|
|
|
@@ -44,6 +44,9 @@
|
|
|
|
|
#include <assert.h>
|
|
|
|
|
#include <malloc.h>
|
|
|
|
|
|
|
|
|
|
#define __likely(cond) __builtin_expect(!!(cond), 1)
|
|
|
|
|
#define __unlikely(cond) __builtin_expect(!!(cond), 0)
|
|
|
|
|
|
|
|
|
|
extern int __pthread_clone(int (*fn)(void*), void *child_stack, int flags, void *arg);
|
|
|
|
|
extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int retCode);
|
|
|
|
|
extern void _exit_thread(int retCode);
|
|
|
|
@@ -712,6 +715,9 @@ int pthread_setschedparam(pthread_t thid, int policy,
|
|
|
|
|
int __futex_wait(volatile void *ftx, int val, const struct timespec *timeout);
|
|
|
|
|
int __futex_wake(volatile void *ftx, int count);
|
|
|
|
|
|
|
|
|
|
int __futex_wait_private(volatile void *ftx, int val, const struct timespec *timeout);
|
|
|
|
|
int __futex_wake_private(volatile void *ftx, int count);
|
|
|
|
|
|
|
|
|
|
// mutex lock states
|
|
|
|
|
//
|
|
|
|
|
// 0: unlocked
|
|
|
|
@@ -723,7 +729,8 @@ int __futex_wake(volatile void *ftx, int count);
|
|
|
|
|
* bits: name description
|
|
|
|
|
* 31-16 tid owner thread's kernel id (recursive and errorcheck only)
|
|
|
|
|
* 15-14 type mutex type
|
|
|
|
|
* 13-2 counter counter of recursive mutexes
|
|
|
|
|
* 13 sharing sharing flag
|
|
|
|
|
* 12-2 counter counter of recursive mutexes
|
|
|
|
|
* 1-0 state lock state (0, 1 or 2)
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
@@ -737,10 +744,21 @@ int __futex_wake(volatile void *ftx, int count);
|
|
|
|
|
#define MUTEX_TYPE_ERRORCHECK 0x8000
|
|
|
|
|
|
|
|
|
|
#define MUTEX_COUNTER_SHIFT 2
|
|
|
|
|
#define MUTEX_COUNTER_MASK 0x3ffc
|
|
|
|
|
#define MUTEX_COUNTER_MASK 0x1ffc
|
|
|
|
|
|
|
|
|
|
#define MUTEX_SHARING_MASK 0x2000
|
|
|
|
|
|
|
|
|
|
#define MUTEX_IS_SHARED(m) (((m)->value & MUTEX_SHARING_MASK) != 0)
|
|
|
|
|
|
|
|
|
|
/* A mutex attribute stores the following in its fields:
|
|
|
|
|
*
|
|
|
|
|
* bits: name description
|
|
|
|
|
* 0-3 type type of thread (NORMAL/RECURSIVE/ERRORCHECK)
|
|
|
|
|
* 4 sharing 1 if shared, or 0 otherwise.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#define MUTEXATTR_TYPE_MASK 0x0007
|
|
|
|
|
#define MUTEXATTR_SHARING_MASK 0x0010
|
|
|
|
|
|
|
|
|
|
int pthread_mutexattr_init(pthread_mutexattr_t *attr)
|
|
|
|
|
{
|
|
|
|
@@ -764,10 +782,12 @@ int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
|
|
|
|
|
|
|
|
|
|
int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)
|
|
|
|
|
{
|
|
|
|
|
if (attr && *attr >= PTHREAD_MUTEX_NORMAL &&
|
|
|
|
|
*attr <= PTHREAD_MUTEX_ERRORCHECK ) {
|
|
|
|
|
*type = *attr;
|
|
|
|
|
return 0;
|
|
|
|
|
if (attr) {
|
|
|
|
|
int atype = (*attr & MUTEXATTR_TYPE_MASK);
|
|
|
|
|
if (atype >= PTHREAD_MUTEX_NORMAL && atype <= PTHREAD_MUTEX_ERRORCHECK) {
|
|
|
|
|
*type = atype;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return EINVAL;
|
|
|
|
|
}
|
|
|
|
@@ -776,7 +796,7 @@ int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
|
|
|
|
|
{
|
|
|
|
|
if (attr && type >= PTHREAD_MUTEX_NORMAL &&
|
|
|
|
|
type <= PTHREAD_MUTEX_ERRORCHECK ) {
|
|
|
|
|
*attr = type;
|
|
|
|
|
*attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
return EINVAL;
|
|
|
|
@@ -791,54 +811,70 @@ int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
|
|
|
|
|
|
|
|
|
|
switch (pshared) {
|
|
|
|
|
case PTHREAD_PROCESS_PRIVATE:
|
|
|
|
|
*attr &= ~MUTEXATTR_SHARING_MASK;
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
case PTHREAD_PROCESS_SHARED:
|
|
|
|
|
/* our current implementation of pthread actually supports shared
|
|
|
|
|
* mutexes but won't cleanup if a process dies with the mutex held.
|
|
|
|
|
* Nevertheless, it's better than nothing. Shared mutexes are used
|
|
|
|
|
* by surfaceflinger and audioflinger.
