Merge "Refactor pthread_mutex to support 32-bit owner_tid on 64-bit devices."

This commit is contained in:
Yabin Cui 2015-04-02 20:27:40 +00:00 committed by Gerrit Code Review
commit 00d1101cc1
2 changed files with 146 additions and 157 deletions

View File

@ -44,14 +44,85 @@
#include "private/bionic_time_conversions.h"
#include "private/bionic_tls.h"
/* a mutex is implemented as a 32-bit integer holding the following fields
/* a mutex attribute holds the following fields
*
* bits: name description
* 0-3 type type of mutex
* 4 shared process-shared flag
*/
#define MUTEXATTR_TYPE_MASK 0x000f
#define MUTEXATTR_SHARED_MASK 0x0010
int pthread_mutexattr_init(pthread_mutexattr_t *attr)
{
*attr = PTHREAD_MUTEX_DEFAULT;
return 0;
}
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
{
*attr = -1;
return 0;
}
int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type_p)
{
int type = (*attr & MUTEXATTR_TYPE_MASK);
if (type < PTHREAD_MUTEX_NORMAL || type > PTHREAD_MUTEX_ERRORCHECK) {
return EINVAL;
}
*type_p = type;
return 0;
}
int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
{
if (type < PTHREAD_MUTEX_NORMAL || type > PTHREAD_MUTEX_ERRORCHECK ) {
return EINVAL;
}
*attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type;
return 0;
}
/* process-shared mutexes are not supported at the moment */
int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
{
switch (pshared) {
case PTHREAD_PROCESS_PRIVATE:
*attr &= ~MUTEXATTR_SHARED_MASK;
return 0;
case PTHREAD_PROCESS_SHARED:
/* our current implementation of pthread actually supports shared
* mutexes but won't cleanup if a process dies with the mutex held.
* Nevertheless, it's better than nothing. Shared mutexes are used
* by surfaceflinger and audioflinger.
*/
*attr |= MUTEXATTR_SHARED_MASK;
return 0;
}
return EINVAL;
}
int pthread_mutexattr_getpshared(const pthread_mutexattr_t* attr, int* pshared) {
*pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED : PTHREAD_PROCESS_PRIVATE;
return 0;
}
/* a mutex contains a state value and a owner_tid.
* The value is implemented as a 16-bit integer holding the following fields:
*
* bits: name description
* 31-16 tid owner thread's tid (recursive and errorcheck only)
* 15-14 type mutex type
* 13 shared process-shared flag
* 12-2 counter counter of recursive mutexes
* 1-0 state lock state (0, 1 or 2)
*
* The owner_tid is used only in recursive and errorcheck mutex to hold the mutex owner thread tid.
*/
/* Convenience macro, creates a mask of 'bits' bits that starts from
@ -68,6 +139,12 @@
/* And this one does the opposite, i.e. extract a field's value from a bit pattern */
#define FIELD_FROM_BITS(val,shift,bits) (((val) >> (shift)) & ((1 << (bits))-1))
/* Convenience macros.
*
* These are used to form or modify the bit pattern of a given mutex value
*/
/* Mutex state:
*
* 0 for unlocked
@ -135,102 +212,16 @@
#define MUTEX_TYPE_BITS_RECURSIVE MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_RECURSIVE)
#define MUTEX_TYPE_BITS_ERRORCHECK MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_ERRORCHECK)
/* Mutex owner field:
*
* This is only used for recursive and errorcheck mutexes. It holds the
* tid of the owning thread. We use 16 bits to represent tid here,
* so the highest tid is 65535. There is a test to check /proc/sys/kernel/pid_max
* to make sure it will not exceed our limit.
*/
#define MUTEX_OWNER_SHIFT 16
#define MUTEX_OWNER_LEN 16
#define MUTEX_OWNER_FROM_BITS(v) FIELD_FROM_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
#define MUTEX_OWNER_TO_BITS(v) FIELD_TO_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
/* Convenience macros.
*
* These are used to form or modify the bit pattern of a given mutex value
*/
/* a mutex attribute holds the following fields
*
* bits: name description
* 0-3 type type of mutex
* 4 shared process-shared flag
*/
#define MUTEXATTR_TYPE_MASK 0x000f
#define MUTEXATTR_SHARED_MASK 0x0010
int pthread_mutexattr_init(pthread_mutexattr_t *attr)
{
*attr = PTHREAD_MUTEX_DEFAULT;
return 0;
}
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
{
*attr = -1;
return 0;
}
int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type_p)
{
int type = (*attr & MUTEXATTR_TYPE_MASK);
if (type < PTHREAD_MUTEX_NORMAL || type > PTHREAD_MUTEX_ERRORCHECK) {
return EINVAL;
}
*type_p = type;
return 0;
}
int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
{
if (type < PTHREAD_MUTEX_NORMAL || type > PTHREAD_MUTEX_ERRORCHECK ) {
return EINVAL;
}
*attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type;
return 0;
}
/* process-shared mutexes are not supported at the moment */
int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
{
switch (pshared) {
case PTHREAD_PROCESS_PRIVATE:
*attr &= ~MUTEXATTR_SHARED_MASK;
return 0;
case PTHREAD_PROCESS_SHARED:
/* our current implementation of pthread actually supports shared
* mutexes but won't cleanup if a process dies with the mutex held.
