Merge "bionic: Do not use <sys/atomics.h> for platform code."

This commit is contained in:
David Turner 2011-11-16 07:29:59 -08:00 committed by Android (Google) Code Review
commit 90c4c1e82b
8 changed files with 460 additions and 162 deletions

View File

@ -1,95 +0,0 @@
/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/atomics.h>
#define FUTEX_SYSCALL 240
#define FUTEX_WAIT 0
#define FUTEX_WAKE 1
int __futex_wait(volatile void *ftx, int val)
{
int ret;
asm volatile (
"int $0x80;"
: "=a" (ret)
: "0" (FUTEX_SYSCALL),
"b" (ftx),
"c" (FUTEX_WAIT),
"d" (val),
"S" (0)
);
return ret;
}
int __futex_wake(volatile void *ftx, int count)
{
int ret;
asm volatile (
"int $0x80;"
: "=a" (ret)
: "0" (FUTEX_SYSCALL),
"b" (ftx),
"c" (FUTEX_WAKE),
"d" (count)
);
return ret;
}
int __atomic_cmpxchg(int old, int new, volatile int* addr) {
int xchg;
asm volatile (
"lock;"
"cmpxchg %%ecx, (%%edx);"
"setne %%al;"
: "=a" (xchg)
: "a" (old),
"c" (new),
"d" (addr)
);
return xchg;
}
int __atomic_swap(int new, volatile int* addr) {
int old;
asm volatile (
"lock;"
"xchg %%ecx, (%%edx);"
: "=c" (old)
: "c" (new),
"d" (addr)
);
return old;
}
int __atomic_dec(volatile int* addr) {
int old;
do {
old = *addr;
} while (atomic_cmpxchg(old, old-1, addr));
return old;
}

View File

@ -692,7 +692,7 @@ FoundIt:
goto Exit;
}
}
while ( __atomic_cmpxchg( flags, flags | PTHREAD_ATTR_FLAG_DETACHED,
while ( __bionic_cmpxchg( flags, flags | PTHREAD_ATTR_FLAG_DETACHED,
(volatile int*)&thread->attr.flags ) != 0 );
Exit:
pthread_mutex_unlock(&gThreadListLock);
@ -926,17 +926,17 @@ _normal_lock(pthread_mutex_t* mutex)
int shared = mutex->value & MUTEX_SHARED_MASK;
/*
* The common case is an unlocked mutex, so we begin by trying to
* change the lock's state from 0 to 1. __atomic_cmpxchg() returns 0
* change the lock's state from 0 to 1. __bionic_cmpxchg() returns 0
* if it made the swap successfully. If the result is nonzero, this
* lock is already held by another thread.
*/
if (__atomic_cmpxchg(shared|0, shared|1, &mutex->value ) != 0) {
if (__bionic_cmpxchg(shared|0, shared|1, &mutex->value ) != 0) {
/*
* We want to go to sleep until the mutex is available, which
* requires promoting it to state 2. We need to swap in the new
* state value and then wait until somebody wakes us up.
*
* __atomic_swap() returns the previous value. We swap 2 in and
* __bionic_swap() returns the previous value. We swap 2 in and
* see if we got zero back; if so, we have acquired the lock. If
* not, another thread still holds the lock and we wait again.
*
@ -947,7 +947,7 @@ _normal_lock(pthread_mutex_t* mutex)
* that the mutex is in state 2 when we go to sleep on it, which
* guarantees a wake-up call.
*/
while (__atomic_swap(shared|2, &mutex->value ) != (shared|0))
while (__bionic_swap(shared|2, &mutex->value ) != (shared|0))
__futex_wait_ex(&mutex->value, shared, shared|2, 0);
}
ANDROID_MEMBAR_FULL();
@ -967,10 +967,10 @@ _normal_unlock(pthread_mutex_t* mutex)
/*
* The mutex state will be 1 or (rarely) 2. We use an atomic decrement
* to release the lock. __atomic_dec() returns the previous value;
* to release the lock. __bionic_atomic_dec() returns the previous value;
* if it wasn't 1 we have to do some additional work.
*/
if (__atomic_dec(&mutex->value) != (shared|1)) {
if (__bionic_atomic_dec(&mutex->value) != (shared|1)) {
/*
* Start by releasing the lock. The decrement changed it from
* "contended lock" to "uncontended lock", which means we still
@ -1158,7 +1158,7 @@ int pthread_mutex_trylock(pthread_mutex_t *mutex)
/* Handle common case first */
if ( __likely(mtype == MUTEX_TYPE_NORMAL) )
{
if (__atomic_cmpxchg(shared|0, shared|1, &mutex->value) == 0) {
if (__bionic_cmpxchg(shared|0, shared|1, &mutex->value) == 0) {
ANDROID_MEMBAR_FULL();
return 0;
}
@ -1256,13 +1256,13 @@ int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs)
if ( __likely(mtype == MUTEX_TYPE_NORMAL) )
{
/* fast path for uncontended lock */
if (__atomic_cmpxchg(shared|0, shared|1, &mutex->value) == 0) {
if (__bionic_cmpxchg(shared|0, shared|1, &mutex->value) == 0) {
ANDROID_MEMBAR_FULL();
return 0;
}
/* loop while needed */
while (__atomic_swap(shared|2, &mutex->value) != (shared|0)) {
while (__bionic_swap(shared|2, &mutex->value) != (shared|0)) {
if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
return EBUSY;
@ -1431,7 +1431,7 @@ __pthread_cond_pulse(pthread_cond_t *cond, int counter)
long oldval = cond->value;
long newval = ((oldval - COND_COUNTER_INCREMENT) & COND_COUNTER_MASK)
| flags;
if (__atomic_cmpxchg(oldval, newval, &cond->value) == 0)
if (__bionic_cmpxchg(oldval, newval, &cond->value) == 0)
break;
}

