlockWakeupHelperArg wakeup_arg;
ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
wakeup_arg.tid = 0;
wakeup_arg.trylock_function = pthread_rwlock_tryrdlock;
wakeup_arg.timed_lock_function = pthread_rwlock_timedrdlock;
pthread_t thread;
ASSERT_EQ(0, pthread_create(&thread, nullptr,
reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
WaitUntilThreadSleep(wakeup_arg.tid);
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
ASSERT_EQ(0, pthread_join(thread, nullptr));
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
}
TEST(pthread, pthread_rwlock_timedwrlock_timeout) {
RwlockWakeupHelperArg wakeup_arg;
ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
wakeup_arg.tid = 0;
wakeup_arg.trylock_function = pthread_rwlock_trywrlock;
wakeup_arg.timed_lock_function = pthread_rwlock_timedwrlock;
pthread_t thread;
ASSERT_EQ(0, pthread_create(&thread, nullptr,
reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
WaitUntilThreadSleep(wakeup_arg.tid);
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
ASSERT_EQ(0, pthread_join(thread, nullptr));
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
}
class RwlockKindTestHelper { class RwlockKindTestHelper {
private: private:
struct ThreadArg { struct ThreadArg {
@ -1062,36 +1150,44 @@ class pthread_CondWakeupTest : public ::testing::Test {
}; };
std::atomic<Progress> progress; std::atomic<Progress> progress;
pthread_t thread; pthread_t thread;
std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function;
protected: protected:
virtual void SetUp() { void SetUp() override {
ASSERT_EQ(0, pthread_mutex_init(&mutex, NULL)); ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
ASSERT_EQ(0, pthread_cond_init(&cond, NULL)); }
void InitCond(clockid_t clock=CLOCK_REALTIME) {
pthread_condattr_t attr;
ASSERT_EQ(0, pthread_condattr_init(&attr));
ASSERT_EQ(0, pthread_condattr_setclock(&attr, clock));
ASSERT_EQ(0, pthread_cond_init(&cond, &attr));
ASSERT_EQ(0, pthread_condattr_destroy(&attr));
}
void StartWaitingThread(std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function) {
progress = INITIALIZED; progress = INITIALIZED;
ASSERT_EQ(0, this->wait_function = wait_function;
pthread_create(&thread, NULL, reinterpret_cast<void* (*)(void*)>(WaitThreadFn), this)); ASSERT_EQ(0, pthread_create(&thread, NULL, reinterpret_cast<void* (*)(void*)>(WaitThreadFn), this));
} while (progress != WAITING) {
virtual void TearDown() {
ASSERT_EQ(0, pthread_join(thread, NULL));
ASSERT_EQ(FINISHED, progress);
ASSERT_EQ(0, pthread_cond_destroy(&cond));
ASSERT_EQ(0, pthread_mutex_destroy(&mutex));
}
void SleepUntilProgress(Progress expected_progress) {
while (progress != expected_progress) {
usleep(5000); usleep(5000);
} }
usleep(5000); usleep(5000);
} }
void TearDown() override {
ASSERT_EQ(0, pthread_join(thread, nullptr));
ASSERT_EQ(FINISHED, progress);
ASSERT_EQ(0, pthread_cond_destroy(&cond));
ASSERT_EQ(0, pthread_mutex_destroy(&mutex));
}
private: private:
static void WaitThreadFn(pthread_CondWakeupTest* test) { static void WaitThreadFn(pthread_CondWakeupTest* test) {
ASSERT_EQ(0, pthread_mutex_lock(&test->mutex)); ASSERT_EQ(0, pthread_mutex_lock(&test->mutex));
test->progress = WAITING; test->progress = WAITING;
while (test->progress == WAITING) { while (test->progress == WAITING) {
ASSERT_EQ(0, pthread_cond_wait(&test->cond, &test->mutex)); ASSERT_EQ(0, test->wait_function(&test->cond, &test->mutex));
} }
ASSERT_EQ(SIGNALED, test->progress); ASSERT_EQ(SIGNALED, test->progress);
test->progress = FINISHED; test->progress = FINISHED;
@ -1099,39 +1195,65 @@ class pthread_CondWakeupTest : public ::testing::Test {
} }
}; };
TEST_F(pthread_CondWakeupTest, signal) { TEST_F(pthread_CondWakeupTest, signal_wait) {
SleepUntilProgress(WAITING); InitCond();
StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
return pthread_cond_wait(cond, mutex);
});
progress = SIGNALED; progress = SIGNALED;
pthread_cond_signal(&cond); ASSERT_EQ(0, pthread_cond_signal(&cond));
} }
TEST_F(pthread_CondWakeupTest, broadcast) { TEST_F(pthread_CondWakeupTest, broadcast_wait) {
SleepUntilProgress(WAITING); InitCond();
StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
return pthread_cond_wait(cond, mutex);
});
progress = SIGNALED; progress = SIGNALED;
pthread_cond_broadcast(&cond); ASSERT_EQ(0, pthread_cond_broadcast(&cond));
} }
TEST(pthread, pthread_mutex_timedlock) { TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_REALTIME) {
pthread_mutex_t m; InitCond(CLOCK_REALTIME);
ASSERT_EQ(0, pthread_mutex_init(&m, NULL));
// If the mutex is already locked, pthread_mutex_timedlock should time out.
