bionic/linker/linker_allocator.cpp

347 lines
9.6 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "linker_allocator.h"
#include "linker.h"
#include <algorithm>
#include <vector>
#include <stdlib.h>
#include <sys/mman.h>
#include <unistd.h>
#include "private/bionic_prctl.h"
//
// LinkerMemeoryAllocator is general purpose allocator
// designed to provide the same functionality as the malloc/free/realloc
// libc functions.
//
// On alloc:
// If size is >= 1k allocator proxies malloc call directly to mmap
// If size < 1k allocator uses SmallObjectAllocator for the size
// rounded up to the nearest power of two.
//
// On free:
//
// For a pointer allocated using proxy-to-mmap allocator unmaps
// the memory.
//
// For a pointer allocated using SmallObjectAllocator it adds
// the block to free_blocks_list_. If the number of free pages reaches 2,
// SmallObjectAllocator munmaps one of the pages keeping the other one
// in reserve.
static const char kSignature[4] = {'L', 'M', 'A', 1};
static const size_t kSmallObjectMaxSize = 1 << kSmallObjectMaxSizeLog2;
// This type is used for large allocations (with size >1k)
static const uint32_t kLargeObject = 111;
bool operator<(const small_object_page_record& one, const small_object_page_record& two) {
return one.page_addr < two.page_addr;
}
static inline uint16_t log2(size_t number) {
uint16_t result = 0;
number--;
while (number != 0) {
result++;
number >>= 1;
}
return result;
}
LinkerSmallObjectAllocator::LinkerSmallObjectAllocator()
: type_(0), name_(nullptr), block_size_(0), free_pages_cnt_(0), free_blocks_list_(nullptr) {}
void* LinkerSmallObjectAllocator::alloc() {
if (free_blocks_list_ == nullptr) {
alloc_page();
}
small_object_block_record* block_record = free_blocks_list_;
if (block_record->free_blocks_cnt > 1) {
small_object_block_record* next_free = reinterpret_cast<small_object_block_record*>(
reinterpret_cast<uint8_t*>(block_record) + block_size_);
next_free->next = block_record->next;
next_free->free_blocks_cnt = block_record->free_blocks_cnt - 1;
free_blocks_list_ = next_free;
} else {
free_blocks_list_ = block_record->next;
}
// bookkeeping...
auto page_record = find_page_record(block_record);
if (page_record->allocated_blocks_cnt == 0) {
free_pages_cnt_--;
}
page_record->free_blocks_cnt--;
page_record->allocated_blocks_cnt++;
memset(block_record, 0, block_size_);
return block_record;
}
void LinkerSmallObjectAllocator::free_page(linker_vector_t::iterator page_record) {
void* page_start = reinterpret_cast<void*>(page_record->page_addr);
void* page_end = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(page_start) + PAGE_SIZE);
while (free_blocks_list_ != nullptr &&
free_blocks_list_ > page_start &&
free_blocks_list_ < page_end) {
free_blocks_list_ = free_blocks_list_->next;
}
small_object_block_record* current = free_blocks_list_;
while (current != nullptr) {
while (current->next > page_start && current->next < page_end) {
current->next = current->next->next;
}
current = current->next;
}
munmap(page_start, PAGE_SIZE);
page_records_.erase(page_record);
free_pages_cnt_--;
}
void LinkerSmallObjectAllocator::free(void* ptr) {
auto page_record = find_page_record(ptr);
ssize_t offset = reinterpret_cast<uintptr_t>(ptr) - sizeof(page_info);
if (offset % block_size_ != 0) {
__libc_fatal("invalid pointer: %p (block_size=%zd)", ptr, block_size_);
}
memset(ptr, 0, block_size_);
small_object_block_record* block_record = reinterpret_cast<small_object_block_record*>(ptr);
block_record->next = free_blocks_list_;
block_record->free_blocks_cnt = 1;
free_blocks_list_ = block_record;
page_record->free_blocks_cnt++;
page_record->allocated_blocks_cnt--;
if (page_record->allocated_blocks_cnt == 0) {
if (free_pages_cnt_++ > 1) {
// if we already have a free page - unmap this one.
free_page(page_record);
}
}
}
void LinkerSmallObjectAllocator::init(uint32_t type, size_t block_size, const char* name) {
type_ = type;
block_size_ = block_size;
name_ = name;
}
linker_vector_t::iterator LinkerSmallObjectAllocator::find_page_record(void* ptr) {
void* addr = reinterpret_cast<void*>(PAGE_START(reinterpret_cast<uintptr_t>(ptr)));
small_object_page_record boundary;
boundary.page_addr = addr;
linker_vector_t::iterator it = std::lower_bound(
page_records_.begin(), page_records_.end(), boundary);
if (it == page_records_.end() || it->page_addr != addr) {
// not found...
