am 0e6af17a: Merge "Support --gtest_ouput option in bionic gtest main."

* commit '0e6af17a35b1e5e6e8c4a22dcb934bb641a92488':
  Support --gtest_ouput option in bionic gtest main.
This commit is contained in:
Yabin Cui 2015-01-27 01:21:06 +00:00 committed by Android Git Automerger
commit 65b227b02e

View File

@ -17,6 +17,8 @@
#include <gtest/gtest.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
@ -29,6 +31,8 @@
#include <utility>
#include <vector>
#include "BionicDeathTest.h" // For selftest.
namespace testing {
namespace internal {
@ -52,30 +56,30 @@ using testing::internal::COLOR_GREEN;
using testing::internal::COLOR_YELLOW;
using testing::internal::ColoredPrintf;
constexpr int DEFAULT_GLOBAL_TEST_RUN_DEADLINE_IN_MS = 60000;
constexpr int DEFAULT_GLOBAL_TEST_RUN_WARNLINE_IN_MS = 2000;
constexpr int DEFAULT_GLOBAL_TEST_RUN_DEADLINE_MS = 60000;
constexpr int DEFAULT_GLOBAL_TEST_RUN_WARNLINE_MS = 2000;
// The time each test can run before killed for the reason of timeout.
// It takes effect only with --isolate option.
static int global_test_run_deadline_in_ms = DEFAULT_GLOBAL_TEST_RUN_DEADLINE_IN_MS;
static int global_test_run_deadline_ms = DEFAULT_GLOBAL_TEST_RUN_DEADLINE_MS;
// The time each test can run before be warned for too much running time.
// It takes effect only with --isolate option.
static int global_test_run_warnline_in_ms = DEFAULT_GLOBAL_TEST_RUN_WARNLINE_IN_MS;
static int global_test_run_warnline_ms = DEFAULT_GLOBAL_TEST_RUN_WARNLINE_MS;
// Return deadline duration for a test, in ms.
static int GetDeadlineInfo(const std::string& /*test_name*/) {
return global_test_run_deadline_in_ms;
return global_test_run_deadline_ms;
}
// Return warnline duration for a test, in ms.
static int GetWarnlineInfo(const std::string& /*test_name*/) {
return global_test_run_warnline_in_ms;
return global_test_run_warnline_ms;
}
static void PrintHelpInfo() {
printf("Bionic Unit Test Options:\n"
" -j [JOB_COUNT]\n"
" -j [JOB_COUNT] or -j[JOB_COUNT]\n"
" Run up to JOB_COUNT tests in parallel.\n"
" Use isolation mode, Run each test in a separate process.\n"
" If JOB_COUNT is not given, it is set to the count of available processors.\n"
@ -97,6 +101,32 @@ enum TestResult {
TEST_TIMEOUT
};
class Test {
public:
Test() {} // For std::vector<Test>.
explicit Test(const char* name) : name_(name) {}
const std::string& GetName() const { return name_; }
void SetResult(TestResult result) { result_ = result; }
TestResult GetResult() const { return result_; }
void SetTestTime(int64_t elapsed_time_ns) { elapsed_time_ns_ = elapsed_time_ns; }
int64_t GetTestTime() const { return elapsed_time_ns_; }
void AppendFailureMessage(const std::string& s) { failure_message_ += s; }
const std::string& GetFailureMessage() const { return failure_message_; }
private:
const std::string name_;
TestResult result_;
int64_t elapsed_time_ns_;
std::string failure_message_;
};
class TestCase {
public:
TestCase() {} // For std::vector<TestCase>.
@ -104,35 +134,45 @@ class TestCase {
const std::string& GetName() const { return name_; }
void AppendTest(const std::string& test_name) {
test_list_.push_back(std::make_tuple(test_name, TEST_FAILED, 0LL));
void AppendTest(const char* test_name) {
test_list_.push_back(Test(test_name));
}
size_t TestCount() const { return test_list_.size(); }
std::string GetTestName(size_t test_id) const {
VerifyTestId(test_id);
return name_ + "." + std::get<0>(test_list_[test_id]);
return name_ + "." + test_list_[test_id].GetName();
}
Test& GetTest(size_t test_id) {
VerifyTestId(test_id);
return test_list_[test_id];
}
const Test& GetTest(size_t test_id) const {
VerifyTestId(test_id);
return test_list_[test_id];
}
void SetTestResult(size_t test_id, TestResult result) {
VerifyTestId(test_id);
std::get<1>(test_list_[test_id]) = result;
test_list_[test_id].SetResult(result);
}
TestResult GetTestResult(size_t test_id) const {
VerifyTestId(test_id);
return std::get<1>(test_list_[test_id]);
return test_list_[test_id].GetResult();
}
void SetTestTime(size_t test_id, int64_t elapsed_time) {
void SetTestTime(size_t test_id, int64_t elapsed_time_ns) {
VerifyTestId(test_id);
std::get<2>(test_list_[test_id]) = elapsed_time;
test_list_[test_id].SetTestTime(elapsed_time_ns);
}
int64_t GetTestTime(size_t test_id) const {
VerifyTestId(test_id);
return std::get<2>(test_list_[test_id]);
return test_list_[test_id].GetTestTime();
}
private:
@ -145,14 +185,13 @@ class TestCase {
private:
const std::string name_;
std::vector<std::tuple<std::string, TestResult, int64_t> > test_list_;
std::vector<Test> test_list_;
};
// TestResultPrinter is copied from part of external/gtest/src/gtest.cc:PrettyUnitTestResultPrinter.
