Merge "Implement support for RFC 3484 (address selection/sorting) in bionic. (The Java changes required not to mess up the ordering from bionic will arrive in a later commit.) In particular, this will give us more correct behavior when on a 6to4 network, in that IPv4 will usually be preferred over 6to4."

This commit is contained in:
David Turner 2010-02-24 10:04:09 -08:00 committed by Android (Google) Code Review
commit 1f6f493963
2 changed files with 360 additions and 25 deletions

View File

@ -58,6 +58,12 @@ Differences between current and Android 2.1:
- fix sem_post() to wake up multiple threads when called rapidly in
succession.
- DNS: partial implementation of RFC3484 (rule 1, 2, 5, 6, 8, 10 and
modified rule 9), for better address selection/sorting.
In the process, removed code that was previously used for "sortlist"
in /etc/resolv.conf. (resolv.conf is already ignored, so the latter
is a no-op for actual functionality.)
-------------------------------------------------------------------------------
Differences between Android 2.1 and 2.0.1:

View File

@ -217,7 +217,6 @@ static int ip6_str2scopeid(char *, struct sockaddr_in6 *, u_int32_t *);
static struct addrinfo *getanswer(const querybuf *, int, const char *, int,
const struct addrinfo *);
static void aisort(struct addrinfo *s, res_state res);
static int _dns_getaddrinfo(void *, void *, va_list);
static void _sethtent(FILE **);
static void _endhtent(FILE **);
@ -942,7 +941,7 @@ get_port(const struct addrinfo *ai, const char *servname, int matchonly)
allownumeric = 1;
break;
case ANY:
#if 1 /* ANDROID-SPECIFIC CHANGE TO MATCH GLIBC */
#if 1 /* ANDROID-SPECIFIC CHANGE TO MATCH GLIBC */
allownumeric = 1;
#else
allownumeric = 0;
@ -1259,35 +1258,366 @@ getanswer(const querybuf *answer, int anslen, const char *qname, int qtype,
return NULL;
}
#define SORTEDADDR(p) (((struct sockaddr_in *)(void *)(p->ai_next->ai_addr))->sin_addr.s_addr)
#define SORTMATCH(p, s) ((SORTEDADDR(p) & (s).mask) == (s).addr.s_addr)
struct addrinfo_sort_elem {
struct addrinfo *ai;
int has_src_addr;
struct sockaddr_in6 src_addr; /* Large enough to hold IPv4 or IPv6. */
int original_order;
};
static void
aisort(struct addrinfo *s, res_state res)
/*ARGSUSED*/
static int
_get_scope(const struct sockaddr *addr)
{
struct addrinfo head, *t, *p;
int i;
if (addr->sa_family == AF_INET6) {
const struct sockaddr_in6 *addr6 = (const struct sockaddr_in6 *)addr;
if (IN6_IS_ADDR_MULTICAST(&addr6->sin6_addr)) {
return IPV6_ADDR_MC_SCOPE(&addr6->sin6_addr);
} else if (IN6_IS_ADDR_LOOPBACK(&addr6->sin6_addr) ||
IN6_IS_ADDR_LINKLOCAL(&addr6->sin6_addr)) {
/*
* RFC 4291 section 2.5.3 says loopback is to be treated as having
* link-local scope.
*/
return IPV6_ADDR_SCOPE_LINKLOCAL;
} else if (IN6_IS_ADDR_SITELOCAL(&addr6->sin6_addr)) {
return IPV6_ADDR_SCOPE_SITELOCAL;
} else {
return IPV6_ADDR_SCOPE_GLOBAL;
}
} else if (addr->sa_family == AF_INET) {
const struct sockaddr_in *addr4 = (const struct sockaddr_in *)addr;
unsigned long int na = ntohl(addr4->sin_addr.s_addr);
head.ai_next = NULL;
t = &head;
if (IN_LOOPBACK(na) || /* 127.0.0.0/8 */
(na & 0xffff0000) == 0xa9fe0000) { /* 169.254.0.0/16 */
return IPV6_ADDR_SCOPE_LINKLOCAL;
} else if ((na & 0xff000000) == 0x0a000000 || /* 10.0.0.0/8 */
(na & 0xfff00000) == 0xac100000 || /* 172.16.0.0/12 */
(na & 0xffff0000) == 0xc0a80000) { /* 192.168.0.0/16 */
return IPV6_ADDR_SCOPE_SITELOCAL;
} else {
return IPV6_ADDR_SCOPE_GLOBAL;
}
} else {
/*
* This should never happen.
* Return a scope with low priority as a last resort.
*/
return IPV6_ADDR_SCOPE_NODELOCAL;
}
}
for (i = 0; i < res->nsort; i++) {
p = s;
while (p->ai_next) {
if ((p->ai_next->ai_family != AF_INET)
|| SORTMATCH(p, res->sort_list[i])) {
t->ai_next = p->ai_next;
t = t->ai_next;
p->ai_next = p->ai_next->ai_next;
} else {
p = p->ai_next;
/* These macros are modelled after the ones in <netinet/in6.h>. */
/* RFC 4380, section 2.6 */