__libc_fatal("page record for %p was not found (block_size=%zd)", ptr, block_size_);
}
return it;
}
void LinkerSmallObjectAllocator::create_page_record(void* page_addr, size_t free_blocks_cnt) {
small_object_page_record record;
record.page_addr = page_addr;
record.free_blocks_cnt = free_blocks_cnt;
record.allocated_blocks_cnt = 0;
linker_vector_t::iterator it = std::lower_bound(
page_records_.begin(), page_records_.end(), record);
page_records_.insert(it, record);
}
void LinkerSmallObjectAllocator::alloc_page() {
void* map_ptr = mmap(nullptr, PAGE_SIZE,
PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
if (map_ptr == MAP_FAILED) {
__libc_fatal("mmap failed");
}
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, map_ptr, PAGE_SIZE, name_);
memset(map_ptr, 0, PAGE_SIZE);
page_info* info = reinterpret_cast<page_info*>(map_ptr);
memcpy(info->signature, kSignature, sizeof(kSignature));
info->type = type_;
info->allocator_addr = this;
size_t free_blocks_cnt = (PAGE_SIZE - sizeof(page_info))/block_size_;
create_page_record(map_ptr, free_blocks_cnt);
small_object_block_record* first_block = reinterpret_cast<small_object_block_record*>(info + 1);
first_block->next = free_blocks_list_;
first_block->free_blocks_cnt = free_blocks_cnt;
free_blocks_list_ = first_block;
}
LinkerMemoryAllocator::LinkerMemoryAllocator() {
static const char* allocator_names[kSmallObjectAllocatorsCount] = {
"linker_alloc_16", // 2^4
"linker_alloc_32", // 2^5
"linker_alloc_64", // and so on...
"linker_alloc_128",
"linker_alloc_256",
"linker_alloc_512",
"linker_alloc_1024", // 2^10
};
for (size_t i = 0; i < kSmallObjectAllocatorsCount; ++i) {
uint32_t type = i + kSmallObjectMinSizeLog2;
allocators_[i].init(type, 1 << type, allocator_names[i]);
}
}
void* LinkerMemoryAllocator::alloc_mmap(size_t size) {
size_t allocated_size = PAGE_END(size + sizeof(page_info));
void* map_ptr = mmap(nullptr, allocated_size,
PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
if (map_ptr == MAP_FAILED) {
__libc_fatal("mmap failed");
}
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, map_ptr, allocated_size, "linker_alloc_lob");
memset(map_ptr, 0, allocated_size);
page_info* info = reinterpret_cast<page_info*>(map_ptr);
memcpy(info->signature, kSignature, sizeof(kSignature));
info->type = kLargeObject;
info->allocated_size = allocated_size;
return info + 1;
}
void* LinkerMemoryAllocator::alloc(size_t size) {
// treat alloc(0) as alloc(1)
if (size == 0) {
size = 1;
}
if (size > kSmallObjectMaxSize) {
return alloc_mmap(size);
}
uint16_t log2_size = log2(size);
if (log2_size < kSmallObjectMinSizeLog2) {
log2_size = kSmallObjectMinSizeLog2;
}
return get_small_object_allocator(log2_size)->alloc();
}
page_info* LinkerMemoryAllocator::get_page_info(void* ptr) {
page_info* info = reinterpret_cast<page_info*>(PAGE_START(reinterpret_cast<size_t>(ptr)));
if (memcmp(info->signature, kSignature, sizeof(kSignature)) != 0) {
__libc_fatal("invalid pointer %p (page signature mismatch)", ptr);
}
return info;
}
void* LinkerMemoryAllocator::realloc(void* ptr, size_t size) {
if (ptr == nullptr) {
return alloc(size);
}
if (size == 0) {
free(ptr);
return nullptr;
}
page_info* info = get_page_info(ptr);
size_t old_size = 0;
if (info->type == kLargeObject) {
old_size = info->allocated_size - sizeof(page_info);
} else {
LinkerSmallObjectAllocator* allocator = get_small_object_allocator(info->type);
if (allocator != info->allocator_addr) {
__libc_fatal("invalid pointer %p (page signature mismatch)", ptr);
}
old_size = allocator->get_block_size();
}
if (old_size < size) {
void *result = alloc(size);
memcpy(result, ptr, old_size);
free(ptr);
return result;
}
return ptr;
}
void LinkerMemoryAllocator::free(void* ptr) {
if (ptr == nullptr) {
return;
}
page_info* info = get_page_info(ptr);
if (info->type == kLargeObject) {
munmap(info, info->allocated_size);
} else {
LinkerSmallObjectAllocator* allocator = get_small_object_allocator(info->type);
if (allocator != info->allocator_addr) {
__libc_fatal("invalid pointer %p (invalid allocator address for the page)", ptr);
}
allocator->free(ptr);
}
}
LinkerSmallObjectAllocator* LinkerMemoryAllocator::get_small_object_allocator(uint32_t type) {
if (type < kSmallObjectMinSizeLog2 || type > kSmallObjectMaxSizeLog2) {
__libc_fatal("invalid type: %u", type);
}
return &allocators_[type - kSmallObjectMinSizeLog2];
}