2009-03-03 19:28:35 -08:00
|
|
|
/*
|
|
|
|
* Copyright (c) 1992, 1993
|
|
|
|
* The Regents of the University of California. All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* This product includes software developed by the University of
|
|
|
|
* California, Berkeley and its contributors.
|
|
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
|
|
* may be used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
Upgrade libm.
This brings us up to date with FreeBSD HEAD, fixes various bugs, unifies
the set of functions we support on ARM, MIPS, and x86, fixes "long double",
adds ISO C99 support, and adds basic unit tests.
It turns out that our "long double" functions have always been broken
for non-normal numbers. This patch fixes that by not using the upstream
implementations and just forwarding to the regular "double" implementation
instead (since "long double" on Android is just "double" anyway, which is
what BSD doesn't support).
All the tests pass on ARM, MIPS, and x86, plus glibc on x86-64.
Bug: 3169850
Bug: 8012787
Bug: https://code.google.com/p/android/issues/detail?id=6697
Change-Id: If0c343030959c24bfc50d4d21c9530052c581837
2013-01-30 19:06:37 -08:00
|
|
|
/* @(#)log.c 8.2 (Berkeley) 11/30/93 */
|
2009-03-03 19:28:35 -08:00
|
|
|
#include <sys/cdefs.h>
|
Upgrade libm.
This brings us up to date with FreeBSD HEAD, fixes various bugs, unifies
the set of functions we support on ARM, MIPS, and x86, fixes "long double",
adds ISO C99 support, and adds basic unit tests.
It turns out that our "long double" functions have always been broken
for non-normal numbers. This patch fixes that by not using the upstream
implementations and just forwarding to the regular "double" implementation
instead (since "long double" on Android is just "double" anyway, which is
what BSD doesn't support).
All the tests pass on ARM, MIPS, and x86, plus glibc on x86-64.
Bug: 3169850
Bug: 8012787
Bug: https://code.google.com/p/android/issues/detail?id=6697
Change-Id: If0c343030959c24bfc50d4d21c9530052c581837
2013-01-30 19:06:37 -08:00
|
|
|
__FBSDID("$FreeBSD$");
|
2009-03-03 19:28:35 -08:00
|
|
|
|
|
|
|
#include <math.h>
|
|
|
|
#include <errno.h>
|
|
|
|
|
|
|
|
#include "mathimpl.h"
|
|
|
|
|
|
|
|
/* Table-driven natural logarithm.
|
|
|
|
*
|
|
|
|
* This code was derived, with minor modifications, from:
|
|
|
|
* Peter Tang, "Table-Driven Implementation of the
|
|
|
|
* Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
|
|
|
|
* Math Software, vol 16. no 4, pp 378-400, Dec 1990).
|
|
|
|
*
|
|
|
|
* Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
|
|
|
|
* where F = j/128 for j an integer in [0, 128].
|
|
|
|
*
|
|
|
|
* log(2^m) = log2_hi*m + log2_tail*m
|
|
|
|
* since m is an integer, the dominant term is exact.
|
|
|
|
* m has at most 10 digits (for subnormal numbers),
|
|
|
|
* and log2_hi has 11 trailing zero bits.
|
|
|
|
*
|
|
|
|
* log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
|
|
|
|
* logF_hi[] + 512 is exact.
|
|
|
|
*
|
|
|
|
* log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
|
|
|
|
* the leading term is calculated to extra precision in two
|
|
|
|
* parts, the larger of which adds exactly to the dominant
|
|
|
|
* m and F terms.
|
|
|
|
* There are two cases:
|
|
|
|
* 1. when m, j are non-zero (m | j), use absolute
|
|
|
|
* precision for the leading term.
|
|
|
|
* 2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
|
|
|
|
* In this case, use a relative precision of 24 bits.
|
|
|
|
* (This is done differently in the original paper)
|
|
|
|
*
|
|
|
|
* Special cases:
|
|
|
|
* 0 return signalling -Inf
|
|
|
|
* neg return signalling NaN
|
|
|
|
* +Inf return +Inf
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define N 128
|
|
|
|
|
|
|
|
/* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
|
|
|
|
* Used for generation of extend precision logarithms.
|
|
|
|
* The constant 35184372088832 is 2^45, so the divide is exact.
|
|
|
|
* It ensures correct reading of logF_head, even for inaccurate
|
|
|
|
* decimal-to-binary conversion routines. (Everybody gets the
|
|
|
|
* right answer for integers less than 2^53.)
|
|
|
|
* Values for log(F) were generated using error < 10^-57 absolute
|
|
|
|
* with the bc -l package.