View File

@ -174,7 +174,7 @@ __sem_dec(volatile unsigned int *pvalue)
new = SEMCOUNT_DECREMENT(old);
}
while (__atomic_cmpxchg((int)(old|shared),
while (__bionic_cmpxchg((int)(old|shared),
(int)(new|shared),
(volatile int *)pvalue) != 0);
return ret;
@ -198,7 +198,7 @@ __sem_trydec(volatile unsigned int *pvalue)
new = SEMCOUNT_DECREMENT(old);
}
while (__atomic_cmpxchg((int)(old|shared),
while (__bionic_cmpxchg((int)(old|shared),
(int)(new|shared),
(volatile int *)pvalue) != 0);
@ -235,7 +235,7 @@ __sem_inc(volatile unsigned int *pvalue)
else
new = SEMCOUNT_INCREMENT(old);
}
while ( __atomic_cmpxchg((int)(old|shared),
while ( __bionic_cmpxchg((int)(old|shared),
(int)(new|shared),
(volatile int*)pvalue) != 0);

View File

@ -0,0 +1,284 @@
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef BIONIC_ATOMIC_ARM_H
#define BIONIC_ATOMIC_ARM_H
#include <machine/cpu-features.h>
/* Some of the harware instructions used below are not available in Thumb-1
* mode (they are if you build in ARM or Thumb-2 mode though). To solve this
* problem, we're going to use the same technique than libatomics_ops,
* which is to temporarily switch to ARM, do the operation, then switch
* back to Thumb-1.
*
* This results in two 'bx' jumps, just like a normal function call, but
* everything is kept inlined, avoids loading or computing the function's
* address, and prevents a little I-cache trashing too.
*
* However, it is highly recommended to avoid compiling any C library source
* file that use these functions in Thumb-1 mode.
*
* Define three helper macros to implement this:
*/
#if defined(__thumb__) && !defined(__thumb2__)
# define __ATOMIC_SWITCH_TO_ARM \
"adr r3, 5f\n" \
"bx r3\n" \
".align\n" \
".arm\n" \
"5:\n"
/* note: the leading \n below is intentional */
# define __ATOMIC_SWITCH_TO_THUMB \
"\n" \
"adr r3, 6f\n" \
"bx r3\n" \
".thumb" \
"6:\n"
# define __ATOMIC_CLOBBERS "r3" /* list of clobbered registers */
/* Warn the user that ARM mode should really be preferred! */
# warning Rebuilding this source file in ARM mode is highly recommended for performance!!
#else
# define __ATOMIC_SWITCH_TO_ARM /* nothing */
# define __ATOMIC_SWITCH_TO_THUMB /* nothing */
# define __ATOMIC_CLOBBERS /* nothing */
#endif
/* Define a full memory barrier, this is only needed if we build the
* platform for a multi-core device. For the record, using a 'dmb'
* instruction on a Nexus One device can take up to 180 ns even if
* it is completely un-necessary on this device.
*
* NOTE: This is where the platform and NDK headers atomic headers are
* going to diverge. With the NDK, we don't know if the generated
* code is going to run on a single or multi-core device, so we
* need to be cautious.
*
* Fortunately, we can use the kernel helper function that is
