bionic/tests/math_test.cpp

1302 lines
31 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define _DECLARE_C99_LDBL_MATH 1
// This include (and the associated definition of __test_capture_signbit)
// must be placed before any files that include <cmath> (gtest.h in this case).
//
// <math.h> is required to define generic macros signbit, isfinite and
// several other such functions.
//
// <cmath> is required to undef declarations of these macros in the global
// namespace and make equivalent functions available in namespace std. Our
// stlport implementation does this only for signbit, isfinite, isinf and
// isnan.
//
// NOTE: We don't write our test using std::signbit because we want to be
// sure that we're testing the bionic version of signbit. The C++ libraries
// are free to reimplement signbit or delegate to compiler builtins if they
// please.
#include <math.h>
namespace {
template<typename T> inline int test_capture_signbit(const T in) {
return signbit(in);
}
template<typename T> inline int test_capture_isfinite(const T in) {
return isfinite(in);
}
template<typename T> inline int test_capture_isnan(const T in) {
return isnan(in);
}
template<typename T> inline int test_capture_isinf(const T in) {
return isinf(in);
}
}
#include <gtest/gtest.h>
#include <fenv.h>
#include <float.h>
#include <limits.h>
#include <stdint.h>
float float_subnormal() {
union {
float f;
uint32_t i;
} u;
u.i = 0x007fffff;
return u.f;
}
double double_subnormal() {
union {
double d;
uint64_t i;
} u;
u.i = 0x000fffffffffffffLL;
return u.d;
}
long double ldouble_subnormal() {
union {
long double e;
unsigned char c[sizeof(long double)];
} u;
// Subnormals must have a zero exponent and non zero significand.
// On all supported representation the 17 bit (counting from either sides)
// is part of the significand so it should be enough to set that.
// It also applies for the case sizeof(double) = sizeof(long double)
for (unsigned int i = 0; i < sizeof(long double); i++) {
u.c[i] = 0x00;
}
u.c[sizeof(long double) - 3] = 0x80;
u.c[2] = 0x80;
return u.e;
}
TEST(math, fpclassify) {
ASSERT_EQ(FP_INFINITE, fpclassify(INFINITY));
ASSERT_EQ(FP_INFINITE, fpclassify(HUGE_VALF));
ASSERT_EQ(FP_INFINITE, fpclassify(HUGE_VAL));
ASSERT_EQ(FP_INFINITE, fpclassify(HUGE_VALL));
ASSERT_EQ(FP_NAN, fpclassify(nanf("")));
ASSERT_EQ(FP_NAN, fpclassify(nan("")));
ASSERT_EQ(FP_NAN, fpclassify(nanl("")));
ASSERT_EQ(FP_NORMAL, fpclassify(1.0f));
ASSERT_EQ(FP_NORMAL, fpclassify(1.0));
ASSERT_EQ(FP_NORMAL, fpclassify(1.0L));
ASSERT_EQ(FP_SUBNORMAL, fpclassify(float_subnormal()));
ASSERT_EQ(FP_SUBNORMAL, fpclassify(double_subnormal()));
ASSERT_EQ(FP_SUBNORMAL, fpclassify(ldouble_subnormal()));
ASSERT_EQ(FP_ZERO, fpclassify(0.0f));
ASSERT_EQ(FP_ZERO, fpclassify(0.0));
ASSERT_EQ(FP_ZERO, fpclassify(0.0L));
}
TEST(math, isfinite) {
ASSERT_TRUE(test_capture_isfinite(123.0f));
ASSERT_TRUE(test_capture_isfinite(123.0));
ASSERT_TRUE(test_capture_isfinite(123.0L));
ASSERT_FALSE(test_capture_isfinite(HUGE_VALF));
ASSERT_FALSE(test_capture_isfinite(HUGE_VAL));
ASSERT_FALSE(test_capture_isfinite(HUGE_VALL));
}
TEST(math, isinf) {
ASSERT_FALSE(test_capture_isinf(123.0f));
ASSERT_FALSE(test_capture_isinf(123.0));
ASSERT_FALSE(test_capture_isinf(123.0L));