|
|
|
|
*/
|
|
|
|
static double A1 = .08333333333333178827;
|
|
|
|
static double A2 = .01250000000377174923;
|
|
|
|
static double A3 = .002232139987919447809;
|
|
|
|
static double A4 = .0004348877777076145742;
|
|
|
|
|
|
|
|
static double logF_head[N+1] = {
|
|
|
|
0.,
|
|
|
|
.007782140442060381246,
|
|
|
|
.015504186535963526694,
|
|
|
|
.023167059281547608406,
|
|
|
|
.030771658666765233647,
|
|
|
|
.038318864302141264488,
|
|
|
|
.045809536031242714670,
|
|
|
|
.053244514518837604555,
|
|
|
|
.060624621816486978786,
|
|
|
|
.067950661908525944454,
|
|
|
|
.075223421237524235039,
|
|
|
|
.082443669210988446138,
|
|
|
|
.089612158689760690322,
|
|
|
|
.096729626458454731618,
|
|
|
|
.103796793681567578460,
|
|
|
|
.110814366340264314203,
|
|
|
|
.117783035656430001836,
|
|
|
|
.124703478501032805070,
|
|
|
|
.131576357788617315236,
|
|
|
|
.138402322859292326029,
|
|
|
|
.145182009844575077295,
|
|
|
|
.151916042025732167530,
|
|
|
|
.158605030176659056451,
|
|
|
|
.165249572895390883786,
|
|
|
|
.171850256926518341060,
|
|
|
|
.178407657472689606947,
|
|
|
|
.184922338493834104156,
|
|
|
|
.191394852999565046047,
|
|
|
|
.197825743329758552135,
|
|
|
|
.204215541428766300668,
|
|
|
|
.210564769107350002741,
|
|
|
|
.216873938300523150246,
|
|
|
|
.223143551314024080056,
|
|
|
|
.229374101064877322642,
|
|
|
|
.235566071312860003672,
|
|
|
|
.241719936886966024758,
|
|
|
|
.247836163904594286577,
|
|
|
|
.253915209980732470285,
|
|
|
|
.259957524436686071567,
|
|
|
|
.265963548496984003577,
|
|
|
|
.271933715484010463114,
|
|
|
|
.277868451003087102435,
|
|
|
|
.283768173130738432519,
|
|
|
|
.289633292582948342896,
|
|
|
|
.295464212893421063199,
|
|
|
|
.301261330578199704177,
|
|
|
|
.307025035294827830512,
|
|
|
|
.312755710004239517729,
|
|
|
|
.318453731118097493890,
|
|
|
|
.324119468654316733591,
|
|
|
|
.329753286372579168528,
|
|
|
|
.335355541920762334484,
|
|
|
|
.340926586970454081892,
|
|
|
|
.346466767346100823488,
|
|
|
|
.351976423156884266063,
|
|
|
|
.357455888922231679316,
|
|
|
|
.362905493689140712376,
|
|
|
|
.368325561158599157352,
|
|
|
|
.373716409793814818840,
|
|
|
|
.379078352934811846353,
|
|
|
|
.384411698910298582632,
|
|
|
|
.389716751140440464951,
|
|
|
|
.394993808240542421117,
|
|
|
|
.400243164127459749579,
|
|
|
|
.405465108107819105498,
|
|
|
|
.410659924985338875558,
|
|
|
|
.415827895143593195825,
|
|
|
|
.420969294644237379543,
|
|
|
|
.426084395310681429691,
|
|
|
|
.431173464818130014464,
|
|
|
|
.436236766774527495726,
|
|
|
|
.441274560805140936281,
|
|
|
|
.446287102628048160113,
|
|
|
|
.451274644139630254358,
|
|
|
|
.456237433481874177232,
|
|
|
|
.461175715122408291790,
|
|
|
|
.466089729924533457960,
|
|
|
|
.470979715219073113985,
|
|
|
|
.475845904869856894947,
|
|
|
|
.480688529345570714212,
|
|
|
|
.485507815781602403149,
|
|
|
|
.490303988045525329653,
|
|
|
|
.495077266798034543171,
|
|
|
|
.499827869556611403822,
|
|
|
|
.504556010751912253908,
|
|
|
|
.509261901790523552335,
|
|
|
|
.513945751101346104405,
|
|
|
|
.518607764208354637958,
|
|
|
|
.523248143765158602036,
|
|
|
|
.527867089620485785417,
|
|
|
|
.532464798869114019908,
|
|
|
|
.537041465897345915436,
|
|
|
|
.541597282432121573947,
|
|
|
|