* mapped at address 0xffff0fa0 in all user process, and that
* provides a device-specific barrier operation.
*
* I.e. on single-core devices, the helper immediately returns,
* on multi-core devices, it uses "dmb" or any other means to
* perform a full-memory barrier.
*
* There are three cases to consider for the platform:
*
* - multi-core ARMv7-A => use the 'dmb' hardware instruction
* - multi-core ARMv6 => use the coprocessor
* - single core ARMv5TE/6/7 => do not use any hardware barrier
*/
#if defined(ANDROID_SMP) && ANDROID_SMP == 1
/* Sanity check, multi-core is only supported starting from ARMv6 */
# if __ARM_ARCH__ < 6
# error ANDROID_SMP should not be set to 1 for an ARM architecture less than 6
# endif
# ifdef __ARM_HAVE_DMB
/* For ARMv7-A, we can use the 'dmb' instruction directly */
__ATOMIC_INLINE__ void
__bionic_memory_barrier(void)
{
/* Note: we always build in ARM or Thumb-2 on ARMv7-A, so don't
* bother with __ATOMIC_SWITCH_TO_ARM */
__asm__ __volatile__ ( "dmb" : : : "memory" );
}
# else /* !__ARM_HAVE_DMB */
/* Otherwise, i.e. for multi-core ARMv6, we need to use the coprocessor,
* which requires the use of a general-purpose register, which is slightly
* less efficient.
*/
__ATOMIC_INLINE__ void
__bionic_memory_barrier(void)
{
__asm__ __volatile__ (
__SWITCH_TO_ARM
"mcr p15, 0, %0, c7, c10, 5"
__SWITCH_TO_THUMB
: : "r" (0) : __ATOMIC_CLOBBERS "memory");
}
# endif /* !__ARM_HAVE_DMB */
#else /* !ANDROID_SMP */
__ATOMIC_INLINE__ void
__bionic_memory_barrier(void)
{
/* A simple compiler barrier */
__asm__ __volatile__ ( "" : : : "memory" );
}
#endif /* !ANDROID_SMP */
/* Compare-and-swap, without any explicit barriers. Note that this functions
* returns 0 on success, and 1 on failure. The opposite convention is typically
* used on other platforms.
*
* There are two cases to consider:
*
* - ARMv6+ => use LDREX/STREX instructions
* - < ARMv6 => use kernel helper function mapped at 0xffff0fc0
*
* LDREX/STREX are only available starting from ARMv6
*/
#ifdef __ARM_HAVE_LDREX_STREX
__ATOMIC_INLINE__ int
__bionic_cmpxchg(int32_t old_value, int32_t new_value, volatile int32_t* ptr)
{
int32_t prev, status;
do {
__asm__ __volatile__ (
__ATOMIC_SWITCH_TO_ARM
"ldrex %0, [%3]\n"
"mov %1, #0\n"
"teq %0, %4\n"
#ifdef __thumb2__
"it eq\n"
#endif
"strexeq %1, %5, [%3]"
__ATOMIC_SWITCH_TO_THUMB
: "=&r" (prev), "=&r" (status), "+m"(*ptr)
: "r" (ptr), "Ir" (old_value), "r" (new_value)
: __ATOMIC_CLOBBERS "cc");
} while (__builtin_expect(status != 0, 0));
return prev != old_value;
}
# else /* !__ARM_HAVE_LDREX_STREX */
/* Use the handy kernel helper function mapped at 0xffff0fc0 */
typedef int (kernel_cmpxchg)(int32_t, int32_t, volatile int32_t *);
__ATOMIC_INLINE__ int
__kernel_cmpxchg(int32_t old_value, int32_t new_value, volatile int32_t* ptr)
{