|
|
|
|
|
*/
|
|
|
|
|
*attr |= MUTEXATTR_SHARING_MASK;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return ENOTSUP;
|
|
|
|
|
return EINVAL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared)
|
|
|
|
|
{
|
|
|
|
|
if (!attr)
|
|
|
|
|
if (!attr || !pshared)
|
|
|
|
|
return EINVAL;
|
|
|
|
|
|
|
|
|
|
*pshared = PTHREAD_PROCESS_PRIVATE;
|
|
|
|
|
*pshared = (*attr & MUTEXATTR_SHARING_MASK) ? PTHREAD_PROCESS_SHARED
|
|
|
|
|
: PTHREAD_PROCESS_PRIVATE;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int pthread_mutex_init(pthread_mutex_t *mutex,
|
|
|
|
|
const pthread_mutexattr_t *attr)
|
|
|
|
|
{
|
|
|
|
|
if ( mutex ) {
|
|
|
|
|
if (attr == NULL) {
|
|
|
|
|
mutex->value = MUTEX_TYPE_NORMAL;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
switch ( *attr ) {
|
|
|
|
|
case PTHREAD_MUTEX_NORMAL:
|
|
|
|
|
mutex->value = MUTEX_TYPE_NORMAL;
|
|
|
|
|
return 0;
|
|
|
|
|
int value = 0;
|
|
|
|
|
|
|
|
|
|
case PTHREAD_MUTEX_RECURSIVE:
|
|
|
|
|
mutex->value = MUTEX_TYPE_RECURSIVE;
|
|
|
|
|
return 0;
|
|
|
|
|
if (__unlikely(mutex == NULL))
|
|
|
|
|
return EINVAL;
|
|
|
|
|
|
|
|
|
|
case PTHREAD_MUTEX_ERRORCHECK:
|
|
|
|
|
mutex->value = MUTEX_TYPE_ERRORCHECK;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
if (__likely(attr == NULL)) {
|
|
|
|
|
mutex->value = MUTEX_TYPE_NORMAL;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
return EINVAL;
|
|
|
|
|
|
|
|
|
|
if ((*attr & MUTEXATTR_SHARING_MASK) != 0)
|
|
|
|
|
value |= MUTEX_SHARING_MASK;
|
|
|
|
|
|
|
|
|
|
switch (*attr & MUTEXATTR_TYPE_MASK) {
|
|
|
|
|
case PTHREAD_MUTEX_NORMAL:
|
|
|
|
|
value |= MUTEX_TYPE_NORMAL;
|
|
|
|
|
break;
|
|
|
|
|
case PTHREAD_MUTEX_RECURSIVE:
|
|
|
|
|
value |= MUTEX_TYPE_RECURSIVE;
|
|
|
|
|
break;
|
|
|
|
|
case PTHREAD_MUTEX_ERRORCHECK:
|
|
|
|
|
value |= MUTEX_TYPE_ERRORCHECK;
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
return EINVAL;
|
|
|
|
|
}
|
|
|
|
|
mutex->value = value;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int pthread_mutex_destroy(pthread_mutex_t *mutex)
|
|
|
|
|
{
|
|
|
|
|
if (__unlikely(mutex == NULL))
|
|
|
|
|
return EINVAL;
|
|
|
|
|
|
|
|
|
|
mutex->value = 0xdead10cc;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
@@ -855,35 +891,46 @@ int pthread_mutex_destroy(pthread_mutex_t *mutex)
|
|
|
|
|
* Non-recursive mutexes don't use the thread-id or counter fields, and the
|
|
|
|
|
* "type" value is zero, so the only bits that will be set are the ones in
|
|
|
|
|
* the lock state field.
|
|
|
|
|
*
|
|
|
|
|
* This routine is used for both shared and private mutexes.
|
|
|
|
|
*/
|
|
|
|
|
static __inline__ void
|
|
|
|
|
_normal_lock(pthread_mutex_t* mutex)
|
|
|
|
|
{
|
|
|
|
|
/*
|
|
|
|
|
* The common case is an unlocked mutex, so we begin by trying to
|
|
|
|
|
* change the lock's state from 0 to 1. __atomic_cmpxchg() returns 0
|
|
|
|
|
* if it made the swap successfully. If the result is nonzero, this
|
|
|
|
|
* lock is already held by another thread.
|
|
|
|
|
*/
|
|
|
|
|
if (__atomic_cmpxchg(0, 1, &mutex->value ) != 0) {
|
|
|
|
|
if (__likely(!MUTEX_IS_SHARED(mutex))) {
|
|
|
|
|
/*
|
|
|
|
|
* We want to go to sleep until the mutex is available, which
|
|
|
|
|
* requires promoting it to state 2. We need to swap in the new
|
|
|
|
|
* state value and then wait until somebody wakes us up.
|
|
|
|
|
*
|
|
|
|
|
* __atomic_swap() returns the previous value. We swap 2 in and
|
|
|
|
|
* see if we got zero back; if so, we have acquired the lock. If
|
|
|
|
|
* not, another thread still holds the lock and we wait again.
|
|
|
|
|
*
|
|
|
|
|
* The second argument to the __futex_wait() call is compared
|
|
|
|
|
* against the current value. If it doesn't match, __futex_wait()
|
|
|
|
|
* returns immediately (otherwise, it sleeps for a time specified
|
|
|
|
|
* by the third argument; 0 means sleep forever). This ensures
|
|
|
|
|
* that the mutex is in state 2 when we go to sleep on it, which
|
|
|
|
|
* guarantees a wake-up call.
|
|
|
|
|
*/
|
|
|
|
|
while (__atomic_swap(2, &mutex->value ) != 0)
|
|
|
|
|
__futex_wait(&mutex->value, 2, 0);
|
|
|
|
|
* The common case is an unlocked mutex, so we begin by trying to
|
|
|
|
|
* change the lock's state from 0 to 1. __atomic_cmpxchg() returns 0
|
|
|
|
|
* if it made the swap successfully. If the result is nonzero, this
|
|
|
|
|
* lock is already held by another thread.
|
|
|
|
|
*/
|
|
|
|
|
if (__atomic_cmpxchg(0, 1, &mutex->value) != 0) {
|
|
|
|
|
/*
|
|
|
|
|
* We want to go to sleep until the mutex is available, which
|
|
|
|
|
* requires promoting it to state 2. We need to swap in the new
|
|
|
|
|
* state value and then wait until somebody wakes us up.