// The reason for copy is that PrettyUnitTestResultPrinter is defined and used in gtest.cc, which
// is hard to reuse.
// TestResultPrinter only print information for a single test, which is used in child process.
// The information of test_iteration/environment/testcase is left for parent process to print.
// This is the file descriptor used by the child process to write failure message.
// The parent process will collect the information and dump to stdout / xml file.
static int child_output_fd;
class TestResultPrinter : public testing::EmptyTestEventListener {
public:
TestResultPrinter() : pinfo_(NULL) {}
@ -160,7 +199,6 @@ class TestResultPrinter : public testing::EmptyTestEventListener {
pinfo_ = &test_info; // Record test_info for use in OnTestPartResult.
}
virtual void OnTestPartResult(const testing::TestPartResult& result);
virtual void OnTestEnd(const testing::TestInfo& test_info);
private:
const testing::TestInfo* pinfo_;
@ -180,17 +218,13 @@ void TestResultPrinter::OnTestPartResult(const testing::TestPartResult& result)
pinfo_->name(),
result.message());
// Use write() to skip line buffer of printf, thus can avoid getting interleaved when
// several processes are printing at the same time.
int towrite = strlen(buf);
char* p = buf;
while (towrite > 0) {
ssize_t write_count = write(fileno(stdout), p, towrite);
ssize_t write_count = TEMP_FAILURE_RETRY(write(child_output_fd, p, towrite));
if (write_count == -1) {
if (errno != EINTR) {
fprintf(stderr, "write, errno = %d\n", errno);
break;
}
fprintf(stderr, "failed to write child_output_fd: %s\n", strerror(errno));
exit(1);
} else {
towrite -= write_count;
p += write_count;
@ -198,38 +232,6 @@ void TestResultPrinter::OnTestPartResult(const testing::TestPartResult& result)
}
}
void TestResultPrinter::OnTestEnd(const testing::TestInfo& test_info) {
if (test_info.result()->Passed()) {
ColoredPrintf(COLOR_GREEN, "[ OK ] ");
} else {
ColoredPrintf(COLOR_RED, "[ FAILED ] ");
}
printf("%s.%s", test_info.test_case_name(), test_info.name());
if (test_info.result()->Failed()) {
const char* const type_param = test_info.type_param();
const char* const value_param = test_info.value_param();
if (type_param != NULL || value_param != NULL) {
printf(", where ");
if (type_param != NULL) {
printf("TypeParam = %s", type_param);
if (value_param != NULL) {
printf(" and ");
}
}
if (value_param != NULL) {
printf("GetParam() = %s", value_param);
}
}
}
if (testing::GTEST_FLAG(print_time)) {
printf(" (%lld ms)\n", test_info.result()->elapsed_time());
} else {
printf("\n");
}
fflush(stdout);
}
static int64_t NanoTime() {
struct timespec t;
t.tv_sec = t.tv_nsec = 0;
@ -305,22 +307,30 @@ static void OnTestIterationStartPrint(const std::vector<TestCase>& testcase_list
fflush(stdout);
}
static void OnTestTerminatedPrint(const TestCase& testcase, size_t test_id, int sig) {
ColoredPrintf(COLOR_RED, "[ FAILED ] ");
printf("%s terminated by signal: %s\n", testcase.GetTestName(test_id).c_str(),
strsignal(sig));
fflush(stdout);
}
static void OnTestEndPrint(const TestCase& testcase, size_t test_id) {
TestResult result = testcase.GetTestResult(test_id);