ASSERT_EQ(0, pthread_mutex_lock(&m));
timespec ts; timespec ts;
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
ts.tv_nsec += 1; ts.tv_sec += 1;
ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts)); StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) {
return pthread_cond_timedwait(cond, mutex, &ts);
});
progress = SIGNALED;
ASSERT_EQ(0, pthread_cond_signal(&cond));
}
// If the mutex is unlocked, pthread_mutex_timedlock should succeed. TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC) {
ASSERT_EQ(0, pthread_mutex_unlock(&m)); InitCond(CLOCK_MONOTONIC);
timespec ts;
ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
ts.tv_sec += 1;
StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) {
return pthread_cond_timedwait(cond, mutex, &ts);
});
progress = SIGNALED;
ASSERT_EQ(0, pthread_cond_signal(&cond));
}
TEST(pthread, pthread_cond_timedwait_timeout) {
pthread_mutex_t mutex;
ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
pthread_cond_t cond;
ASSERT_EQ(0, pthread_cond_init(&cond, nullptr));
ASSERT_EQ(0, pthread_mutex_lock(&mutex));
timespec ts;
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
ts.tv_nsec += 1; ASSERT_EQ(ETIMEDOUT, pthread_cond_timedwait(&cond, &mutex, &ts));
ASSERT_EQ(0, pthread_mutex_timedlock(&m, &ts)); ts.tv_nsec = -1;
ASSERT_EQ(EINVAL, pthread_cond_timedwait(&cond, &mutex, &ts));
ASSERT_EQ(0, pthread_mutex_unlock(&m)); ts.tv_nsec = NS_PER_S;
ASSERT_EQ(0, pthread_mutex_destroy(&m)); ASSERT_EQ(EINVAL, pthread_cond_timedwait(&cond, &mutex, &ts));
ts.tv_nsec = NS_PER_S - 1;
ts.tv_sec = -1;
ASSERT_EQ(ETIMEDOUT, pthread_cond_timedwait(&cond, &mutex, &ts));
ASSERT_EQ(0, pthread_mutex_unlock(&mutex));
} }
TEST(pthread, pthread_attr_getstack__main_thread) { TEST(pthread, pthread_attr_getstack__main_thread) {
@ -1552,6 +1674,35 @@ TEST(pthread, pthread_mutex_owner_tid_limit) {
#endif #endif
} }
TEST(pthread, pthread_mutex_timedlock) {
pthread_mutex_t m;
ASSERT_EQ(0, pthread_mutex_init(&m, nullptr));
// If the mutex is already locked, pthread_mutex_timedlock should time out.
ASSERT_EQ(0, pthread_mutex_lock(&m));
timespec ts;
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));
ts.tv_nsec = -1;
ASSERT_EQ(EINVAL, pthread_mutex_timedlock(&m, &ts));
ts.tv_nsec = NS_PER_S;
ASSERT_EQ(EINVAL, pthread_mutex_timedlock(&m, &ts));
ts.tv_nsec = NS_PER_S - 1;
ts.tv_sec = -1;
ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));
// If the mutex is unlocked, pthread_mutex_timedlock should succeed.
ASSERT_EQ(0, pthread_mutex_unlock(&m));
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
ts.tv_sec += 1;
ASSERT_EQ(0, pthread_mutex_timedlock(&m, &ts));
ASSERT_EQ(0, pthread_mutex_unlock(&m));
ASSERT_EQ(0, pthread_mutex_destroy(&m));
}
class StrictAlignmentAllocator { class StrictAlignmentAllocator {
public: public:
void* allocate(size_t size, size_t alignment) { void* allocate(size_t size, size_t alignment) {
@ -1749,13 +1900,13 @@ void BarrierOrderingTestHelper(BarrierOrderingTestHelperArg* arg) {
const size_t ITERATION_COUNT = 10000; const size_t ITERATION_COUNT = 10000;
for (size_t i = 1; i <= ITERATION_COUNT; ++i) { for (size_t i = 1; i <= ITERATION_COUNT; ++i) {
arg->array[arg->id] = i; arg->array[arg->id] = i;
int ret = pthread_barrier_wait(arg->barrier); int result = pthread_barrier_wait(arg->barrier);
ASSERT_TRUE(ret == 0 || ret == PTHREAD_BARRIER_SERIAL_THREAD); ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
for (size_t j = 0; j < arg->array_length; ++j) { for (size_t j = 0; j < arg->array_length; ++j) {
ASSERT_EQ(i, arg->array[j]); ASSERT_EQ(i, arg->array[j]);
} }
ret = pthread_barrier_wait(arg->barrier); result = pthread_barrier_wait(arg->barrier);
ASSERT_TRUE(ret == 0 || ret == PTHREAD_BARRIER_SERIAL_THREAD); ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
} }
} }

View File

@ -117,6 +117,16 @@ TEST(semaphore, sem_timedwait) {
ts.tv_nsec = -1; ts.tv_nsec = -1;
ASSERT_EQ(-1, sem_timedwait(&s, &ts)); ASSERT_EQ(-1, sem_timedwait(&s, &ts));
ASSERT_EQ(EINVAL, errno); ASSERT_EQ(EINVAL, errno);
errno = 0;
ts.tv_nsec = NS_PER_S;
ASSERT_EQ(-1, sem_timedwait(&s, &ts));
ASSERT_EQ(EINVAL, errno);
errno = 0;
ts.tv_nsec = NS_PER_S - 1;
ts.tv_sec = -1;
ASSERT_EQ(-1, sem_timedwait(&s, &ts));
ASSERT_EQ(ETIMEDOUT, errno);
ASSERT_EQ(0, sem_destroy(&s)); ASSERT_EQ(0, sem_destroy(&s));
} }