.546132437597407260909,
|
|
|
|
.550647117952394182793,
|
|
|
|
.555141507540611200965,
|
|
|
|
.559615787935399566777,
|
|
|
|
.564070138285387656651,
|
|
|
|
.568504735352689749561,
|
|
|
|
.572919753562018740922,
|
|
|
|
.577315365035246941260,
|
|
|
|
.581691739635061821900,
|
|
|
|
.586049045003164792433,
|
|
|
|
.590387446602107957005,
|
|
|
|
.594707107746216934174,
|
|
|
|
.599008189645246602594,
|
|
|
|
.603290851438941899687,
|
|
|
|
.607555250224322662688,
|
|
|
|
.611801541106615331955,
|
|
|
|
.616029877215623855590,
|
|
|
|
.620240409751204424537,
|
|
|
|
.624433288012369303032,
|
|
|
|
.628608659422752680256,
|
|
|
|
.632766669570628437213,
|
|
|
|
.636907462236194987781,
|
|
|
|
.641031179420679109171,
|
|
|
|
.645137961373620782978,
|
|
|
|
.649227946625615004450,
|
|
|
|
.653301272011958644725,
|
|
|
|
.657358072709030238911,
|
|
|
|
.661398482245203922502,
|
|
|
|
.665422632544505177065,
|
|
|
|
.669430653942981734871,
|
|
|
|
.673422675212350441142,
|
|
|
|
.677398823590920073911,
|
|
|
|
.681359224807238206267,
|
|
|
|
.685304003098281100392,
|
|
|
|
.689233281238557538017,
|
|
|
|
.693147180560117703862
|
|
|
|
};
|
|
|
|
|
|
|
|
static double logF_tail[N+1] = {
|
|
|
|
0.,
|
|
|
|
-.00000000000000543229938420049,
|
|
|
|
.00000000000000172745674997061,
|
|
|
|
-.00000000000001323017818229233,
|
|
|
|
-.00000000000001154527628289872,
|
|
|
|
-.00000000000000466529469958300,
|
|
|
|
.00000000000005148849572685810,
|
|
|
|
-.00000000000002532168943117445,
|
|
|
|
-.00000000000005213620639136504,
|
|
|
|
-.00000000000001819506003016881,
|
|
|
|
.00000000000006329065958724544,
|
|
|
|
.00000000000008614512936087814,
|
|
|
|
-.00000000000007355770219435028,
|
|
|
|
.00000000000009638067658552277,
|
|
|
|
.00000000000007598636597194141,
|
|
|
|
.00000000000002579999128306990,
|
|
|
|
-.00000000000004654729747598444,
|
|
|
|
-.00000000000007556920687451336,
|
|
|
|
.00000000000010195735223708472,
|
|
|
|
-.00000000000017319034406422306,
|
|
|
|
-.00000000000007718001336828098,
|
|
|
|
.00000000000010980754099855238,
|
|
|
|
-.00000000000002047235780046195,
|
|
|
|
-.00000000000008372091099235912,
|
|
|
|
.00000000000014088127937111135,
|
|
|
|
.00000000000012869017157588257,
|
|
|
|
.00000000000017788850778198106,
|
|
|
|
.00000000000006440856150696891,
|
|
|
|
.00000000000016132822667240822,
|
|
|
|
-.00000000000007540916511956188,
|
|
|
|
-.00000000000000036507188831790,
|
|
|
|
.00000000000009120937249914984,
|
|
|
|
.00000000000018567570959796010,
|
|
|
|
-.00000000000003149265065191483,
|
|
|
|
-.00000000000009309459495196889,
|
|
|
|
.00000000000017914338601329117,
|
|
|
|
-.00000000000001302979717330866,
|
|
|
|
.00000000000023097385217586939,
|
|
|
|
.00000000000023999540484211737,
|
|
|
|
.00000000000015393776174455408,
|
|
|
|
-.00000000000036870428315837678,
|
|
|
|
.00000000000036920375082080089,
|
|
|
|
-.00000000000009383417223663699,
|
|
|
|
.00000000000009433398189512690,
|
|
|
|
.00000000000041481318704258568,
|
|
|
|
-.00000000000003792316480209314,
|
|
|
|
.00000000000008403156304792424,
|
|
|
|
-.00000000000034262934348285429,
|
|
|
|
.00000000000043712191957429145,
|
|
|
|
-.00000000000010475750058776541,
|
|
|
|
-.00000000000011118671389559323,