if (result == TEST_SUCCESS) {
ColoredPrintf(COLOR_GREEN, "[ OK ] ");
} else if (result == TEST_FAILED) {
ColoredPrintf(COLOR_RED, "[ FAILED ] ");
} else if (result == TEST_TIMEOUT) {
ColoredPrintf(COLOR_RED, "[ TIMEOUT ] ");
}
static void OnTestTimeoutPrint(const TestCase& testcase, size_t test_id) {
ColoredPrintf(COLOR_RED, "[ TIMEOUT ] ");
printf("%s (killed by timeout at %lld ms)\n", testcase.GetTestName(test_id).c_str(),
testcase.GetTestTime(test_id) / 1000000LL);
printf("%s", testcase.GetTestName(test_id).c_str());
if (testing::GTEST_FLAG(print_time)) {
printf(" (%" PRId64 " ms)\n", testcase.GetTestTime(test_id) / 1000000);
} else {
printf("\n");
}
const std::string& failure_message = testcase.GetTest(test_id).GetFailureMessage();
printf("%s", failure_message.c_str());
fflush(stdout);
}
static void OnTestIterationEndPrint(const std::vector<TestCase>& testcase_list, size_t /*iteration*/,
int64_t elapsed_time) {
int64_t elapsed_time_ns) {
std::vector<std::string> fail_test_name_list;
std::vector<std::pair<std::string, int64_t>> timeout_test_list;
@ -356,7 +366,7 @@ static void OnTestIterationEndPrint(const std::vector<TestCase>& testcase_list,
printf("%zu %s from %zu %s ran.", test_count, (test_count == 1) ? "test" : "tests",
testcase_count, (testcase_count == 1) ? "test case" : "test cases");
if (testing::GTEST_FLAG(print_time)) {
printf(" (%lld ms total)", elapsed_time / 1000000LL);
printf(" (%" PRId64 " ms total)", elapsed_time_ns / 1000000);
}
printf("\n");
ColoredPrintf(COLOR_GREEN, "[ PASSED ] ");
@ -380,8 +390,8 @@ static void OnTestIterationEndPrint(const std::vector<TestCase>& testcase_list,
printf("%zu %s, listed below:\n", timeout_test_count, (timeout_test_count == 1) ? "test" : "tests");
for (const auto& timeout_pair : timeout_test_list) {
ColoredPrintf(COLOR_RED, "[ TIMEOUT ] ");
printf("%s (stopped at %lld ms)\n", timeout_pair.first.c_str(),
timeout_pair.second / 1000000LL);
printf("%s (stopped at %" PRId64 " ms)\n", timeout_pair.first.c_str(),
timeout_pair.second / 1000000);
}
}
@ -392,9 +402,8 @@ static void OnTestIterationEndPrint(const std::vector<TestCase>& testcase_list,
printf("%zu %s, listed below:\n", timewarn_test_count, (timewarn_test_count == 1) ? "test" : "tests");
for (const auto& timewarn_tuple : timewarn_test_list) {
ColoredPrintf(COLOR_YELLOW, "[ TIMEWARN ] ");
printf("%s (%lld ms, exceed warnline %d ms)\n", std::get<0>(timewarn_tuple).c_str(),
std::get<1>(timewarn_tuple) / 1000000LL,
std::get<2>(timewarn_tuple));
printf("%s (%" PRId64 " ms, exceed warnline %d ms)\n", std::get<0>(timewarn_tuple).c_str(),
std::get<1>(timewarn_tuple) / 1000000, std::get<2>(timewarn_tuple));
}
}
@ -410,15 +419,83 @@ static void OnTestIterationEndPrint(const std::vector<TestCase>& testcase_list,
fflush(stdout);
}
// Output xml file when --gtest_output is used, write this function as we can't reuse
// gtest.cc:XmlUnitTestResultPrinter. The reason is XmlUnitTestResultPrinter is totally
// defined in gtest.cc and not expose to outside. What's more, as we don't run gtest in
// the parent process, we don't have gtest classes which are needed by XmlUnitTestResultPrinter.