#define IN6_IS_ADDR_TEREDO(a) \
((*(const uint32_t *)(const void *)(&(a)->s6_addr[0]) == ntohl(0x20010000)))
/* RFC 3056, section 2. */
#define IN6_IS_ADDR_6TO4(a) \
(((a)->s6_addr[0] == 0x20) && ((a)->s6_addr[1] == 0x02))
/*
* Get the label for a given IPv4/IPv6 address.
* RFC 3484, section 2.1, plus Teredo added in with label 5.
*/
/*ARGSUSED*/
static int
_get_label(const struct sockaddr *addr)
{
if (addr->sa_family == AF_INET) {
return 4;
} else if (addr->sa_family == AF_INET6) {
const struct sockaddr_in6 *addr6 = (const struct sockaddr_in6 *)addr;
if (IN6_IS_ADDR_LOOPBACK(&addr6->sin6_addr)) {
return 0;
} else if (IN6_IS_ADDR_V4COMPAT(&addr6->sin6_addr)) {
return 3;
} else if (IN6_IS_ADDR_TEREDO(&addr6->sin6_addr)) {
return 5;
} else if (IN6_IS_ADDR_6TO4(&addr6->sin6_addr)) {
return 2;
} else {
return 1;
}
} else {
/*
* This should never happen.
* Return a semi-random label as a last resort.
*/
return 1;
}
}
/*
* Get the precedence for a given IPv4/IPv6 address.
* RFC 3484, section 2.1, plus Teredo added in with precedence 25.
*/
/*ARGSUSED*/
static int
_get_precedence(const struct sockaddr *addr)
{
if (addr->sa_family == AF_INET) {
return 10;
} else if (addr->sa_family == AF_INET6) {
const struct sockaddr_in6 *addr6 = (const struct sockaddr_in6 *)addr;
if (IN6_IS_ADDR_LOOPBACK(&addr6->sin6_addr)) {
return 50;
} else if (IN6_IS_ADDR_V4COMPAT(&addr6->sin6_addr)) {
return 20;
} else if (IN6_IS_ADDR_TEREDO(&addr6->sin6_addr)) {
return 25;
} else if (IN6_IS_ADDR_6TO4(&addr6->sin6_addr)) {
return 30;
} else {
return 40;
}
} else {
return 5;
}
}
/*
* Find number of matching initial bits between the two addresses a1 and a2.
*/
/*ARGSUSED*/
static int
_common_prefix_len(const struct in6_addr *a1, const struct in6_addr *a2)
{
const char *p1 = (const char *)a1;
const char *p2 = (const char *)a2;
unsigned i;
for (i = 0; i < sizeof(*a1); ++i) {
int x, j;
if (p1[i] == p2[i]) {
continue;
}
x = p1[i] ^ p2[i];
for (j = 0; j < CHAR_BIT; ++j) {
if (x & (1 << (CHAR_BIT - 1))) {
return i * CHAR_BIT + j;
}
x <<= 1;
}
}
return sizeof(*a1) * CHAR_BIT;
}
/*
* Compare two source/destination address pairs.
* RFC 3484, section 6.
*/
/*ARGSUSED*/
static int
_rfc3484_compare(const void *ptr1, const void* ptr2)
{
const struct addrinfo_sort_elem *a1 = (const struct addrinfo_sort_elem *)ptr1;
const struct addrinfo_sort_elem *a2 = (const struct addrinfo_sort_elem *)ptr2;
int scope_src1, scope_dst1, scope_match1;
int scope_src2, scope_dst2, scope_match2;
int label_src1, label_dst1, label_match1;
int label_src2, label_dst2, label_match2;
int precedence1, precedence2;
int prefixlen1, prefixlen2;
/* Rule 1: Avoid unusable destinations. */
if (a1->has_src_addr != a2->has_src_addr) {
return a2->has_src_addr - a1->has_src_addr;
}
/* Rule 2: Prefer matching scope. */
scope_src1 = _get_scope((const struct sockaddr *)&a1->src_addr);
scope_dst1 = _get_scope(a1->ai->ai_addr);
scope_match1 = (scope_src1 == scope_dst1);
scope_src2 = _get_scope((const struct sockaddr *)&a2->src_addr);
scope_dst2 = _get_scope(a2->ai->ai_addr);
scope_match2 = (scope_src2 == scope_dst2);
if (scope_match1 != scope_match2) {
return scope_match2 - scope_match1;
}
/*
* Rule 3: Avoid deprecated addresses.
* TODO(sesse): We don't currently have a good way of finding this.
*/
/*
* Rule 4: Prefer home addresses.
* TODO(sesse): We don't currently have a good way of finding this.
*/
/* Rule 5: Prefer matching label. */
label_src1 = _get_label((const struct sockaddr *)&a1->src_addr);
label_dst1 = _get_label(a1->ai->ai_addr);
label_match1 = (label_src1 == label_dst1);
label_src2 = _get_label((const struct sockaddr *)&a2->src_addr);
label_dst2 = _get_label(a2->ai->ai_addr);
label_match2 = (label_src2 == label_dst2);
if (label_match1 != label_match2) {
return label_match2 - label_match1;
}
/* Rule 6: Prefer higher precedence. */
precedence1 = _get_precedence(a1->ai->ai_addr);
precedence2 = _get_precedence(a2->ai->ai_addr);