|
|
|
|
.00000000000037549577257259853,
|
|
|
|
.00000000000013912841212197565,
|
|
|
|
.00000000000010775743037572640,
|
|
|
|
.00000000000029391859187648000,
|
|
|
|
-.00000000000042790509060060774,
|
|
|
|
.00000000000022774076114039555,
|
|
|
|
.00000000000010849569622967912,
|
|
|
|
-.00000000000023073801945705758,
|
|
|
|
.00000000000015761203773969435,
|
|
|
|
.00000000000003345710269544082,
|
|
|
|
-.00000000000041525158063436123,
|
|
|
|
.00000000000032655698896907146,
|
|
|
|
-.00000000000044704265010452446,
|
|
|
|
.00000000000034527647952039772,
|
|
|
|
-.00000000000007048962392109746,
|
|
|
|
.00000000000011776978751369214,
|
|
|
|
-.00000000000010774341461609578,
|
|
|
|
.00000000000021863343293215910,
|
|
|
|
.00000000000024132639491333131,
|
|
|
|
.00000000000039057462209830700,
|
|
|
|
-.00000000000026570679203560751,
|
|
|
|
.00000000000037135141919592021,
|
|
|
|
-.00000000000017166921336082431,
|
|
|
|
-.00000000000028658285157914353,
|
|
|
|
-.00000000000023812542263446809,
|
|
|
|
.00000000000006576659768580062,
|
|
|
|
-.00000000000028210143846181267,
|
|
|
|
.00000000000010701931762114254,
|
|
|
|
.00000000000018119346366441110,
|
|
|
|
.00000000000009840465278232627,
|
|
|
|
-.00000000000033149150282752542,
|
|
|
|
-.00000000000018302857356041668,
|
|
|
|
-.00000000000016207400156744949,
|
|
|
|
.00000000000048303314949553201,
|
|
|
|
-.00000000000071560553172382115,
|
|
|
|
.00000000000088821239518571855,
|
|
|
|
-.00000000000030900580513238244,
|
|
|
|
-.00000000000061076551972851496,
|
|
|
|
.00000000000035659969663347830,
|
|
|
|
.00000000000035782396591276383,
|
|
|
|
-.00000000000046226087001544578,
|
|
|
|
.00000000000062279762917225156,
|
|
|
|
.00000000000072838947272065741,
|
|
|
|
.00000000000026809646615211673,
|
|
|
|
-.00000000000010960825046059278,
|
|
|
|
.00000000000002311949383800537,
|
|
|
|
-.00000000000058469058005299247,
|
|
|
|
-.00000000000002103748251144494,
|
|
|
|
-.00000000000023323182945587408,
|
|
|
|
-.00000000000042333694288141916,
|
|
|
|
-.00000000000043933937969737844,
|
|
|
|
.00000000000041341647073835565,
|
|
|
|
.00000000000006841763641591466,
|
|
|
|
.00000000000047585534004430641,
|
|
|
|
.00000000000083679678674757695,
|
|
|
|
-.00000000000085763734646658640,
|
|
|
|
.00000000000021913281229340092,
|
|
|
|
-.00000000000062242842536431148,
|
|
|
|
-.00000000000010983594325438430,
|
|
|
|
.00000000000065310431377633651,
|
|
|
|
-.00000000000047580199021710769,
|
|
|
|
-.00000000000037854251265457040,
|
|
|
|
.00000000000040939233218678664,
|
|
|
|
.00000000000087424383914858291,
|
|
|
|
.00000000000025218188456842882,
|
|
|
|
-.00000000000003608131360422557,
|
|
|
|
-.00000000000050518555924280902,
|
|
|
|
.00000000000078699403323355317,
|
|
|
|
-.00000000000067020876961949060,
|
|
|
|
.00000000000016108575753932458,
|
|
|
|
.00000000000058527188436251509,
|
|
|
|
-.00000000000035246757297904791,
|
|
|
|
-.00000000000018372084495629058,
|
|
|
|
.00000000000088606689813494916,
|
|
|
|
.00000000000066486268071468700,
|
|
|
|
.00000000000063831615170646519,
|
|
|
|
.00000000000025144230728376072,
|
|
|
|
-.00000000000017239444525614834
|
|
|
|
};
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
double
|
|
|
|