void OnTestIterationEndXmlPrint(const std::string& xml_output_filename,
const std::vector<TestCase>& testcase_list,
time_t epoch_iteration_start_time,
int64_t elapsed_time_ns) {
FILE* fp = fopen(xml_output_filename.c_str(), "w");
if (fp == NULL) {
fprintf(stderr, "failed to open '%s': %s\n", xml_output_filename.c_str(), strerror(errno));
exit(1);
}
size_t total_test_count = 0;
size_t total_failed_count = 0;
std::vector<size_t> failed_count_list(testcase_list.size(), 0);
std::vector<int64_t> elapsed_time_list(testcase_list.size(), 0);
for (size_t i = 0; i < testcase_list.size(); ++i) {
auto& testcase = testcase_list[i];
total_test_count += testcase.TestCount();
for (size_t j = 0; j < testcase.TestCount(); ++j) {
if (testcase.GetTestResult(j) != TEST_SUCCESS) {
++failed_count_list[i];
}
elapsed_time_list[i] += testcase.GetTestTime(j);
}
total_failed_count += failed_count_list[i];
}
const tm* time_struct = localtime(&epoch_iteration_start_time);
char timestamp[40];
snprintf(timestamp, sizeof(timestamp), "%4d-%02d-%02dT%02d:%02d:%02d",
time_struct->tm_year + 1900, time_struct->tm_mon + 1, time_struct->tm_mday,
time_struct->tm_hour, time_struct->tm_min, time_struct->tm_sec);
fputs("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n", fp);
fprintf(fp, "<testsuites tests=\"%zu\" failures=\"%zu\" disabled=\"0\" errors=\"0\"",
total_test_count, total_failed_count);
fprintf(fp, " timestamp=\"%s\" time=\"%.3lf\" name=\"AllTests\">\n", timestamp, elapsed_time_ns / 1e9);
for (size_t i = 0; i < testcase_list.size(); ++i) {
auto& testcase = testcase_list[i];
fprintf(fp, " <testsuite name=\"%s\" tests=\"%zu\" failures=\"%zu\" disabled=\"0\" errors=\"0\"",
testcase.GetName().c_str(), testcase.TestCount(), failed_count_list[i]);
fprintf(fp, " time=\"%.3lf\">\n", elapsed_time_list[i] / 1e9);
for (size_t j = 0; j < testcase.TestCount(); ++j) {
fprintf(fp, " <testcase name=\"%s\" status=\"run\" time=\"%.3lf\" classname=\"%s\"",
testcase.GetTest(j).GetName().c_str(), testcase.GetTestTime(j) / 1e9,
testcase.GetName().c_str());
if (testcase.GetTestResult(j) == TEST_SUCCESS) {
fputs(" />\n", fp);
} else {
fputs(">\n", fp);
const std::string& failure_message = testcase.GetTest(j).GetFailureMessage();
fprintf(fp, " <failure message=\"%s\" type=\"\">\n", failure_message.c_str());
fputs(" </failure>\n", fp);
fputs(" </testcase>\n", fp);
}
}
fputs(" </testsuite>\n", fp);
}
fputs("</testsuites>\n", fp);
fclose(fp);
}
// Forked Child process, run the single test.
static void ChildProcessFn(int argc, char** argv, const std::string& test_name) {
char** new_argv = new char*[argc + 1];
char** new_argv = new char*[argc + 2];
memcpy(new_argv, argv, sizeof(char*) * argc);
char* filter_arg = new char [test_name.size() + 20];
strcpy(filter_arg, "--gtest_filter=");
strcat(filter_arg, test_name.c_str());
new_argv[argc] = filter_arg;
new_argv[argc + 1] = NULL;
int new_argc = argc + 1;
testing::InitGoogleTest(&new_argc, new_argv);
@ -428,12 +505,13 @@ static void ChildProcessFn(int argc, char** argv, const std::string& test_name)
struct ChildProcInfo {
pid_t pid;
int64_t start_time;
int64_t deadline_time;
int64_t start_time_ns;
int64_t deadline_time_ns;
size_t testcase_id, test_id;
bool done_flag;
bool timeout_flag;
int exit_status;
int child_read_fd;
ChildProcInfo() : pid(0) {}
};
@ -454,9 +532,9 @@ static void WaitChildProcs(std::vector<ChildProcInfo>& child_proc_list) {
exit(1);
} else if (result == 0) {
// Check child timeout.
int64_t current_time = NanoTime();
int64_t current_time_ns = NanoTime();
for (size_t i = 0; i < child_proc_list.size(); ++i) {
if (child_proc_list[i].deadline_time <= current_time) {
if (child_proc_list[i].deadline_time_ns <= current_time_ns) {
child_proc_list[i].done_flag = true;
child_proc_list[i].timeout_flag = true;
loop_flag = false;
@ -504,7 +582,8 @@ static TestResult WaitChildProc(pid_t pid) {
// We choose to use multi-fork and multi-wait here instead of multi-thread, because it always
// makes deadlock to use fork in multi-thread.
static void RunTestInSeparateProc(int argc, char** argv, std::vector<TestCase>& testcase_list,
size_t iteration_count, size_t job_count) {
size_t iteration_count, size_t job_count,
const std::string& xml_output_filename) {
// Stop default result printer to avoid environment setup/teardown information for each test.
testing::UnitTest::GetInstance()->listeners().Release(
testing::UnitTest::GetInstance()->listeners().default_result_printer());
@ -512,7 +591,8 @@ static void RunTestInSeparateProc(int argc, char** argv, std::vector<TestCase>&
for (size_t iteration = 1; iteration <= iteration_count; ++iteration) {
OnTestIterationStartPrint(testcase_list, iteration, iteration_count);
int64_t iteration_start_time = NanoTime();
int64_t iteration_start_time_ns = NanoTime();
time_t epoch_iteration_start_time = time(NULL);
// Run up to job_count tests in parallel, each test in a child process.