if (precedence1 != precedence2) {
return precedence2 - precedence1;
}
/*
* Rule 7: Prefer native transport.
* TODO(sesse): We don't currently have a good way of finding this.
*/
/* Rule 8: Prefer smaller scope. */
if (scope_dst1 != scope_dst2) {
return scope_dst1 - scope_dst2;
}
/*
* Rule 9: Use longest matching prefix.
* We implement this for IPv6 only, as the rules in RFC 3484 don't seem
* to work very well directly applied to IPv4. (glibc uses information from
* the routing table for a custom IPv4 implementation here.)
*/
if (a1->has_src_addr && a1->ai->ai_addr->sa_family == AF_INET6 &&
a2->has_src_addr && a2->ai->ai_addr->sa_family == AF_INET6) {
const struct sockaddr_in6 *a1_src = (const struct sockaddr_in6 *)&a1->src_addr;
const struct sockaddr_in6 *a1_dst = (const struct sockaddr_in6 *)a1->ai->ai_addr;
const struct sockaddr_in6 *a2_src = (const struct sockaddr_in6 *)&a2->src_addr;
const struct sockaddr_in6 *a2_dst = (const struct sockaddr_in6 *)a2->ai->ai_addr;
prefixlen1 = _common_prefix_len(&a1_src->sin6_addr, &a1_dst->sin6_addr);
prefixlen1 = _common_prefix_len(&a2_src->sin6_addr, &a2_dst->sin6_addr);
if (prefixlen1 != prefixlen2) {
return prefixlen2 - prefixlen1;
}
}
/* add rest of list and reset s to the new list*/
t->ai_next = s->ai_next;
s->ai_next = head.ai_next;
/*
* Rule 10: Leave the order unchanged.
* We need this since qsort() is not necessarily stable.
*/
return a1->original_order - a2->original_order;
}
/*
* Find the source address that will be used if trying to connect to the given
* address. src_addr must be large enough to hold a struct sockaddr_in6.
*
* Returns 1 if a source address was found, 0 if the address is unreachable,
* and -1 if a fatal error occurred. If 0 or 1, the contents of src_addr are
* undefined.
*/
/*ARGSUSED*/
static int
_find_src_addr(const struct sockaddr *addr, struct sockaddr *src_addr)
{
int sock;
int ret;
socklen_t len;
switch (addr->sa_family) {
case AF_INET:
len = sizeof(struct sockaddr_in);
break;
case AF_INET6:
len = sizeof(struct sockaddr_in6);
break;
default:
/* No known usable source address for non-INET families. */
return 0;
}
sock = socket(addr->sa_family, SOCK_DGRAM, IPPROTO_UDP);
if (sock == -1) {
if (errno == EAFNOSUPPORT) {
return 0;
} else {
return -1;
}
}
do {
ret = connect(sock, addr, len);
} while (ret == -1 && errno == EINTR);
if (ret == -1) {
close(sock);
return 0;
}
if (getsockname(sock, src_addr, &len) == -1) {
close(sock);
return -1;
}
close(sock);
return 1;
}
/*
* Sort the linked list starting at sentinel->ai_next in RFC3484 order.
* Will leave the list unchanged if an error occurs.
*/
/*ARGSUSED*/
static void
_rfc3484_sort(struct addrinfo *list_sentinel)
{
struct addrinfo *cur;
int nelem = 0, i;
struct addrinfo_sort_elem *elems;
cur = list_sentinel->ai_next;
while (cur) {
++nelem;
cur = cur->ai_next;
}
elems = (struct addrinfo_sort_elem *)malloc(nelem * sizeof(struct addrinfo_sort_elem));
if (elems == NULL) {
goto error;
}
/*
* Convert the linked list to an array that also contains the candidate
* source address for each destination address.
*/
for (i = 0, cur = list_sentinel->ai_next; i < nelem; ++i, cur = cur->ai_next) {
int has_src_addr;
assert(cur != NULL);
elems[i].ai = cur;
elems[i].original_order = i;
has_src_addr = _find_src_addr(cur->ai_addr, (struct sockaddr *)&elems[i].src_addr);
if (has_src_addr == -1) {
goto error;
}
elems[i].has_src_addr = has_src_addr;
}
/* Sort the addresses, and rearrange the linked list so it matches the sorted order. */
qsort((void *)elems, nelem, sizeof(struct addrinfo_sort_elem), _rfc3484_compare);
list_sentinel->ai_next = elems[0].ai;
for (i = 0; i < nelem - 1; ++i) {
elems[i].ai->ai_next = elems[i + 1].ai;
}
elems[nelem - 1].ai->ai_next = NULL;
error:
free(elems);
}
/*ARGSUSED*/
@ -1401,8 +1731,7 @@ _dns_getaddrinfo(void *rv, void *cb_data, va_list ap)
}
}
if (res->nsort)
aisort(&sentinel, res);
_rfc3484_sort(&sentinel);
__res_put_state(res);