|
|
|
|
|
*
|
|
|
|
|
* __atomic_swap() returns the previous value. We swap 2 in and
|
|
|
|
|
* see if we got zero back; if so, we have acquired the lock. If
|
|
|
|
|
* not, another thread still holds the lock and we wait again.
|
|
|
|
|
*
|
|
|
|
|
* The second argument to the __futex_wait() call is compared
|
|
|
|
|
* against the current value. If it doesn't match, __futex_wait()
|
|
|
|
|
* returns immediately (otherwise, it sleeps for a time specified
|
|
|
|
|
* by the third argument; 0 means sleep forever). This ensures
|
|
|
|
|
* that the mutex is in state 2 when we go to sleep on it, which
|
|
|
|
|
* guarantees a wake-up call.
|
|
|
|
|
*/
|
|
|
|
|
while (__atomic_swap(2, &mutex->value ) != 0)
|
|
|
|
|
__futex_wait_private(&mutex->value, 2, 0);
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
/* Same algorithm, with the sharing bit flag set */
|
|
|
|
|
const int sharing = MUTEX_SHARING_MASK;
|
|
|
|
|
if (__atomic_cmpxchg(sharing|0, sharing|1, &mutex->value) != 0) {
|
|
|
|
|
while (__atomic_swap(sharing|2, &mutex->value ) != (sharing|0))
|
|
|
|
|
__futex_wait(&mutex->value, sharing|2, 0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@@ -894,50 +941,59 @@ _normal_lock(pthread_mutex_t* mutex)
|
|
|
|
|
static __inline__ void
|
|
|
|
|
_normal_unlock(pthread_mutex_t* mutex)
|
|
|
|
|
{
|
|
|
|
|
/*
|
|
|
|
|
* The mutex value will be 1 or (rarely) 2. We use an atomic decrement
|
|
|
|
|
* to release the lock. __atomic_dec() returns the previous value;
|
|
|
|
|
* if it wasn't 1 we have to do some additional work.
|
|
|
|
|
*/
|
|
|
|
|
if (__atomic_dec(&mutex->value) != 1) {
|
|
|
|
|
if (__likely(!MUTEX_IS_SHARED(mutex))) {
|
|
|
|
|
/*
|
|
|
|
|
* Start by releasing the lock. The decrement changed it from
|
|
|
|
|
* "contended lock" to "uncontended lock", which means we still
|
|
|
|
|
* hold it, and anybody who tries to sneak in will push it back
|
|
|
|
|
* to state 2.
|
|
|
|
|
*
|
|
|
|
|
* Once we set it to zero the lock is up for grabs. We follow
|
|
|
|
|
* this with a __futex_wake() to ensure that one of the waiting
|
|
|
|
|
* threads has a chance to grab it.
|
|
|
|
|
*
|
|
|
|
|
* This doesn't cause a race with the swap/wait pair in
|
|
|
|
|
* _normal_lock(), because the __futex_wait() call there will
|
|
|
|
|
* return immediately if the mutex value isn't 2.
|
|
|
|
|
*/
|
|
|
|
|
mutex->value = 0;
|
|
|
|
|
* The mutex value will be 1 or (rarely) 2. We use an atomic decrement
|
|
|
|
|
* to release the lock. __atomic_dec() returns the previous value;
|
|
|
|
|
* if it wasn't 1 we have to do some additional work.
|
|
|
|
|
*/
|
|
|
|
|
if (__atomic_dec(&mutex->value) != 1) {
|
|
|
|
|
/*
|
|
|
|
|
* Start by releasing the lock. The decrement changed it from
|
|
|
|
|
* "contended lock" to "uncontended lock", which means we still
|
|
|
|
|
* hold it, and anybody who tries to sneak in will push it back
|
|
|
|
|
* to state 2.
|
|
|
|
|
*
|
|
|
|
|
* Once we set it to zero the lock is up for grabs. We follow
|
|
|
|
|
* this with a __futex_wake() to ensure that one of the waiting
|
|
|
|
|
* threads has a chance to grab it.
|
|
|
|
|
*
|
|
|
|
|
* This doesn't cause a race with the swap/wait pair in
|
|
|
|
|
* _normal_lock(), because the __futex_wait() call there will
|
|
|
|
|
* return immediately if the mutex value isn't 2.
|
|
|
|
|
*/
|
|
|
|
|
mutex->value = 0;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Wake up one waiting thread. We don't know which thread will be
|
|
|
|
|
* woken or when it'll start executing -- futexes make no guarantees
|
|
|
|
|
* here. There may not even be a thread waiting.
|
|
|
|
|
*
|
|
|
|
|
* The newly-woken thread will replace the 0 we just set above
|
|
|
|
|
* with 2, which means that when it eventually releases the mutex
|
|
|
|
|
* it will also call FUTEX_WAKE. This results in one extra wake
|
|
|
|
|
* call whenever a lock is contended, but lets us avoid forgetting
|
|
|
|
|
* anyone without requiring us to track the number of sleepers.
|
|
|
|
|
*
|
|
|
|
|
* It's possible for another thread to sneak in and grab the lock
|
|
|
|
|
* between the zero assignment above and the wake call below. If
|
|
|
|
|
* the new thread is "slow" and holds the lock for a while, we'll
|
|
|
|
|
* wake up a sleeper, which will swap in a 2 and then go back to
|
|
|
|
|
* sleep since the lock is still held. If the new thread is "fast",
|
|
|
|
|
* running to completion before we call wake, the thread we
|
|
|
|
|
* eventually wake will find an unlocked mutex and will execute.
|
|
|
|
|
* Either way we have correct behavior and nobody is orphaned on
|
|
|
|
|
* the wait queue.
|
|
|
|
|
*/
|
|
|
|
|
__futex_wake(&mutex->value, 1);
|
|
|
|
|
/*
|
|
|
|
|
* Wake up one waiting thread. We don't know which thread will be
|
|
|
|
|
* woken or when it'll start executing -- futexes make no guarantees
|
|
|
|
|
* here. There may not even be a thread waiting.