std::vector<ChildProcInfo> child_proc_list(job_count);
@ -530,18 +610,29 @@ static void RunTestInSeparateProc(int argc, char** argv, std::vector<TestCase>&
for (auto& child_proc : child_proc_list) {
if (child_proc.pid == 0 && next_testcase_id < testcase_list.size()) {
std::string test_name = testcase_list[next_testcase_id].GetTestName(next_test_id);
int pipefd[2];
int ret = pipe(pipefd);
if (ret == -1) {
perror("pipe2 in RunTestInSeparateProc");
exit(1);
}
pid_t pid = fork();
if (pid == -1) {
perror("fork in RunTestInSeparateProc");
exit(1);
} else if (pid == 0) {
close(pipefd[0]);
child_output_fd = pipefd[1];
// Run child process test, never return.
ChildProcessFn(argc, argv, test_name);
}
// Parent process
close(pipefd[1]);
child_proc.child_read_fd = pipefd[0];
child_proc.pid = pid;
child_proc.start_time = NanoTime();
child_proc.deadline_time = child_proc.start_time + GetDeadlineInfo(test_name) * 1000000LL;
child_proc.start_time_ns = NanoTime();
child_proc.deadline_time_ns = child_proc.start_time_ns +
GetDeadlineInfo(test_name) * 1000000LL;
child_proc.testcase_id = next_testcase_id;
child_proc.test_id = next_test_id;
child_proc.done_flag = false;
@ -561,25 +652,51 @@ static void RunTestInSeparateProc(int argc, char** argv, std::vector<TestCase>&
size_t testcase_id = child_proc.testcase_id;
size_t test_id = child_proc.test_id;
TestCase& testcase = testcase_list[testcase_id];
testcase.SetTestTime(test_id, NanoTime() - child_proc.start_time);
testcase.SetTestTime(test_id, NanoTime() - child_proc.start_time_ns);
// Kill and wait the timeout child process before we read failure message.
if (child_proc.timeout_flag) {
// Kill and wait the timeout child process.
kill(child_proc.pid, SIGKILL);
WaitChildProc(child_proc.pid);
}
while (true) {
char buf[1024];
int ret = TEMP_FAILURE_RETRY(read(child_proc.child_read_fd, buf, sizeof(buf) - 1));
if (ret > 0) {
buf[ret] = '\0';
testcase.GetTest(test_id).AppendFailureMessage(buf);
} else if (ret == 0) {
break; // Read end.
} else {
perror("read child_read_fd in RunTestInSeparateProc");
exit(1);
}
}
close(child_proc.child_read_fd);
if (child_proc.timeout_flag) {
testcase.SetTestResult(test_id, TEST_TIMEOUT);
OnTestTimeoutPrint(testcase, test_id);
char buf[1024];
snprintf(buf, sizeof(buf), "%s killed because of timeout at %" PRId64 " ms.\n",
testcase.GetTestName(test_id).c_str(),
testcase.GetTestTime(test_id) / 1000000);
testcase.GetTest(test_id).AppendFailureMessage(buf);
} else if (WIFSIGNALED(child_proc.exit_status)) {
// Record signal terminated test as failed.
testcase.SetTestResult(test_id, TEST_FAILED);
OnTestTerminatedPrint(testcase, test_id, WTERMSIG(child_proc.exit_status));
char buf[1024];
snprintf(buf, sizeof(buf), "%s terminated by signal: %s.\n",
testcase.GetTestName(test_id).c_str(),
strsignal(WTERMSIG(child_proc.exit_status)));
testcase.GetTest(test_id).AppendFailureMessage(buf);
} else {
testcase.SetTestResult(test_id, WEXITSTATUS(child_proc.exit_status) == 0 ?
TEST_SUCCESS : TEST_FAILED);
// TestResultPrinter::OnTestEnd has already printed result for normal exit.