ASSERT_TRUE(test_capture_isinf(HUGE_VALF));
ASSERT_TRUE(test_capture_isinf(HUGE_VAL));
ASSERT_TRUE(test_capture_isinf(HUGE_VALL));
}
TEST(math, isnan) {
ASSERT_FALSE(test_capture_isnan(123.0f));
ASSERT_FALSE(test_capture_isnan(123.0));
ASSERT_FALSE(test_capture_isnan(123.0L));
ASSERT_TRUE(test_capture_isnan(nanf("")));
ASSERT_TRUE(test_capture_isnan(nan("")));
ASSERT_TRUE(test_capture_isnan(nanl("")));
}
TEST(math, isnormal) {
ASSERT_TRUE(isnormal(123.0f));
ASSERT_TRUE(isnormal(123.0));
ASSERT_TRUE(isnormal(123.0L));
ASSERT_FALSE(isnormal(float_subnormal()));
ASSERT_FALSE(isnormal(double_subnormal()));
ASSERT_FALSE(isnormal(ldouble_subnormal()));
}
// TODO: isgreater, isgreaterequals, isless, islessequal, islessgreater, isunordered
TEST(math, signbit) {
ASSERT_EQ(0, test_capture_signbit(0.0f));
ASSERT_EQ(0, test_capture_signbit(0.0));
ASSERT_EQ(0, test_capture_signbit(0.0L));
ASSERT_EQ(0, test_capture_signbit(1.0f));
ASSERT_EQ(0, test_capture_signbit(1.0));
ASSERT_EQ(0, test_capture_signbit(1.0L));
ASSERT_NE(0, test_capture_signbit(-1.0f));
ASSERT_NE(0, test_capture_signbit(-1.0));
ASSERT_NE(0, test_capture_signbit(-1.0L));
}
TEST(math, __fpclassifyd) {
#if defined(__BIONIC__)
ASSERT_EQ(FP_INFINITE, __fpclassifyd(HUGE_VAL));
ASSERT_EQ(FP_NAN, __fpclassifyd(nan("")));
ASSERT_EQ(FP_NORMAL, __fpclassifyd(1.0));
ASSERT_EQ(FP_SUBNORMAL, __fpclassifyd(double_subnormal()));
ASSERT_EQ(FP_ZERO, __fpclassifyd(0.0));
#else // __BIONIC__
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif // __BIONIC__
}
TEST(math, __fpclassifyf) {
#if defined(__BIONIC__)
ASSERT_EQ(FP_INFINITE, __fpclassifyf(HUGE_VALF));
ASSERT_EQ(FP_NAN, __fpclassifyf(nanf("")));
ASSERT_EQ(FP_NORMAL, __fpclassifyf(1.0f));
ASSERT_EQ(FP_SUBNORMAL, __fpclassifyf(float_subnormal()));
ASSERT_EQ(FP_ZERO, __fpclassifyf(0.0f));
#else // __BIONIC__
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif // __BIONIC__
}
TEST(math, __fpclassifyl) {
#if defined(__BIONIC__)
EXPECT_EQ(FP_INFINITE, __fpclassifyl(HUGE_VALL));
EXPECT_EQ(FP_NAN, __fpclassifyl(nanl("")));
EXPECT_EQ(FP_NORMAL, __fpclassifyl(1.0L));
EXPECT_EQ(FP_SUBNORMAL, __fpclassifyl(ldouble_subnormal()));
EXPECT_EQ(FP_ZERO, __fpclassifyl(0.0L));
#else // __BIONIC__
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif // __BIONIC__
}
TEST(math, finitef) {
ASSERT_TRUE(finitef(123.0f));
ASSERT_FALSE(finitef(HUGE_VALF));
}
TEST(math, __isfinite) {
#if defined(__BIONIC__)
ASSERT_TRUE(__isfinite(123.0));
ASSERT_FALSE(__isfinite(HUGE_VAL));
#else // __BIONIC__
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif // __BIONIC__
}
TEST(math, __isfinitef) {
#if defined(__BIONIC__)
ASSERT_TRUE(__isfinitef(123.0f));
ASSERT_FALSE(__isfinitef(HUGE_VALF));
#else // __BIONIC__
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif // __BIONIC__
}
TEST(math, __isfinitel) {
#if defined(__BIONIC__)
ASSERT_TRUE(__isfinitel(123.0L));
ASSERT_FALSE(__isfinitel(HUGE_VALL));
#else // __BIONIC__
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif // __BIONIC__
}
TEST(math, finite) {
ASSERT_TRUE(finite(123.0));
ASSERT_FALSE(finite(HUGE_VAL));
}
TEST(math, isinf_function) {
// The isinf macro deals with all three types; the isinf function is for doubles.