|
|
|
|
|
*
|
|
|
|
|
* The newly-woken thread will replace the 0 we just set above
|
|
|
|
|
* with 2, which means that when it eventually releases the mutex
|
|
|
|
|
* it will also call FUTEX_WAKE. This results in one extra wake
|
|
|
|
|
* call whenever a lock is contended, but lets us avoid forgetting
|
|
|
|
|
* anyone without requiring us to track the number of sleepers.
|
|
|
|
|
*
|
|
|
|
|
* It's possible for another thread to sneak in and grab the lock
|
|
|
|
|
* between the zero assignment above and the wake call below. If
|
|
|
|
|
* the new thread is "slow" and holds the lock for a while, we'll
|
|
|
|
|
* wake up a sleeper, which will swap in a 2 and then go back to
|
|
|
|
|
* sleep since the lock is still held. If the new thread is "fast",
|
|
|
|
|
* running to completion before we call wake, the thread we
|
|
|
|
|
* eventually wake will find an unlocked mutex and will execute.
|
|
|
|
|
* Either way we have correct behavior and nobody is orphaned on
|
|
|
|
|
* the wait queue.
|
|
|
|
|
*/
|
|
|
|
|
__futex_wake_private(&mutex->value, 1);
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
/* Same algorithm with sharing bit flag set */
|
|
|
|
|
const int sharing = MUTEX_SHARING_MASK;
|
|
|
|
|
if (__atomic_dec(&mutex->value) != (sharing|1)) {
|
|
|
|
|
mutex->value = sharing;
|
|
|
|
|
__futex_wake(&mutex->value, 1);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@@ -955,173 +1011,200 @@ _recursive_unlock(void)
|
|
|
|
|
_normal_unlock( &__recursive_lock );
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#define __likely(cond) __builtin_expect(!!(cond), 1)
|
|
|
|
|
#define __unlikely(cond) __builtin_expect(!!(cond), 0)
|
|
|
|
|
|
|
|
|
|
int pthread_mutex_lock(pthread_mutex_t *mutex)
|
|
|
|
|
{
|
|
|
|
|
if (__likely(mutex != NULL))
|
|
|
|
|
{
|
|
|
|
|
int mtype = (mutex->value & MUTEX_TYPE_MASK);
|
|
|
|
|
int mtype, tid, new_lock_type, sharing;
|
|
|
|
|
|
|
|
|
|
if ( __likely(mtype == MUTEX_TYPE_NORMAL) ) {
|
|
|
|
|
_normal_lock(mutex);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
int tid = __get_thread()->kernel_id;
|
|
|
|
|
if (__unlikely(mutex == NULL))
|
|
|
|
|
return EINVAL;
|
|
|
|
|
|
|
|
|
|
if ( tid == MUTEX_OWNER(mutex) )
|
|
|
|
|
{
|
|
|
|
|
int oldv, counter;
|
|
|
|
|
/* get mutex type */
|
|
|
|
|
mtype = (mutex->value & MUTEX_TYPE_MASK);
|
|
|
|
|
|
|
|
|
|
if (mtype == MUTEX_TYPE_ERRORCHECK) {
|
|
|
|
|
/* trying to re-lock a mutex we already acquired */
|
|
|
|
|
return EDEADLK;
|
|
|
|
|
}
|
|
|
|
|
/*
|
|
|
|
|
* We own the mutex, but other threads are able to change
|
|
|
|
|
* the contents (e.g. promoting it to "contended"), so we
|
|
|
|
|
* need to hold the global lock.
|
|
|
|
|
*/
|
|
|
|
|
_recursive_lock();
|
|
|
|
|
oldv = mutex->value;
|
|
|
|
|
counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
|
|
|
|
|
mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
|
|
|
|
|
_recursive_unlock();
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/*
|
|
|
|
|
* If the new lock is available immediately, we grab it in
|
|
|
|
|
* the "uncontended" state.
|
|
|
|
|
*/
|
|
|
|
|
int new_lock_type = 1;
|
|
|
|
|
|
|
|
|
|
for (;;) {
|
|
|
|
|
int oldv;
|
|
|
|
|
|
|
|
|
|
_recursive_lock();
|
|
|
|
|
oldv = mutex->value;
|
|
|
|
|
if (oldv == mtype) { /* uncontended released lock => 1 or 2 */
|
|
|
|
|
mutex->value = ((tid << 16) | mtype | new_lock_type);
|
|
|
|
|
} else if ((oldv & 3) == 1) { /* locked state 1 => state 2 */
|
|
|
|
|
oldv ^= 3;
|
|
|
|
|
mutex->value = oldv;
|
|
|
|
|
}
|
|
|
|
|
_recursive_unlock();
|
|
|
|
|
|
|
|
|
|
if (oldv == mtype)
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* The lock was held, possibly contended by others. From
|
|
|
|
|
* now on, if we manage to acquire the lock, we have to
|
|
|
|
|
* assume that others are still contending for it so that
|
|
|
|
|
* we'll wake them when we unlock it.
|
|
|
|
|
*/
|
|
|
|
|
new_lock_type = 2;
|
|
|
|
|
|
|
|
|
|
__futex_wait( &mutex->value, oldv, 0 );
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
/* Handle normal mutexes quickly */
|
|
|
|
|
if ( __likely(mtype == MUTEX_TYPE_NORMAL) ) {
|
|
|
|
|
_normal_lock(mutex);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
return EINVAL;
|
|
|
|
|
|
|
|
|
|
/* This is a recursive or error check mutex.
|
|
|
|
|
* Check that we don't already own it.
