Merge "libstdc++: Fix x86 thread-safe one-time-construction implementation."

This commit is contained in:
Elliott Hughes 2012-04-16 09:13:13 -07:00 committed by android code review
commit 418e647a83

View File

@ -10,46 +10,102 @@
#include <stddef.h>
#include <sys/atomics.h>
#include <endian.h>
#include <bionic_futex.h>
#include <bionic_atomic_inline.h>
extern "C" int __cxa_guard_acquire(int volatile * gv)
// ARM C++ ABI and Itanium/x86 C++ ABI has different definition for
// one time construction:
//
// ARM C++ ABI defines the LSB of guard variable should be tested
// by compiler-generated code before calling __cxa_guard_acquire et al.
//
// The Itanium/x86 C++ ABI defines the low-order _byte_ should be
// tested instead.
//
// Meanwhile, guard variable are 32bit aligned for ARM, and 64bit
// aligned for x86.
//
// Reference documentation:
//
// section 3.2.3 of ARM IHI 0041C (for ARM)
// section 3.3.2 of the Itanium C++ ABI specification v1.83 (for x86).
//
// There is no C++ ABI available for other ARCH. But the gcc source
// shows all other ARCH follow the definition of Itanium/x86 C++ ABI.
#if defined(__arm__)
// The ARM C++ ABI mandates that guard variable are
// 32-bit aligned, 32-bit values. And only its LSB is tested by
// the compiler-generated code before calling
// __cxa_guard_acquire.
//
typedef union {
int volatile state;
int32_t aligner;
} _guard_t;
const static int ready = 0x1;
const static int pending = 0x2;
const static int waiting = 0x6;
#else // GCC sources indicates all none-arm follow the same ABI
// The Itanium/x86 C++ ABI mandates that guard variables
// are 64-bit aligned, 64-bit values. Also, the least-significant
// byte is tested by the compiler-generated code before, we calling
// __cxa_guard_acquire. We can access it through the first
// 32-bit word in the union below.
//
typedef union {
int volatile state;
int64_t aligner;
} _guard_t;
const static int ready = letoh32(0x1);
const static int pending = letoh32(0x100);
const static int waiting = letoh32(0x10000);
#endif
extern "C" int __cxa_guard_acquire(_guard_t* gv)
{
// 0 -> 2, return 1
// 2 -> 6, wait and return 0
// 6 untouched, wait and return 0
// 1 untouched, return 0
// 0 -> pending, return 1
// pending -> waiting, wait and return 0
// waiting: untouched, wait and return 0
// ready: untouched, return 0
retry:
if (__atomic_cmpxchg(0, 0x2, gv) == 0) {
if (__atomic_cmpxchg(0, pending, &gv->state) == 0) {
ANDROID_MEMBAR_FULL();
return 1;
}
__atomic_cmpxchg(0x2, 0x6, gv); // Indicate there is a waiter
__futex_wait(gv, 0x6, NULL);
__atomic_cmpxchg(pending, waiting, &gv->state); // Indicate there is a waiter
__futex_wait(&gv->state, waiting, NULL);
if(*gv != 1) // __cxa_guard_abort was called, let every thread try since there is no return code for this condition
if (gv->state != ready) // __cxa_guard_abort was called, let every thread try since there is no return code for this condition
goto retry;
ANDROID_MEMBAR_FULL();
return 0;
}
extern "C" void __cxa_guard_release(int volatile * gv)
extern "C" void __cxa_guard_release(_guard_t* gv)
{
// 2 -> 1
// 6 -> 1, and wake
// pending -> ready
// waiting -> ready, and wake
ANDROID_MEMBAR_FULL();
if (__atomic_cmpxchg(0x2, 0x1, gv) == 0) {
if (__atomic_cmpxchg(pending, ready, &gv->state) == 0) {
return;
}
*gv = 0x1;
__futex_wake(gv, 0x7fffffff);
gv->state = ready;
__futex_wake(&gv->state, 0x7fffffff);
}
extern "C" void __cxa_guard_abort(int volatile * gv)
extern "C" void __cxa_guard_abort(_guard_t* gv)
{
ANDROID_MEMBAR_FULL();
*gv = 0;
__futex_wake(gv, 0x7fffffff);
gv->state= 0;
__futex_wake(&gv->state, 0x7fffffff);
}