ASSERT_FALSE((isinf)(123.0));
ASSERT_TRUE((isinf)(HUGE_VAL));
}
TEST(math, __isinff) {
ASSERT_FALSE(__isinff(123.0f));
ASSERT_TRUE(__isinff(HUGE_VALF));
}
TEST(math, __isinfl) {
ASSERT_FALSE(__isinfl(123.0L));
ASSERT_TRUE(__isinfl(HUGE_VALL));
}
TEST(math, isnan_function) {
// The isnan macro deals with all three types; the isnan function is for doubles.
ASSERT_FALSE((isnan)(123.0));
ASSERT_TRUE((isnan)(nan("")));
}
TEST(math, __isnanf) {
ASSERT_FALSE(__isnanf(123.0f));
ASSERT_TRUE(__isnanf(nanf("")));
}
TEST(math, __isnanl) {
ASSERT_FALSE(__isnanl(123.0L));
ASSERT_TRUE(__isnanl(nanl("")));
}
TEST(math, isnanf) {
ASSERT_FALSE(isnanf(123.0f));
ASSERT_TRUE(isnanf(nanf("")));
}
TEST(math, __isnormal) {
#if defined(__BIONIC__)
ASSERT_TRUE(__isnormal(123.0));
ASSERT_FALSE(__isnormal(double_subnormal()));
#else // __BIONIC__
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif // __BIONIC__
}
TEST(math, __isnormalf) {
#if defined(__BIONIC__)
ASSERT_TRUE(__isnormalf(123.0f));
ASSERT_FALSE(__isnormalf(float_subnormal()));
#else // __BIONIC__
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif // __BIONIC__
}
TEST(math, __isnormall) {
#if defined(__BIONIC__)
ASSERT_TRUE(__isnormall(123.0L));
ASSERT_FALSE(__isnormall(ldouble_subnormal()));
#else // __BIONIC__
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif // __BIONIC__
}
TEST(math, __signbit) {
ASSERT_EQ(0, __signbit(0.0));
ASSERT_EQ(0, __signbit(1.0));
ASSERT_NE(0, __signbit(-1.0));
}
TEST(math, __signbitf) {
ASSERT_EQ(0, __signbitf(0.0f));
ASSERT_EQ(0, __signbitf(1.0f));
ASSERT_NE(0, __signbitf(-1.0f));
}
TEST(math, __signbitl) {
ASSERT_EQ(0L, __signbitl(0.0L));
ASSERT_EQ(0L, __signbitl(1.0L));
ASSERT_NE(0L, __signbitl(-1.0L));
}
TEST(math, acos) {
ASSERT_DOUBLE_EQ(M_PI/2.0, acos(0.0));
}
TEST(math, acosf) {
ASSERT_FLOAT_EQ(static_cast<float>(M_PI)/2.0f, acosf(0.0f));
}
TEST(math, acosl) {
ASSERT_DOUBLE_EQ(M_PI/2.0L, acosl(0.0L));
}
TEST(math, asin) {
ASSERT_DOUBLE_EQ(0.0, asin(0.0));
}
TEST(math, asinf) {
ASSERT_FLOAT_EQ(0.0f, asinf(0.0f));
}
TEST(math, asinl) {
ASSERT_DOUBLE_EQ(0.0L, asinl(0.0L));
}
TEST(math, atan) {
ASSERT_DOUBLE_EQ(0.0, atan(0.0));
}
TEST(math, atanf) {
ASSERT_FLOAT_EQ(0.0f, atanf(0.0f));
}
TEST(math, atanl) {
ASSERT_DOUBLE_EQ(0.0L, atanl(0.0L));
}
TEST(math, atan2) {
ASSERT_DOUBLE_EQ(0.0, atan2(0.0, 0.0));
}
TEST(math, atan2f) {