* Nevertheless, it's better than nothing. Shared mutexes are used
* by surfaceflinger and audioflinger.
*/
*attr |= MUTEXATTR_SHARED_MASK;
return 0;
}
return EINVAL;
}
int pthread_mutexattr_getpshared(const pthread_mutexattr_t* attr, int* pshared) {
*pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED : PTHREAD_PROCESS_PRIVATE;
return 0;
}
struct pthread_mutex_internal_t {
atomic_int state;
_Atomic(uint16_t) state;
#if defined(__LP64__)
char __reserved[36];
uint16_t __pad;
atomic_int owner_tid;
char __reserved[32];
#else
_Atomic(uint16_t) owner_tid;
#endif
};
} __attribute__((aligned(4)));
static_assert(sizeof(pthread_mutex_t) == sizeof(pthread_mutex_internal_t),
"pthread_mutex_t should actually be pthread_mutex_internal_t in implementation.");
@ -254,35 +245,36 @@ int pthread_mutex_init(pthread_mutex_t* mutex_interface, const pthread_mutexattr
return 0;
}
int state = 0;
uint16_t state = 0;
if ((*attr & MUTEXATTR_SHARED_MASK) != 0) {
state |= MUTEX_SHARED_MASK;
}
switch (*attr & MUTEXATTR_TYPE_MASK) {
case PTHREAD_MUTEX_NORMAL:
state |= MUTEX_TYPE_BITS_NORMAL;
break;
state |= MUTEX_TYPE_BITS_NORMAL;
break;
case PTHREAD_MUTEX_RECURSIVE:
state |= MUTEX_TYPE_BITS_RECURSIVE;
break;
state |= MUTEX_TYPE_BITS_RECURSIVE;
break;
case PTHREAD_MUTEX_ERRORCHECK:
state |= MUTEX_TYPE_BITS_ERRORCHECK;
break;
state |= MUTEX_TYPE_BITS_ERRORCHECK;
break;
default:
return EINVAL;
}
atomic_init(&mutex->state, state);
atomic_init(&mutex->owner_tid, 0);
return 0;
}
static inline __always_inline int __pthread_normal_mutex_trylock(pthread_mutex_internal_t* mutex,
int shared) {
const int unlocked = shared | MUTEX_STATE_BITS_UNLOCKED;
const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
uint16_t shared) {
const uint16_t unlocked = shared | MUTEX_STATE_BITS_UNLOCKED;
const uint16_t locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
int old_state = unlocked;
uint16_t old_state = unlocked;
if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state,
locked_uncontended, memory_order_acquire, memory_order_relaxed))) {
return 0;
@ -303,7 +295,7 @@ static inline __always_inline int __pthread_normal_mutex_trylock(pthread_mutex_i
* the lock state field.
*/
static inline __always_inline int __pthread_normal_mutex_lock(pthread_mutex_internal_t* mutex,
int shared,
uint16_t shared,
const timespec* abs_timeout_or_null,
clockid_t clock) {
if (__predict_true(__pthread_normal_mutex_trylock(mutex, shared) == 0)) {
@ -312,8 +304,8 @@ static inline __always_inline int __pthread_normal_mutex_lock(pthread_mutex_inte
ScopedTrace trace("Contending for pthread mutex");
const int unlocked = shared | MUTEX_STATE_BITS_UNLOCKED;
const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
const uint16_t unlocked = shared | MUTEX_STATE_BITS_UNLOCKED;
const uint16_t locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
// We want to go to sleep until the mutex is available, which requires
// promoting it to locked_contended. We need to swap in the new state
@ -341,13 +333,13 @@ static inline __always_inline int __pthread_normal_mutex_lock(pthread_mutex_inte
}
/*
* Release a mutex of type NORMAL. The caller is responsible for determining
* Release a normal mutex. The caller is responsible for determining
* that we are in fact the owner of this lock.