}
OnTestEndPrint(testcase, test_id);
if (++finished_test_count_list[testcase_id] == testcase.TestCount()) {
++finished_testcase_count;
@ -590,7 +707,12 @@ static void RunTestInSeparateProc(int argc, char** argv, std::vector<TestCase>&
}
}
OnTestIterationEndPrint(testcase_list, iteration, NanoTime() - iteration_start_time);
int64_t elapsed_time_ns = NanoTime() - iteration_start_time_ns;
OnTestIterationEndPrint(testcase_list, iteration, elapsed_time_ns);
if (!xml_output_filename.empty()) {
OnTestIterationEndXmlPrint(xml_output_filename, testcase_list, epoch_iteration_start_time,
elapsed_time_ns);
}
}
}
@ -598,136 +720,172 @@ static size_t GetProcessorCount() {
return static_cast<size_t>(sysconf(_SC_NPROCESSORS_ONLN));
}
// Pick options not for gtest: There are two parts in argv, one part is handled by PickOptions()
struct IsolationTestOptions {
bool isolate;
size_t job_count;
int test_deadline_ms;
int test_warnline_ms;
std::string gtest_color;
bool gtest_print_time;
size_t gtest_repeat;
std::string gtest_output;
};
// Pick options not for gtest: There are two parts in args, one part is used in isolation test mode
// as described in PrintHelpInfo(), the other part is handled by testing::InitGoogleTest() in
// gtest. PickOptions() picks the first part of options and change them into flags and operations,
// lefting the second part in argv.
// gtest. PickOptions() picks the first part into IsolationTestOptions structure, leaving the second
// part in args.
// Arguments:
// argv is used to pass in all command arguments, and pass out only the part of options for gtest.
// exit_flag is to indicate whether we need to run gtest workflow after PickOptions.
// Return false if run error.
static bool PickOptions(std::vector<char*>& argv, bool* exit_flag) {
*exit_flag = false;
for (size_t i = 1; i < argv.size() - 1; ++i) {
if (strcmp(argv[i], "--help") == 0 || strcmp(argv[i], "-h") == 0) {
// args is used to pass in all command arguments, and pass out only the part of options for gtest.
// options is used to pass out test options in isolation mode.
// Return false if there is error in arguments.
static bool PickOptions(std::vector<char*>& args, IsolationTestOptions& options) {
for (size_t i = 1; i < args.size(); ++i) {
if (strcmp(args[i], "--help") == 0 || strcmp(args[i], "-h") == 0) {
PrintHelpInfo();
options.isolate = false;
return true;
}
}
// Move --gtest_filter option to last, and add "-bionic_selftest*" to disable self test.
std::string gtest_filter_str = "--gtest_filter=-bionic_selftest*";
for (size_t i = argv.size() - 2; i >= 1; --i) {
if (strncmp(argv[i], "--gtest_filter=", sizeof("--gtest_filter=") - 1) == 0) {
gtest_filter_str = std::string(argv[i]) + ":-bionic_selftest*";
argv.erase(argv.begin() + i);
// if --bionic-selftest argument is used, only enable self tests, otherwise remove self tests.
bool enable_selftest = false;
for (size_t i = 1; i < args.size(); ++i) {
if (strcmp(args[i], "--bionic-selftest") == 0) {
// This argument is to enable "bionic_selftest*" for self test, and is not shown in help info.
// Don't remove this option from arguments.
enable_selftest = true;
}
}
std::string gtest_filter_str;
for (size_t i = args.size() - 1; i >= 1; --i) {
if (strncmp(args[i], "--gtest_filter=", strlen("--gtest_filter=")) == 0) {
gtest_filter_str = std::string(args[i]);
args.erase(args.begin() + i);
break;
}
}
argv.insert(argv.end() - 1, strdup(gtest_filter_str.c_str()));
if (enable_selftest == true) {
args.push_back(strdup("--gtest_filter=bionic_selftest*"));
} else {
if (gtest_filter_str == "") {
gtest_filter_str = "--gtest_filter=-bionic_selftest*";
} else {
gtest_filter_str += ":-bionic_selftest*";
}
args.push_back(strdup(gtest_filter_str.c_str()));
}
// Init default bionic_gtest option.
bool isolate_option = true;
size_t job_count_option = GetProcessorCount();
size_t deadline_option_len = strlen("--deadline=");
size_t warnline_option_len = strlen("--warnline=");
size_t gtest_color_option_len = strlen("--gtest_color=");
// Parse bionic_gtest specific options in arguments.
for (size_t i = 1; i < argv.size() - 1; ++i) {
if (strcmp(argv[i], "-j") == 0) {
isolate_option = true; // Enable isolation mode when -j is used.