#ifdef _ANSI_SOURCE
|
|
|
|
log(double x)
|
|
|
|
#else
|
|
|
|
log(x) double x;
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
int m, j;
|
|
|
|
double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
|
|
|
|
volatile double u1;
|
|
|
|
|
|
|
|
/* Catch special cases */
|
|
|
|
if (x <= 0)
|
|
|
|
if (x == zero) /* log(0) = -Inf */
|
|
|
|
return (-one/zero);
|
|
|
|
else /* log(neg) = NaN */
|
|
|
|
return (zero/zero);
|
|
|
|
else if (!finite(x))
|
|
|
|
return (x+x); /* x = NaN, Inf */
|
|
|
|
|
|
|
|
/* Argument reduction: 1 <= g < 2; x/2^m = g; */
|
|
|
|
/* y = F*(1 + f/F) for |f| <= 2^-8 */
|
|
|
|
|
|
|
|
m = logb(x);
|
|
|
|
g = ldexp(x, -m);
|
|
|
|
if (m == -1022) {
|
|
|
|
j = logb(g), m += j;
|
|
|
|
g = ldexp(g, -j);
|
|
|
|
}
|
|
|
|
j = N*(g-1) + .5;
|
|
|
|
F = (1.0/N) * j + 1; /* F*128 is an integer in [128, 512] */
|
|
|
|
f = g - F;
|
|
|
|
|
|
|
|
/* Approximate expansion for log(1+f/F) ~= u + q */
|
|
|
|
g = 1/(2*F+f);
|
|
|
|
u = 2*f*g;
|
|
|
|
v = u*u;
|
|
|
|
q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
|
|
|
|
|
|
|
|
/* case 1: u1 = u rounded to 2^-43 absolute. Since u < 2^-8,
|
|
|
|
* u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
|
|
|
|
* It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
|
|
|
|
*/
|
|
|
|
if (m | j)
|
|
|
|
u1 = u + 513, u1 -= 513;
|
|
|
|
|
|
|
|
/* case 2: |1-x| < 1/256. The m- and j- dependent terms are zero;
|
|
|
|
* u1 = u to 24 bits.
|
|
|
|
*/
|
|
|
|
else
|
|
|
|
u1 = u, TRUNC(u1);
|
|
|
|
u2 = (2.0*(f - F*u1) - u1*f) * g;
|
|
|
|
/* u1 + u2 = 2f/(2F+f) to extra precision. */
|
|
|
|
|
|
|
|
/* log(x) = log(2^m*F*(1+f/F)) = */
|
|
|
|
/* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q); */
|
|
|
|
/* (exact) + (tiny) */
|
|
|
|
|
|
|
|
u1 += m*logF_head[N] + logF_head[j]; /* exact */
|
|
|
|
u2 = (u2 + logF_tail[j]) + q; /* tiny */
|
|
|
|
u2 += logF_tail[N]*m;
|
|
|
|
return (u1 + u2);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Extra precision variant, returning struct {double a, b;};
|
|
|
|
* log(x) = a+b to 63 bits, with a rounded to 26 bits.
|
|
|
|
*/
|
|
|
|
struct Double
|
|
|
|
#ifdef _ANSI_SOURCE
|
|
|
|
__log__D(double x)
|
|
|
|
#else
|
|
|
|
__log__D(x) double x;
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
int m, j;
|
|
|
|
double F, f, g, q, u, v, u2;
|
|
|
|
volatile double u1;
|
|
|
|
struct Double r;
|
|
|
|
|
|
|
|
/* Argument reduction: 1 <= g < 2; x/2^m = g; */
|
|
|
|
/* y = F*(1 + f/F) for |f| <= 2^-8 */
|
|
|
|
|
|
|
|
m = logb(x);
|
|
|
|
g = ldexp(x, -m);
|
|
|
|
if (m == -1022) {
|
|
|
|
j = logb(g), m += j;
|
|
|
|
g = ldexp(g, -j);
|
|
|
|
}
|
|
|
|
j = N*(g-1) + .5;
|
|
|
|
F = (1.0/N) * j + 1;
|
|
|
|
f = g - F;
|
|
|
|
|
|
|
|
g = 1/(2*F+f);
|
|
|
|
u = 2*f*g;
|
|
|
|
v = u*u;
|
|
|
|
q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
|
|
|
|
if (m | j)
|
|
|
|
u1 = u + 513, u1 -= 513;
|
|
|
|
else
|
|
|
|
u1 = u, TRUNC(u1);
|
|
|
|
u2 = (2.0*(f - F*u1) - u1*f) * g;
|
|
|
|
|
|
|
|
u1 += m*logF_head[N] + logF_head[j];
|
|
|
|
|
|
|
|
u2 += logF_tail[j]; u2 += q;
|
|
|
|
u2 += logF_tail[N]*m;
|
|
|
|
r.a = u1 + u2; /* Only difference is here */
|
|
|
|
TRUNC(r.a);
|
|
|
|
r.b = (u1 - r.a) + u2;
|
|
|
|
return (r);
|
|
|
|
}
|