*/
static inline __always_inline void __pthread_normal_mutex_unlock(pthread_mutex_internal_t* mutex,
int shared) {
const int unlocked = shared | MUTEX_STATE_BITS_UNLOCKED;
const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
uint16_t shared) {
const uint16_t unlocked = shared | MUTEX_STATE_BITS_UNLOCKED;
const uint16_t locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
// We use an atomic_exchange to release the lock. If locked_contended state
// is returned, some threads is waiting for the lock and we need to wake up
@ -385,7 +377,7 @@ static inline __always_inline void __pthread_normal_mutex_unlock(pthread_mutex_i
*
*/
static inline __always_inline int __recursive_increment(pthread_mutex_internal_t* mutex,
int old_state) {
uint16_t old_state) {
// Detect recursive lock overflow and return EAGAIN.
// This is safe because only the owner thread can modify the
// counter bits in the mutex value.
@ -393,22 +385,18 @@ static inline __always_inline int __recursive_increment(pthread_mutex_internal_t
return EAGAIN;
}
// We own the mutex, but other threads are able to change the lower bits
// (e.g. promoting it to "contended"), so we need to use an atomic exchange
// loop to update the counter. The counter will not overflow in the loop,
// as only the owner thread can change it.
// The mutex is still locked, so we don't need a release fence.
// Other threads are able to change the lower bits (e.g. promoting it to "contended"),
// but the mutex counter will not overflow. So we use atomic_fetch_add operation here.
// The mutex is still locked by current thread, so we don't need a release fence.
atomic_fetch_add_explicit(&mutex->state, MUTEX_COUNTER_BITS_ONE, memory_order_relaxed);
return 0;
}
static int __pthread_mutex_lock_with_timeout(pthread_mutex_internal_t* mutex,
const timespec* abs_timeout_or_null, clockid_t clock) {
int old_state, mtype, tid, shared;
old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
mtype = (old_state & MUTEX_TYPE_MASK);
shared = (old_state & MUTEX_SHARED_MASK);
uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
uint16_t mtype = (old_state & MUTEX_TYPE_MASK);
uint16_t shared = (old_state & MUTEX_SHARED_MASK);
// Handle common case first.
if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) ) {
@ -416,26 +404,26 @@ static int __pthread_mutex_lock_with_timeout(pthread_mutex_internal_t* mutex,
}
// Do we already own this recursive or error-check mutex?
tid = __get_thread()->tid;
if (tid == MUTEX_OWNER_FROM_BITS(old_state)) {
pid_t tid = __get_thread()->tid;
if (tid == atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed)) {
if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) {
return EDEADLK;
}
return __recursive_increment(mutex, old_state);
}
const int unlocked = mtype | shared | MUTEX_STATE_BITS_UNLOCKED;
const int locked_uncontended = mtype | shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
const int locked_contended = mtype | shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
const uint16_t unlocked = mtype | shared | MUTEX_STATE_BITS_UNLOCKED;
const uint16_t locked_uncontended = mtype | shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
const uint16_t locked_contended = mtype | shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
// First, if the mutex is unlocked, try to quickly acquire it.
// In the optimistic case where this works, set the state to locked_uncontended.
if (old_state == unlocked) {
int new_state = MUTEX_OWNER_TO_BITS(tid) | locked_uncontended;
// If exchanged successfully, an acquire fence is required to make
// all memory accesses made by other threads visible to the current CPU.
if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state,
new_state, memory_order_acquire, memory_order_relaxed))) {
locked_uncontended, memory_order_acquire, memory_order_relaxed))) {
atomic_store_explicit(&mutex->owner_tid, tid, memory_order_relaxed);
return 0;
}
}
@ -448,13 +436,13 @@ static int __pthread_mutex_lock_with_timeout(pthread_mutex_internal_t* mutex,
// is contention when we are in this loop. This ensures all waiters
// will be unlocked.
int new_state = MUTEX_OWNER_TO_BITS(tid) | locked_contended;
// If exchanged successfully, an acquire fence is required to make
// all memory accesses made by other threads visible to the current CPU.
if (__predict_true(atomic_compare_exchange_weak_explicit(&mutex->state,
&old_state, new_state,
&old_state, locked_contended,
memory_order_acquire,
memory_order_relaxed))) {
atomic_store_explicit(&mutex->owner_tid, tid, memory_order_relaxed);
return 0;
}
continue;
@ -491,9 +479,9 @@ static int __pthread_mutex_lock_with_timeout(pthread_mutex_internal_t* mutex,
int pthread_mutex_lock(pthread_mutex_t* mutex_interface) {
pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
int old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
int mtype = (old_state & MUTEX_TYPE_MASK);
int shared = (old_state & MUTEX_SHARED_MASK);
uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
uint16_t mtype = (old_state & MUTEX_TYPE_MASK);
uint16_t shared = (old_state & MUTEX_SHARED_MASK);
// Avoid slowing down fast path of normal mutex lock operation.