/* Note: the kernel function returns 0 on success too */
return (*(kernel_cmpxchg *)0xffff0fc0)(old_value, new_value, ptr);
}
__ATOMIC_INLINE__ int
__bionic_cmpxchg(int32_t old_value, int32_t new_value, volatile int32_t* ptr)
{
return __kernel_cmpxchg(old_value, new_value, ptr);
}
#endif /* !__ARM_HAVE_LDREX_STREX */
/* Swap operation, without any explicit barriers.
* There are again two similar cases to consider:
*
* ARMv6+ => use LDREX/STREX
* < ARMv6 => use SWP instead.
*/
#ifdef __ARM_HAVE_LDREX_STREX
__ATOMIC_INLINE__ int32_t
__bionic_swap(int32_t new_value, volatile int32_t* ptr)
{
int32_t prev, status;
do {
__asm__ __volatile__ (
__ATOMIC_SWITCH_TO_ARM
"ldrex %0, [%3]\n"
"strex %1, %4, [%3]"
__ATOMIC_SWITCH_TO_THUMB
: "=&r" (prev), "=&r" (status), "+m" (*ptr)
: "r" (ptr), "r" (new_value)
: __ATOMIC_CLOBBERS "cc");
} while (__builtin_expect(status != 0, 0));
return prev;
}
#else /* !__ARM_HAVE_LDREX_STREX */
__ATOMIC_INLINE__ int32_t
__bionic_swap(int32_t new_value, volatile int32_t* ptr)
{
int32_t prev;
/* NOTE: SWP is available in Thumb-1 too */
__asm__ __volatile__ ("swp %0, %2, [%3]"
: "=&r" (prev), "+m" (*ptr)
: "r" (new_value), "r" (ptr)
: "cc");
return prev;
}
#endif /* !__ARM_HAVE_LDREX_STREX */
/* Atomic increment - without any barriers
* This returns the old value
*/
#ifdef __ARM_HAVE_LDREX_STREX
__ATOMIC_INLINE__ int32_t
__bionic_atomic_inc(volatile int32_t* ptr)
{
int32_t prev, tmp, status;
do {
__asm__ __volatile__ (
__ATOMIC_SWITCH_TO_ARM
"ldrex %0, [%4]\n"
"add %1, %0, #1\n"
"strex %2, %1, [%4]"
__ATOMIC_SWITCH_TO_THUMB
: "=&r" (prev), "=&r" (tmp), "=&r" (status), "+m"(*ptr)
: "r" (ptr)
: __ATOMIC_CLOBBERS "cc");
} while (__builtin_expect(status != 0, 0));
return prev;
}
#else
__ATOMIC_INLINE__ int32_t
__bionic_atomic_inc(volatile int32_t* ptr)
{
int32_t prev, status;
do {
prev = *ptr;
status = __kernel_cmpxchg(prev, prev+1, ptr);
} while (__builtin_expect(status != 0, 0));
return prev;
}
#endif
/* Atomic decrement - without any barriers
* This returns the old value.
*/
#ifdef __ARM_HAVE_LDREX_STREX
__ATOMIC_INLINE__ int32_t
__bionic_atomic_dec(volatile int32_t* ptr)
{
int32_t prev, tmp, status;
do {
__asm__ __volatile__ (
__ATOMIC_SWITCH_TO_ARM
"ldrex %0, [%4]\n"
"sub %1, %0, #1\n"
"strex %2, %1, [%4]"
__ATOMIC_SWITCH_TO_THUMB
: "=&r" (prev), "=&r" (tmp), "=&r" (status), "+m"(*ptr)
: "r" (ptr)
: __ATOMIC_CLOBBERS "cc");
} while (__builtin_expect(status != 0, 0));
return prev;
}
#else
__ATOMIC_INLINE__ int32_t
__bionic_atomic_dec(volatile int32_t* ptr)
{
int32_t prev, status;
do {
prev = *ptr;
status = __kernel_cmpxchg(prev, prev-1, ptr);
} while (__builtin_expect(status != 0, 0));
return prev;
}
#endif
#endif /* SYS_ATOMICS_ARM_H */