ASSERT_FLOAT_EQ(0.0f, atan2f(0.0f, 0.0f));
}
TEST(math, atan2l) {
ASSERT_DOUBLE_EQ(0.0L, atan2l(0.0L, 0.0L));
}
TEST(math, cos) {
ASSERT_DOUBLE_EQ(1.0, cos(0.0));
}
TEST(math, cosf) {
ASSERT_FLOAT_EQ(1.0f, cosf(0.0f));
}
TEST(math, cosl) {
ASSERT_DOUBLE_EQ(1.0L, cosl(0.0L));
}
TEST(math, sin) {
ASSERT_DOUBLE_EQ(0.0, sin(0.0));
}
TEST(math, sinf) {
ASSERT_FLOAT_EQ(0.0f, sinf(0.0f));
}
TEST(math, sinl) {
ASSERT_DOUBLE_EQ(0.0L, sinl(0.0L));
}
TEST(math, tan) {
ASSERT_DOUBLE_EQ(0.0, tan(0.0));
}
TEST(math, tanf) {
ASSERT_FLOAT_EQ(0.0f, tanf(0.0f));
}
TEST(math, tanl) {
ASSERT_DOUBLE_EQ(0.0L, tanl(0.0L));
}
TEST(math, acosh) {
ASSERT_DOUBLE_EQ(0.0, acosh(1.0));
}
TEST(math, acoshf) {
ASSERT_FLOAT_EQ(0.0f, acoshf(1.0f));
}
TEST(math, acoshl) {
ASSERT_DOUBLE_EQ(0.0L, acoshl(1.0L));
}
TEST(math, asinh) {
ASSERT_DOUBLE_EQ(0.0, asinh(0.0));
}
TEST(math, asinhf) {
ASSERT_FLOAT_EQ(0.0f, asinhf(0.0f));
}
TEST(math, asinhl) {
ASSERT_DOUBLE_EQ(0.0L, asinhl(0.0L));
}
TEST(math, atanh) {
ASSERT_DOUBLE_EQ(0.0, atanh(0.0));
}
TEST(math, atanhf) {
ASSERT_FLOAT_EQ(0.0f, atanhf(0.0f));
}
TEST(math, atanhl) {
ASSERT_DOUBLE_EQ(0.0L, atanhl(0.0L));
}
TEST(math, cosh) {
ASSERT_DOUBLE_EQ(1.0, cosh(0.0));
}
TEST(math, coshf) {
ASSERT_FLOAT_EQ(1.0f, coshf(0.0f));
}
TEST(math, coshl) {
ASSERT_DOUBLE_EQ(1.0L, coshl(0.0L));
}
TEST(math, sinh) {
ASSERT_DOUBLE_EQ(0.0, sinh(0.0));
}
TEST(math, sinhf) {
ASSERT_FLOAT_EQ(0.0f, sinhf(0.0f));
}
TEST(math, sinhl) {
ASSERT_DOUBLE_EQ(0.0L, sinhl(0.0L));
}
TEST(math, tanh) {
ASSERT_DOUBLE_EQ(0.0, tanh(0.0));
}
TEST(math, tanhf) {
ASSERT_FLOAT_EQ(0.0f, tanhf(0.0f));
}
TEST(math, tanhl) {
ASSERT_DOUBLE_EQ(0.0L, tanhl(0.0L));
}
TEST(math, log) {
ASSERT_DOUBLE_EQ(1.0, log(M_E));
}
TEST(math, logf) {
ASSERT_FLOAT_EQ(1.0f, logf(static_cast<float>(M_E)));
}
TEST(math, logl) {
ASSERT_DOUBLE_EQ(1.0L, logl(M_E));
}
TEST(math, log2) {
ASSERT_DOUBLE_EQ(12.0, log2(4096.0));
}
TEST(math, log2f) {
ASSERT_FLOAT_EQ(12.0f, log2f(4096.0f));
}
TEST(math, log2l) {
ASSERT_DOUBLE_EQ(12.0L, log2l(4096.0L));
}
TEST(math, log10) {
ASSERT_DOUBLE_EQ(3.0, log10(1000.0));
}
TEST(math, log10f) {
ASSERT_FLOAT_EQ(3.0f, log10f(1000.0f));
}
TEST(math, log10l) {
ASSERT_DOUBLE_EQ(3.0L, log10l(1000.0L));
}
TEST(math, cbrt) {
ASSERT_DOUBLE_EQ(3.0, cbrt(27.0));
}
TEST(math, cbrtf) {
ASSERT_FLOAT_EQ(3.0f, cbrtf(27.0f));
}
TEST(math, cbrtl) {
ASSERT_DOUBLE_EQ(3.0L, cbrtl(27.0L));