|
|
|
|
|
*/
|
|
|
|
|
tid = __get_thread()->kernel_id;
|
|
|
|
|
if ( tid == MUTEX_OWNER(mutex) )
|
|
|
|
|
{
|
|
|
|
|
int oldv, counter;
|
|
|
|
|
|
|
|
|
|
if (mtype == MUTEX_TYPE_ERRORCHECK) {
|
|
|
|
|
/* trying to re-lock a mutex we already acquired */
|
|
|
|
|
return EDEADLK;
|
|
|
|
|
}
|
|
|
|
|
/*
|
|
|
|
|
* We own the mutex, but other threads are able to change
|
|
|
|
|
* the contents (e.g. promoting it to "contended"), so we
|
|
|
|
|
* need to hold the global lock.
|
|
|
|
|
*/
|
|
|
|
|
_recursive_lock();
|
|
|
|
|
oldv = mutex->value;
|
|
|
|
|
counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
|
|
|
|
|
mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
|
|
|
|
|
_recursive_unlock();
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We don't own it, try to lock it.
|
|
|
|
|
* If the new lock is available immediately, we grab it in
|
|
|
|
|
* the "uncontended" state.
|
|
|
|
|
*/
|
|
|
|
|
new_lock_type = 1;
|
|
|
|
|
sharing = (mutex->value & MUTEX_SHARING_MASK);
|
|
|
|
|
|
|
|
|
|
mtype |= sharing; /* restore sharing bit flag */
|
|
|
|
|
|
|
|
|
|
/* here, mtype corresponds to the uncontended value for the mutex,
|
|
|
|
|
* i.e. something like:
|
|
|
|
|
*
|
|
|
|
|
* <tid=0><type=?><sharing=?><counter=0><state=0>
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
for (;;) {
|
|
|
|
|
int oldv;
|
|
|
|
|
|
|
|
|
|
_recursive_lock();
|
|
|
|
|
oldv = mutex->value;
|
|
|
|
|
if (oldv == mtype) { /* uncontended released lock => 1 or 2 */
|
|
|
|
|
mutex->value = ((tid << 16) | mtype | new_lock_type);
|
|
|
|
|
} else if ((oldv & 3) == 1) { /* locked state 1 => state 2 */
|
|
|
|
|
oldv ^= 3;
|
|
|
|
|
mutex->value = oldv;
|
|
|
|
|
}
|
|
|
|
|
_recursive_unlock();
|
|
|
|
|
|
|
|
|
|
if (oldv == mtype)
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* The lock was held, possibly contended by others. From
|
|
|
|
|
* now on, if we manage to acquire the lock, we have to
|
|
|
|
|
* assume that others are still contending for it so that
|
|
|
|
|
* we'll wake them when we unlock it.
|
|
|
|
|
*/
|
|
|
|
|
new_lock_type = 2;
|
|
|
|
|
|
|
|
|
|
if (sharing) {
|
|
|
|
|
__futex_wait(&mutex->value, oldv, 0);
|
|
|
|
|
} else {
|
|
|
|
|
__futex_wait_private(&mutex->value, oldv, 0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int pthread_mutex_unlock(pthread_mutex_t *mutex)
|
|
|
|
|
{
|
|
|
|
|
if (__likely(mutex != NULL))
|
|
|
|
|
{
|
|
|
|
|
int mtype = (mutex->value & MUTEX_TYPE_MASK);
|
|
|
|
|
int mtype, tid, sharing, oldv;
|
|
|
|
|
|
|
|
|
|
if (__likely(mtype == MUTEX_TYPE_NORMAL)) {
|
|
|
|
|
_normal_unlock(mutex);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
int tid = __get_thread()->kernel_id;
|
|
|
|
|
if (__unlikely(mutex == NULL))
|
|
|
|
|
return EINVAL;
|
|
|
|
|
|
|
|
|
|
if ( tid == MUTEX_OWNER(mutex) )
|
|
|
|
|
{
|
|
|
|
|
int oldv;
|
|
|
|
|
mtype = (mutex->value & MUTEX_TYPE_MASK);
|
|
|
|
|
|
|
|
|
|
_recursive_lock();
|
|
|
|
|
oldv = mutex->value;
|
|
|
|
|
if (oldv & MUTEX_COUNTER_MASK) {
|
|
|
|
|
mutex->value = oldv - (1 << MUTEX_COUNTER_SHIFT);
|
|
|
|
|
oldv = 0;
|
|
|
|
|
} else {
|
|
|
|
|
mutex->value = mtype;
|
|
|
|
|
}
|
|
|
|
|
_recursive_unlock();
|
|
|
|
|
|
|
|
|
|
if ((oldv & 3) == 2)
|
|
|
|
|
__futex_wake( &mutex->value, 1 );
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
/* trying to unlock a lock we do not own */
|
|
|
|
|
return EPERM;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (__likely(mtype == MUTEX_TYPE_NORMAL)) {
|
|
|
|
|
_normal_unlock(mutex);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
return EINVAL;
|
|
|
|
|
|
|
|
|
|
tid = __get_thread()->kernel_id;
|
|
|
|
|
sharing = (mutex->value & MUTEX_SHARING_MASK);
|
|
|
|
|
|
|
|
|
|
mtype |= sharing; /* restore sharing bit flag */
|
|
|
|
|
|
|
|
|
|
/* ensure that we own the mutex */
|
|
|
|
|
if (__unlikely(tid != MUTEX_OWNER(mutex)))
|
|
|
|
|
return EPERM;
|
|
|
|
|
|
|
|
|
|
/* decrement or unlock it */
|
|
|
|
|
_recursive_lock();
|
|
|
|
|
oldv = mutex->value;
|
|
|
|
|
if (oldv & MUTEX_COUNTER_MASK) {
|
|
|
|
|
/* decrement non-0 counter */
|
|
|
|
|
mutex->value = oldv - (1 << MUTEX_COUNTER_SHIFT);
|
|
|
|
|
oldv = 0;
|
|
|
|
|
} else {
|
|
|
|
|
/* counter was 0, revert to uncontended value */