int tmp;
if (argv[i + 1] != NULL && (tmp = atoi(argv[i + 1])) > 0) {
job_count_option = tmp;
argv.erase(argv.begin() + i);
} else {
job_count_option = GetProcessorCount();
}
argv.erase(argv.begin() + i);
--i;
} else if (strcmp(argv[i], "--no-isolate") == 0) {
isolate_option = false;
argv.erase(argv.begin() + i);
--i;
} else if (strncmp(argv[i], "--deadline=", deadline_option_len) == 0) {
global_test_run_deadline_in_ms = atoi(argv[i] + deadline_option_len);
if (global_test_run_deadline_in_ms <= 0) {
fprintf(stderr, "value for --deadline option should be positive: %s\n",
argv[i] + deadline_option_len);
exit(1);
}
argv.erase(argv.begin() + i);
--i;
} else if (strncmp(argv[i], "--warnline=", warnline_option_len) == 0) {
global_test_run_warnline_in_ms = atoi(argv[i] + warnline_option_len);
if (global_test_run_warnline_in_ms <= 0) {
fprintf(stderr, "value for --warnline option should be positive: %s\n",
argv[i] + warnline_option_len);
exit(1);
}
argv.erase(argv.begin() + i);
--i;
} else if (strncmp(argv[i], "--gtest_color=", gtest_color_option_len) == 0) {
// If running in isolation mode, main process doesn't call testing::InitGoogleTest(&argc, argv).
// So we should parse gtest options for printing by ourselves.
testing::GTEST_FLAG(color) = argv[i] + gtest_color_option_len;
} else if (strcmp(argv[i], "--gtest_print_time=0") == 0) {
testing::GTEST_FLAG(print_time) = false;
} else if (strcmp(argv[i], "--gtest_list_tests") == 0) {
// Disable isolation mode in gtest_list_tests option.
isolate_option = false;
} else if (strcmp(argv[i], "--bionic-selftest") == 0) {
// This option is to enable "bionic_selftest*" for self test, and not shown in help informantion.
// Don't remove this option from argument list.
argv[argv.size() - 2] = strdup("--gtest_filter=bionic_selftest*");
options.isolate = true;
// Parse arguments that make us can't run in isolation mode.
for (size_t i = 1; i < args.size(); ++i) {
if (strcmp(args[i], "--no-isolate") == 0) {
options.isolate = false;
} else if (strcmp(args[i], "--gtest_list_tests") == 0) {
options.isolate = false;
}
}
// Handle --gtest_repeat=[COUNT] option if we are in isolation mode.
// We should check and remove this option to avoid child process running single test for several
// iterations.
size_t gtest_repeat_count = 1;
if (isolate_option == true) {
int len = sizeof("--gtest_repeat=") - 1;
for (size_t i = 1; i < argv.size() - 1; ++i) {
if (strncmp(argv[i], "--gtest_repeat=", len) == 0) {
int tmp = atoi(argv[i] + len);
if (tmp < 0) {
fprintf(stderr, "error count for option --gtest_repeat=[COUNT]\n");
return false;
}
gtest_repeat_count = tmp;
argv.erase(argv.begin() + i);
break;
}
}
}
// Add --no-isolate option in argv to suppress subprocess running in isolation mode again.
// As DeathTest will try to execve again, this option should always be set.
argv.insert(argv.begin() + 1, strdup("--no-isolate"));
// Run tests in isolation mode.
if (isolate_option) {
*exit_flag = true;
std::vector<TestCase> testcase_list;
int argc = static_cast<int>(argv.size()) - 1;
if (EnumerateTests(argc, argv.data(), testcase_list) == false) {
return false;
}
RunTestInSeparateProc(argc, argv.data(), testcase_list, gtest_repeat_count, job_count_option);
// Stop parsing if we will not run in isolation mode.
if (options.isolate == false) {
return true;
}
// Init default isolation test options.
options.job_count = GetProcessorCount();
options.test_deadline_ms = DEFAULT_GLOBAL_TEST_RUN_DEADLINE_MS;
options.test_warnline_ms = DEFAULT_GLOBAL_TEST_RUN_WARNLINE_MS;
options.gtest_color = testing::GTEST_FLAG(color);
options.gtest_print_time = testing::GTEST_FLAG(print_time);
options.gtest_repeat = testing::GTEST_FLAG(repeat);
options.gtest_output = testing::GTEST_FLAG(output);
// Parse arguments speficied for isolation mode.
for (size_t i = 1; i < args.size(); ++i) {
if (strncmp(args[i], "-j", strlen("-j")) == 0) {
char* p = args[i] + strlen("-j");
int count = 0;
if (*p != '\0') {
// Argument like -j5.
count = atoi(p);
} else if (args.size() > i + 1) {
// Arguments like -j 5.