View File

@ -0,0 +1,62 @@
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef BIONIC_ATOMIC_GCC_BUILTIN_H
#define BIONIC_ATOMIC_GCC_BUILTIN_H
/* This header file is used by default if we don't have optimized atomic
* routines for a given platform. See bionic_atomic_arm.h and
* bionic_atomic_x86.h for examples.
*/
__ATOMIC_INLINE__ void
__bionic_memory_barrier(void)
{
__sync_synchronize();
}
__ATOMIC_INLINE__ int
__bionic_cmpxchg(int32_t old_value, int32_t new_value, volatile int32_t* ptr)
{
/* We must return 0 on success */
return __sync_bool_compare_and_swap(ptr, old_value, new_value) == 0;
}
__ATOMIC_INLINE__ int32_t
__bionic_swap(int32_t new_value, volatile int32_t* ptr)
{
int32_t prev;
do {
prev = *ptr;
status = __sync_val_compare_and_swap(ptr, prev, new_value);
} while (status == 0);
return prev;
}
__ATOMIC_INLINE__ int32_t
__bionic_atomic_inc(volatile int32_t* ptr)
{
/* We must return the old value */
return __sync_fetch_and_add(ptr, 1);
}
__ATOMIC_INLINE__ int32_t
__bionic_atomic_dec(volatile int32_t* ptr)
{
/* We must return the old value */
return __sync_fetch_and_add(ptr, -1);
}
#endif /* BIONIC_ATOMIC_GCC_BUILTIN_H */

View File

@ -43,62 +43,21 @@
extern "C" {
#endif
/*
* Define the full memory barrier for an SMP system. This is
* platform-specific.
/* Define __ATOMIC_INLINE__ to control the inlining of all atomics
* functions declared here. For a slight performance boost, we want
* all of them to be always_inline
*/
#define __ATOMIC_INLINE__ static __inline__ __attribute__((always_inline))
#ifdef __arm__
#include <machine/cpu-features.h>
/*
* For ARMv6K we need to issue a specific MCR instead of the DMB, since
* that wasn't added until v7. For anything older, SMP isn't relevant.
* Since we don't have an ARMv6K to test with, we're not going to deal
* with that now.
*
* The DMB instruction is found in the ARM and Thumb2 instruction sets.
* This will fail on plain 16-bit Thumb.
*/
#if defined(__ARM_HAVE_DMB)
# define _ANDROID_MEMBAR_FULL_SMP() \
do { __asm__ __volatile__ ("dmb" ::: "memory"); } while (0)
# include <bionic_atomic_arm.h>
#elif defined(__i386__)
# include <bionic_atomic_x86.h>
#else
# define _ANDROID_MEMBAR_FULL_SMP() ARM_SMP_defined_but_no_DMB()
# include <bionic_atomic_gcc_builtin.h>
#endif
#elif defined(__i386__) || defined(__x86_64__)
/*
* For recent x86, we can use the SSE2 mfence instruction.
*/
# define _ANDROID_MEMBAR_FULL_SMP() \
do { __asm__ __volatile__ ("mfence" ::: "memory"); } while (0)
#else
/*
* Implementation not defined for this platform. Hopefully we're building
* in uniprocessor mode.
*/
# define _ANDROID_MEMBAR_FULL_SMP() SMP_barrier_not_defined_for_platform()
#endif
/*
* Full barrier. On uniprocessors this is just a compiler reorder barrier,
* which ensures that the statements appearing above the barrier in the C/C++
* code will be issued after the statements appearing below the barrier.
*
* For SMP this also includes a memory barrier instruction. On an ARM
* CPU this means that the current core will flush pending writes, wait
* for pending reads to complete, and discard any cached reads that could
* be stale. Other CPUs may do less, but the end result is equivalent.
*/
#if ANDROID_SMP != 0
# define ANDROID_MEMBAR_FULL() _ANDROID_MEMBAR_FULL_SMP()
#else
# define ANDROID_MEMBAR_FULL() \
do { __asm__ __volatile__ ("" ::: "memory"); } while (0)
#endif
#define ANDROID_MEMBAR_FULL __bionic_memory_barrier
#ifdef __cplusplus
} // extern "C"