|
|
|
|
|
mutex->value = mtype;
|
|
|
|
|
}
|
|
|
|
|
_recursive_unlock();
|
|
|
|
|
|
|
|
|
|
/* if the mutex was contended, wake one waiting thread */
|
|
|
|
|
if ((oldv & 3) == 2) {
|
|
|
|
|
if (sharing) {
|
|
|
|
|
__futex_wake(&mutex->value, 1);
|
|
|
|
|
} else {
|
|
|
|
|
__futex_wake_private(&mutex->value, 1);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int pthread_mutex_trylock(pthread_mutex_t *mutex)
|
|
|
|
|
{
|
|
|
|
|
if (__likely(mutex != NULL))
|
|
|
|
|
int mtype, sharing, tid, oldv;
|
|
|
|
|
|
|
|
|
|
if (__unlikely(mutex == NULL))
|
|
|
|
|
return EINVAL;
|
|
|
|
|
|
|
|
|
|
mtype = (mutex->value & MUTEX_TYPE_MASK);
|
|
|
|
|
|
|
|
|
|
/* handle normal mutex first */
|
|
|
|
|
if ( __likely(mtype == MUTEX_TYPE_NORMAL) )
|
|
|
|
|
{
|
|
|
|
|
int mtype = (mutex->value & MUTEX_TYPE_MASK);
|
|
|
|
|
|
|
|
|
|
if ( __likely(mtype == MUTEX_TYPE_NORMAL) )
|
|
|
|
|
{
|
|
|
|
|
if (__atomic_cmpxchg(0, 1, &mutex->value) == 0)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
return EBUSY;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
int tid = __get_thread()->kernel_id;
|
|
|
|
|
int oldv;
|
|
|
|
|
|
|
|
|
|
if ( tid == MUTEX_OWNER(mutex) )
|
|
|
|
|
{
|
|
|
|
|
int oldv, counter;
|
|
|
|
|
|
|
|
|
|
if (mtype == MUTEX_TYPE_ERRORCHECK) {
|
|
|
|
|
/* already locked by ourselves */
|
|
|
|
|
return EDEADLK;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
_recursive_lock();
|
|
|
|
|
oldv = mutex->value;
|
|
|
|
|
counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
|
|
|
|
|
mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
|
|
|
|
|
_recursive_unlock();
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* try to lock it */
|
|
|
|
|
_recursive_lock();
|
|
|
|
|
oldv = mutex->value;
|
|
|
|
|
if (oldv == mtype) /* uncontended released lock => state 1 */
|
|
|
|
|
mutex->value = ((tid << 16) | mtype | 1);
|
|
|
|
|
_recursive_unlock();
|
|
|
|
|
|
|
|
|
|
if (oldv != mtype)
|
|
|
|
|
return EBUSY;
|
|
|
|
|
int sharing = (mutex->value & MUTEX_SHARING_MASK);
|
|
|
|
|
|
|
|
|
|
if (__atomic_cmpxchg(sharing|0, sharing|1, &mutex->value) == 0)
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return EBUSY;
|
|
|
|
|
}
|
|
|
|
|
return EINVAL;
|
|
|
|
|
|
|
|
|
|
/* recursive or errorcheck mutex, do we already own it ? */
|
|
|
|
|
tid = __get_thread()->kernel_id;
|
|
|
|
|
sharing = mutex->value & MUTEX_SHARING_MASK;
|
|
|
|
|
|
|
|
|
|
if ( tid == MUTEX_OWNER(mutex) )
|
|
|
|
|
{
|
|
|
|
|
int counter;
|
|
|
|
|
|
|
|
|
|
if (mtype == MUTEX_TYPE_ERRORCHECK) {
|
|
|
|
|
/* already locked by ourselves */
|
|
|
|
|
return EDEADLK;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
_recursive_lock();
|
|
|
|
|
oldv = mutex->value;
|
|
|
|
|
counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
|
|
|
|
|
mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
|
|
|
|
|
_recursive_unlock();
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* we don't own it, so try to get it */
|
|
|
|
|
mtype |= sharing;
|
|
|
|
|
|
|
|
|
|
/* try to lock it */
|
|
|
|
|
_recursive_lock();
|
|
|
|
|
oldv = mutex->value;
|
|
|
|
|
if (oldv == mtype) /* uncontended released lock => state 1 */
|
|
|
|
|
mutex->value = ((tid << 16) | mtype | 1);
|
|
|
|
|
_recursive_unlock();
|
|
|
|
|
|
|
|
|
|
if (oldv != mtype)
|
|
|
|
|
return EBUSY;
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1164,16 +1247,21 @@ int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs)
|
|
|
|
|
clockid_t clock = CLOCK_MONOTONIC;
|
|
|
|
|
struct timespec abstime;
|
|
|
|
|
struct timespec ts;
|
|
|
|
|
int mtype, tid, oldv, sharing, new_lock_type;
|
|
|
|
|
|
|
|
|
|
/* compute absolute expiration time */
|
|
|
|
|
__timespec_to_relative_msec(&abstime, msecs, clock);
|
|
|
|
|
|
|
|
|
|
if (__likely(mutex != NULL))
|
|
|
|
|
{
|
|
|
|
|
int mtype = (mutex->value & MUTEX_TYPE_MASK);
|
|
|
|
|
if (__unlikely(mutex == NULL))
|
|
|
|
|
return EINVAL;
|
|
|
|
|
|
|
|
|
|
if ( __likely(mtype == MUTEX_TYPE_NORMAL) )
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
/* handle normal mutexes first */
|
|
|
|
|
mtype = (mutex->value & MUTEX_TYPE_MASK);
|
|
|
|
|
|
|
|
|
|
if ( __likely(mtype == MUTEX_TYPE_NORMAL) )
|
|
|
|
|
{
|
|
|
|
|
if (__likely(!MUTEX_IS_SHARED(mutex))) {