if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
if (__predict_true(__pthread_normal_mutex_trylock(mutex, shared) == 0)) {
@ -506,11 +494,9 @@ int pthread_mutex_lock(pthread_mutex_t* mutex_interface) {
int pthread_mutex_unlock(pthread_mutex_t* mutex_interface) {
pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
int old_state, mtype, tid, shared;
old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
mtype = (old_state & MUTEX_TYPE_MASK);
shared = (old_state & MUTEX_SHARED_MASK);
uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
uint16_t mtype = (old_state & MUTEX_TYPE_MASK);
uint16_t shared = (old_state & MUTEX_SHARED_MASK);
// Handle common case first.
if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
@ -519,9 +505,10 @@ int pthread_mutex_unlock(pthread_mutex_t* mutex_interface) {
}
// Do we already own this recursive or error-check mutex?
tid = __get_thread()->tid;
if ( tid != MUTEX_OWNER_FROM_BITS(old_state) )
pid_t tid = __get_thread()->tid;
if ( tid != atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed) ) {
return EPERM;
}
// If the counter is > 0, we can simply decrement it atomically.
// Since other threads can mutate the lower state bits (and only the
@ -538,7 +525,8 @@ int pthread_mutex_unlock(pthread_mutex_t* mutex_interface) {
// to awake.
// A release fence is required to make previous stores visible to next
// lock owner threads.
const int unlocked = mtype | shared | MUTEX_STATE_BITS_UNLOCKED;
atomic_store_explicit(&mutex->owner_tid, 0, memory_order_relaxed);
const uint16_t unlocked = mtype | shared | MUTEX_STATE_BITS_UNLOCKED;
old_state = atomic_exchange_explicit(&mutex->state, unlocked, memory_order_release);
if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(old_state)) {
__futex_wake_ex(&mutex->state, shared, 1);
@ -550,12 +538,12 @@ int pthread_mutex_unlock(pthread_mutex_t* mutex_interface) {
int pthread_mutex_trylock(pthread_mutex_t* mutex_interface) {
pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
int old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
int mtype = (old_state & MUTEX_TYPE_MASK);
int shared = (old_state & MUTEX_SHARED_MASK);
uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
uint16_t mtype = (old_state & MUTEX_TYPE_MASK);
uint16_t shared = (old_state & MUTEX_SHARED_MASK);
const int unlocked = mtype | shared | MUTEX_STATE_BITS_UNLOCKED;
const int locked_uncontended = mtype | shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
const uint16_t unlocked = mtype | shared | MUTEX_STATE_BITS_UNLOCKED;
const uint16_t locked_uncontended = mtype | shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
// Handle common case first.
if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
@ -564,7 +552,7 @@ int pthread_mutex_trylock(pthread_mutex_t* mutex_interface) {
// Do we already own this recursive or error-check mutex?
pid_t tid = __get_thread()->tid;
if (tid == MUTEX_OWNER_FROM_BITS(old_state)) {
if (tid == atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed)) {
if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) {
return EBUSY;
}
@ -577,10 +565,11 @@ int pthread_mutex_trylock(pthread_mutex_t* mutex_interface) {
// If exchanged successfully, an acquire fence is required to make
// all memory accesses made by other threads visible to the current CPU.
old_state = unlocked;
int new_state = MUTEX_OWNER_TO_BITS(tid) | locked_uncontended;
if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state, new_state,
if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state,
locked_uncontended,
memory_order_acquire,
memory_order_relaxed))) {
atomic_store_explicit(&mutex->owner_tid, tid, memory_order_relaxed);
return 0;
}
return EBUSY;
@ -617,8 +606,5 @@ int pthread_mutex_destroy(pthread_mutex_t* mutex_interface) {
if (error != 0) {
return error;
}
pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
atomic_store_explicit(&mutex->state, 0xdead10cc, memory_order_relaxed);
return 0;
}

View File

@ -1326,14 +1326,17 @@ TEST(pthread, pthread_mutex_RECURSIVE_wakeup) {
}
TEST(pthread, pthread_mutex_owner_tid_limit) {
#if defined(__BIONIC__) && !defined(__LP64__)
FILE* fp = fopen("/proc/sys/kernel/pid_max", "r");
ASSERT_TRUE(fp != NULL);
long pid_max;
ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max));
fclose(fp);
// Current pthread_mutex uses 16 bits to represent owner tid.
// Change the implementation if we need to support higher value than 65535.
// Bionic's pthread_mutex implementation on 32-bit devices uses 16 bits to represent owner tid.
ASSERT_LE(pid_max, 65536);
#else
GTEST_LOG_(INFO) << "This test does nothing as 32-bit tid is supported by pthread_mutex.\n";
#endif
}
class StrictAlignmentAllocator {