View File

@ -0,0 +1,88 @@
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef BIONIC_ATOMIC_X86_H
#define BIONIC_ATOMIC_X86_H
/* Define a full memory barrier, this is only needed if we build the
* platform for a multi-core device.
*/
#if defined(ANDROID_SMP) && ANDROID_SMP == 1
__ATOMIC_INLINE__ void
__bionic_memory_barrier()
{
__asm__ __volatile__ ( "mfence" : : : "memory" );
}
#else
__ATOMIC_INLINE__ void
__bionic_memory_barrier()
{
/* A simple compiler barrier */
__asm__ __volatile__ ( "" : : : "memory" );
}
#endif
/* Compare-and-swap, without any explicit barriers. Note that this function
* returns 0 on success, and 1 on failure. The opposite convention is typically
* used on other platforms.
*/
__ATOMIC_INLINE__ int
__bionic_cmpxchg(int32_t old_value, int32_t new_value, volatile int32_t* ptr)
{
int32_t prev;
__asm__ __volatile__ ("lock; cmpxchgl %1, %2"
: "=a" (prev)
: "q" (new_value), "m" (*ptr), "0" (old_value)
: "memory");
return prev != old_value;
}
/* Swap, without any explicit barriers */
__ATOMIC_INLINE__ int32_t
__bionic_swap(int32_t new_value, volatile int32_t *ptr)
{
__asm__ __volatile__ ("xchgl %1, %0"
: "=r" (new_value)
: "m" (*ptr), "0" (new_value)
: "memory");
return new_value;
}
/* Atomic increment, without explicit barriers */
__ATOMIC_INLINE__ int32_t
__bionic_atomic_inc(volatile int32_t *ptr)
{
int increment = 1;
__asm__ __volatile__ ("lock; xaddl %0, %1"
: "+r" (increment), "+m" (*ptr)
: : "memory");
/* increment now holds the old value of *ptr */
return increment;
}
/* Atomic decrement, without explicit barriers */
__ATOMIC_INLINE__ int32_t
__bionic_atomic_dec(volatile int32_t *ptr)
{
int increment = -1;
__asm__ __volatile__ ("lock; xaddl %0, %1"
: "+r" (increment), "+m" (*ptr)
: : "memory");
/* increment now holds the old value of *ptr */
return increment;
}
#endif /* BIONIC_ATOMIC_X86_H */

View File

@ -20,11 +20,11 @@ extern "C" int __cxa_guard_acquire(int volatile * gv)
// 6 untouched, wait and return 0
// 1 untouched, return 0
retry:
if (__atomic_cmpxchg(0, 0x2, gv) == 0) {
if (__bionic_cmpxchg(0, 0x2, gv) == 0) {
ANDROID_MEMBAR_FULL();
return 1;
}
__atomic_cmpxchg(0x2, 0x6, gv); // Indicate there is a waiter
__bionic_cmpxchg(0x2, 0x6, gv); // Indicate there is a waiter
__futex_wait(gv, 0x6, NULL);
if(*gv != 1) // __cxa_guard_abort was called, let every thread try since there is no return code for this condition
@ -39,7 +39,7 @@ extern "C" void __cxa_guard_release(int volatile * gv)
// 2 -> 1
// 6 -> 1, and wake
ANDROID_MEMBAR_FULL();
if (__atomic_cmpxchg(0x2, 0x1, gv) == 0) {
if (__bionic_cmpxchg(0x2, 0x1, gv) == 0) {
return;
}