|
|
|
|
|
/* fast path for unconteded lock */
|
|
|
|
|
if (__atomic_cmpxchg(0, 1, &mutex->value) == 0)
|
|
|
|
|
return 0;
|
|
|
|
@@ -1183,77 +1271,125 @@ int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs)
|
|
|
|
|
if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
|
|
|
|
|
return EBUSY;
|
|
|
|
|
|
|
|
|
|
__futex_wait(&mutex->value, 2, &ts);
|
|
|
|
|
__futex_wait_private(&mutex->value, 2, &ts);
|
|
|
|
|
}
|
|
|
|
|
} else /* sharing */ {
|
|
|
|
|
const int sharing = MUTEX_SHARING_MASK;
|
|
|
|
|
if (__atomic_cmpxchg(sharing|0, sharing|1, &mutex->value) == 0)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* loop while needed */
|
|
|
|
|
while (__atomic_swap(sharing|2, &mutex->value) != (sharing|0)) {
|
|
|
|
|
if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
|
|
|
|
|
return EBUSY;
|
|
|
|
|
|
|
|
|
|
__futex_wait(&mutex->value, sharing|2, &ts);
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
int tid = __get_thread()->kernel_id;
|
|
|
|
|
int oldv;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if ( tid == MUTEX_OWNER(mutex) )
|
|
|
|
|
{
|
|
|
|
|
int oldv, counter;
|
|
|
|
|
/* recursive or errorcheck - do we own the mutex ? */
|
|
|
|
|
tid = __get_thread()->kernel_id;
|
|
|
|
|
|
|
|
|
|
if (mtype == MUTEX_TYPE_ERRORCHECK) {
|
|
|
|
|
/* already locked by ourselves */
|
|
|
|
|
return EDEADLK;
|
|
|
|
|
}
|
|
|
|
|
if ( tid == MUTEX_OWNER(mutex) )
|
|
|
|
|
{
|
|
|
|
|
int counter;
|
|
|
|
|
|
|
|
|
|
_recursive_lock();
|
|
|
|
|
oldv = mutex->value;
|
|
|
|
|
counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
|
|
|
|
|
mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
|
|
|
|
|
_recursive_unlock();
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/*
|
|
|
|
|
* If the new lock is available immediately, we grab it in
|
|
|
|
|
* the "uncontended" state.
|
|
|
|
|
*/
|
|
|
|
|
int new_lock_type = 1;
|
|
|
|
|
if (mtype == MUTEX_TYPE_ERRORCHECK) {
|
|
|
|
|
/* already locked by ourselves */
|
|
|
|
|
return EDEADLK;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (;;) {
|
|
|
|
|
int oldv;
|
|
|
|
|
struct timespec ts;
|
|
|
|
|
_recursive_lock();
|
|
|
|
|
oldv = mutex->value;
|
|
|
|
|
counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
|
|
|
|
|
mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
|
|
|
|
|
_recursive_unlock();
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
_recursive_lock();
|
|
|
|
|
oldv = mutex->value;
|
|
|
|
|
if (oldv == mtype) { /* uncontended released lock => 1 or 2 */
|
|
|
|
|
mutex->value = ((tid << 16) | mtype | new_lock_type);
|
|
|
|
|
} else if ((oldv & 3) == 1) { /* locked state 1 => state 2 */
|
|
|
|
|
oldv ^= 3;
|
|
|
|
|
mutex->value = oldv;
|
|
|
|
|
}
|
|
|
|
|
_recursive_unlock();
|
|
|
|
|
/* we don't own it, try to lock it */
|
|
|
|
|
new_lock_type = 1;
|
|
|
|
|
sharing = (mutex->value & MUTEX_SHARING_MASK);
|
|
|
|
|
|
|
|
|
|
if (oldv == mtype)
|
|
|
|
|
break;
|
|
|
|
|
mtype |= sharing;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* The lock was held, possibly contended by others. From
|
|
|
|
|
* now on, if we manage to acquire the lock, we have to
|
|
|
|
|
* assume that others are still contending for it so that
|
|
|
|
|
* we'll wake them when we unlock it.
|
|
|
|
|
*/
|
|
|
|
|
new_lock_type = 2;
|
|
|
|
|
for (;;) {
|
|
|
|
|
struct timespec ts;
|
|
|
|
|
|
|
|
|
|
if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
|
|
|
|
|
return EBUSY;
|
|
|
|
|
_recursive_lock();
|
|
|
|
|
oldv = mutex->value;
|
|
|
|
|
if (oldv == mtype) { /* uncontended released lock => 1 or 2 */
|
|
|
|
|
mutex->value = ((tid << 16) | mtype | new_lock_type);
|
|
|
|
|
} else if ((oldv & 3) == 1) { /* locked state 1 => state 2 */
|
|
|
|
|
oldv ^= 3;
|
|
|
|
|
mutex->value = oldv;
|
|
|
|
|
}
|
|
|
|
|
_recursive_unlock();
|
|
|
|
|
|
|
|
|
|
__futex_wait( &mutex->value, oldv, &ts );
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
if (oldv == mtype)
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* The lock was held, possibly contended by others. From
|
|
|
|
|
* now on, if we manage to acquire the lock, we have to
|
|
|
|
|
* assume that others are still contending for it so that
|
|
|
|
|
* we'll wake them when we unlock it.