count = atoi(args[i + 1]);
++i;
}
if (count <= 0) {
fprintf(stderr, "invalid job count: %d\n", count);
return false;
}
options.job_count = static_cast<size_t>(count);
} else if (strncmp(args[i], "--deadline=", strlen("--deadline=")) == 0) {
int time_ms = atoi(args[i] + strlen("--deadline="));
if (time_ms <= 0) {
fprintf(stderr, "invalid deadline: %d\n", time_ms);
return false;
}
options.test_deadline_ms = time_ms;
} else if (strncmp(args[i], "--warnline=", strlen("--warnline=")) == 0) {
int time_ms = atoi(args[i] + strlen("--warnline="));
if (time_ms <= 0) {
fprintf(stderr, "invalid warnline: %d\n", time_ms);
return false;
}
options.test_warnline_ms = time_ms;
} else if (strncmp(args[i], "--gtest_color=", strlen("--gtest_color=")) == 0) {
options.gtest_color = args[i] + strlen("--gtest_color=");
} else if (strcmp(args[i], "--gtest_print_time=0") == 0) {
options.gtest_print_time = false;
} else if (strncmp(args[i], "--gtest_repeat=", strlen("--gtest_repeat=")) == 0) {
int repeat = atoi(args[i] + strlen("--gtest_repeat="));
if (repeat < 0) {
fprintf(stderr, "invalid gtest_repeat count: %d\n", repeat);
return false;
}
options.gtest_repeat = repeat;
// Remove --gtest_repeat=xx from arguments, so child process only run one iteration for a single test.
args.erase(args.begin() + i);
--i;
} else if (strncmp(args[i], "--gtest_output=", strlen("--gtest_output=")) == 0) {
std::string output = args[i] + strlen("--gtest_output=");
// generate output xml file path according to the strategy in gtest.
bool success = true;
if (strncmp(output.c_str(), "xml:", strlen("xml:")) == 0) {
output = output.substr(strlen("xml:"));
if (output.size() == 0) {
success = false;
}
// Make absolute path.
if (success && output[0] != '/') {
char* cwd = getcwd(NULL, 0);
if (cwd != NULL) {
output = std::string(cwd) + "/" + output;
free(cwd);
} else {
success = false;
}
}
// Add file name if output is a directory.
if (success && output.back() == '/') {
output += "test_details.xml";
}
}
if (success) {
options.gtest_output = output;
} else {
fprintf(stderr, "invalid gtest_output file: %s\n", args[i]);
return false;
}
// Remove --gtest_output=xxx from arguments, so child process will not write xml file.
args.erase(args.begin() + i);
--i;
}
}
// Add --no-isolate in args to prevent child process from running in isolation mode again.
// As DeathTest will try to call execve(), this argument should always be added.
args.insert(args.begin() + 1, strdup("--no-isolate"));
return true;
}
@ -736,19 +894,34 @@ int main(int argc, char** argv) {
for (int i = 0; i < argc; ++i) {
arg_list.push_back(argv[i]);
}
arg_list.push_back(NULL);
bool exit_flag;
int return_result = 0;
if (PickOptions(arg_list, &exit_flag) == false) {
return_result = 1;
} else if (!exit_flag) {
argc = static_cast<int>(arg_list.size()) - 1;
testing::InitGoogleTest(&argc, arg_list.data());
return_result = RUN_ALL_TESTS();
IsolationTestOptions options;
if (PickOptions(arg_list, options) == false) {
return 1;
}
return return_result;
if (options.isolate == true) {
// Set global variables.
global_test_run_deadline_ms = options.test_deadline_ms;
global_test_run_warnline_ms = options.test_warnline_ms;
testing::GTEST_FLAG(color) = options.gtest_color.c_str();
testing::GTEST_FLAG(print_time) = options.gtest_print_time;
std::vector<TestCase> testcase_list;
argc = static_cast<int>(arg_list.size());
arg_list.push_back(NULL);
if (EnumerateTests(argc, arg_list.data(), testcase_list) == false) {
return 1;
}
RunTestInSeparateProc(argc, arg_list.data(), testcase_list, options.gtest_repeat,
options.job_count, options.gtest_output);
} else {
argc = static_cast<int>(arg_list.size());
arg_list.push_back(NULL);
testing::InitGoogleTest(&argc, arg_list.data());
return RUN_ALL_TESTS();
}
return 0;
}
//################################################################################
@ -774,3 +947,22 @@ TEST(bionic_selftest, test_signal_SEGV_terminated) {
char* p = reinterpret_cast<char*>(static_cast<intptr_t>(atoi("0")));
*p = 3;
}
class bionic_selftest_DeathTest : public BionicDeathTest {};
static void deathtest_helper_success() {
ASSERT_EQ(1, 1);
exit(0);
}
TEST_F(bionic_selftest_DeathTest, success) {
ASSERT_EXIT(deathtest_helper_success(), ::testing::ExitedWithCode(0), "");
}
static void deathtest_helper_fail() {
ASSERT_EQ(1, 0);
}
TEST_F(bionic_selftest_DeathTest, fail) {
ASSERT_EXIT(deathtest_helper_fail(), ::testing::ExitedWithCode(0), "");
}