|
|
|
|
|
*/
|
|
|
|
|
new_lock_type = 2;
|
|
|
|
|
|
|
|
|
|
if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
|
|
|
|
|
return EBUSY;
|
|
|
|
|
|
|
|
|
|
if (sharing) {
|
|
|
|
|
__futex_wait(&mutex->value, oldv, &ts);
|
|
|
|
|
} else {
|
|
|
|
|
__futex_wait_private(&mutex->value, oldv, &ts);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return EINVAL;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
pthread_condattr_init(pthread_condattr_t *attr)
|
|
|
|
|
{
|
|
|
|
|
*attr = PTHREAD_PROCESS_PRIVATE;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
pthread_condattr_setpshared(pthread_condattr_t *attr, int pshared)
|
|
|
|
|
{
|
|
|
|
|
if (attr == NULL)
|
|
|
|
|
return EINVAL;
|
|
|
|
|
|
|
|
|
|
if (pshared != PTHREAD_PROCESS_PRIVATE &&
|
|
|
|
|
pshared != PTHREAD_PROCESS_SHARED)
|
|
|
|
|
return EINVAL;
|
|
|
|
|
|
|
|
|
|
*attr = pshared;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
pthread_condattr_getpshared(pthread_condattr_t *attr, int *pshared)
|
|
|
|
|
{
|
|
|
|
|
if (attr == NULL || pshared == NULL)
|
|
|
|
|
return EINVAL;
|
|
|
|
|
|
|
|
|
|
*pshared = *attr;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
pthread_condattr_destroy(pthread_condattr_t *attr)
|
|
|
|
|
{
|
|
|
|
|
*attr = 0xdeada11d;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* XXX *technically* there is a race condition that could allow
|
|
|
|
|
* XXX a signal to be missed. If thread A is preempted in _wait()
|
|
|
|
|
* XXX after unlocking the mutex and before waiting, and if other
|
|
|
|
@@ -1262,10 +1398,29 @@ int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs)
|
|
|
|
|
* XXX then the signal will be lost.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Condition variables:
|
|
|
|
|
* bits name description
|
|
|
|
|
* 0 sharing 1 if process-shared, 0 if private
|
|
|
|
|
* 2-31 counter counter increment on each signal/broadcast
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#define COND_SHARING_MASK 0x0001
|
|
|
|
|
#define COND_COUNTER_INCREMENT 0x0002
|
|
|
|
|
#define COND_COUNTER_MASK (~COND_SHARING_MASK)
|
|
|
|
|
|
|
|
|
|
#define COND_IS_SHARED(cond) (((cond)->value & COND_SHARING_MASK) != 0)
|
|
|
|
|
|
|
|
|
|
int pthread_cond_init(pthread_cond_t *cond,
|
|
|
|
|
const pthread_condattr_t *attr)
|
|
|
|
|
{
|
|
|
|
|
if (cond == NULL)
|
|
|
|
|
return EINVAL;
|
|
|
|
|
|
|
|
|
|
cond->value = 0;
|
|
|
|
|
|
|
|
|
|
if (attr != NULL && *attr == PTHREAD_PROCESS_SHARED)
|
|
|
|
|
cond->value |= COND_SHARING_MASK;
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@@ -1275,17 +1430,53 @@ int pthread_cond_destroy(pthread_cond_t *cond)
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This function is used by pthread_cond_broadcast and
|
|
|
|
|
* pthread_cond_signal to 'pulse' the condition variable.
|
|
|
|
|
*
|
|
|
|
|
* This means atomically decrementing the counter value
|
|
|
|
|
* while leaving the other bits untouched.
|
|
|
|
|
*/
|
|
|
|
|
static void
|
|
|
|
|
__pthread_cond_pulse(pthread_cond_t *cond)
|
|
|
|
|
{
|
|
|
|
|
long flags = (cond->value & ~COND_COUNTER_MASK);
|
|
|
|
|
|
|
|
|
|
for (;;) {
|
|
|
|
|
long oldval = cond->value;
|
|
|
|
|
long newval = ((oldval - COND_COUNTER_INCREMENT) & COND_COUNTER_MASK) | flags;
|
|
|
|
|
if (__atomic_cmpxchg(oldval, newval, &cond->value) == 0)
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int pthread_cond_broadcast(pthread_cond_t *cond)
|
|
|
|
|
{
|
|
|
|
|
__atomic_dec(&cond->value);
|
|
|
|
|
__futex_wake(&cond->value, INT_MAX);
|
|
|
|
|
if (cond == NULL)
|
|
|
|
|
return EINVAL;
|
|
|
|
|
|
|
|
|
|
__pthread_cond_pulse(cond);
|
|
|
|
|
|
|
|
|
|
if (COND_IS_SHARED(cond)) {
|
|
|
|
|
__futex_wake(&cond->value, INT_MAX);
|
|
|
|
|
} else {
|
|
|
|
|
__futex_wake_private(&cond->value, INT_MAX);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int pthread_cond_signal(pthread_cond_t *cond)
|
|
|
|
|
{
|
|
|
|
|
__atomic_dec(&cond->value);
|
|
|
|
|
__futex_wake(&cond->value, 1);
|
|
|
|
|
if (cond == NULL)
|
|
|
|
|
return EINVAL;
|
|
|
|
|
|
|
|
|
|
__pthread_cond_pulse(cond);
|
|
|
|
|
|
|
|
|
|
if (COND_IS_SHARED(cond)) {
|
|
|
|
|
__futex_wake(&cond->value, 1);
|
|
|
|
|
} else {
|
|
|
|
|
__futex_wake_private(&cond->value, 1);
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@@ -1302,7 +1493,11 @@ int __pthread_cond_timedwait_relative(pthread_cond_t *cond,
|
|
|
|
|
int oldvalue = cond->value;
|
|
|
|
|
|
|
|
|
|
pthread_mutex_unlock(mutex);
|
|
|
|
|
status = __futex_wait(&cond->value, oldvalue, reltime);
|
|
|
|
|
if (COND_IS_SHARED(cond)) {
|
|
|
|
|
status = __futex_wait(&cond->value, oldvalue, reltime);
|
|
|
|
|
} else {
|
|
|
|
|
status = __futex_wait_private(&cond->value, oldvalue, reltime);
|
|
|
|
|
}
|
|
|
|
|
pthread_mutex_lock(mutex);
|
|
|
|
|
|
|
|
|
|
if (status == (-ETIMEDOUT)) return ETIMEDOUT;
|
|
|
|
|