}
TEST(math, sqrt) {
ASSERT_DOUBLE_EQ(2.0, sqrt(4.0));
}
TEST(math, sqrtf) {
ASSERT_FLOAT_EQ(2.0f, sqrtf(4.0f));
}
TEST(math, sqrtl) {
ASSERT_DOUBLE_EQ(2.0L, sqrtl(4.0L));
}
TEST(math, exp) {
ASSERT_DOUBLE_EQ(1.0, exp(0.0));
ASSERT_DOUBLE_EQ(M_E, exp(1.0));
}
TEST(math, expf) {
ASSERT_FLOAT_EQ(1.0f, expf(0.0f));
ASSERT_FLOAT_EQ(static_cast<float>(M_E), expf(1.0f));
}
TEST(math, expl) {
ASSERT_DOUBLE_EQ(1.0L, expl(0.0L));
ASSERT_DOUBLE_EQ(M_E, expl(1.0L));
}
TEST(math, exp2) {
ASSERT_DOUBLE_EQ(8.0, exp2(3.0));
}
TEST(math, exp2f) {
ASSERT_FLOAT_EQ(8.0f, exp2f(3.0f));
}
TEST(math, exp2l) {
ASSERT_DOUBLE_EQ(8.0L, exp2l(3.0L));
}
TEST(math, expm1) {
ASSERT_DOUBLE_EQ(M_E - 1.0, expm1(1.0));
}
TEST(math, expm1f) {
ASSERT_FLOAT_EQ(static_cast<float>(M_E) - 1.0f, expm1f(1.0f));
}
TEST(math, expm1l) {
ASSERT_DOUBLE_EQ(M_E - 1.0L, expm1l(1.0L));
}
TEST(math, pow) {
ASSERT_TRUE(isnan(pow(nan(""), 3.0)));
ASSERT_DOUBLE_EQ(1.0, (pow(1.0, nan(""))));
ASSERT_TRUE(isnan(pow(2.0, nan(""))));
ASSERT_DOUBLE_EQ(8.0, pow(2.0, 3.0));
}
TEST(math, powf) {
ASSERT_TRUE(isnanf(powf(nanf(""), 3.0f)));
ASSERT_FLOAT_EQ(1.0f, (powf(1.0f, nanf(""))));
ASSERT_TRUE(isnanf(powf(2.0f, nanf(""))));
ASSERT_FLOAT_EQ(8.0f, powf(2.0f, 3.0f));
}
TEST(math, powl) {
ASSERT_TRUE(__isnanl(powl(nanl(""), 3.0L)));
ASSERT_DOUBLE_EQ(1.0L, (powl(1.0L, nanl(""))));
ASSERT_TRUE(__isnanl(powl(2.0L, nanl(""))));
ASSERT_DOUBLE_EQ(8.0L, powl(2.0L, 3.0L));
}
TEST(math, ceil) {
ASSERT_DOUBLE_EQ(1.0, ceil(0.9));
}
TEST(math, ceilf) {
ASSERT_FLOAT_EQ(1.0f, ceilf(0.9f));
}
TEST(math, ceill) {
ASSERT_DOUBLE_EQ(1.0L, ceill(0.9L));
}
TEST(math, floor) {
ASSERT_DOUBLE_EQ(1.0, floor(1.1));
}
TEST(math, floorf) {
ASSERT_FLOAT_EQ(1.0f, floorf(1.1f));
}
TEST(math, floorl) {
ASSERT_DOUBLE_EQ(1.0L, floorl(1.1L));
}
TEST(math, fabs) {
ASSERT_DOUBLE_EQ(1.0, fabs(-1.0));
}
TEST(math, fabsf) {
ASSERT_FLOAT_EQ(1.0f, fabsf(-1.0f));
}
TEST(math, fabsl) {
ASSERT_DOUBLE_EQ(1.0L, fabsl(-1.0L));
}
TEST(math, ldexp) {
ASSERT_DOUBLE_EQ(16.0, ldexp(2.0, 3.0));
}
TEST(math, ldexpf) {
ASSERT_FLOAT_EQ(16.0f, ldexpf(2.0f, 3.0f));
}
TEST(math, ldexpl) {
ASSERT_DOUBLE_EQ(16.0L, ldexpl(2.0L, 3.0));
}
TEST(math, fmod) {
ASSERT_DOUBLE_EQ(2.0, fmod(12.0, 10.0));
}
TEST(math, fmodf) {
ASSERT_FLOAT_EQ(2.0f, fmodf(12.0f, 10.0f));
}
TEST(math, fmodl) {
ASSERT_DOUBLE_EQ(2.0L, fmodl(12.0L, 10.0L));
}
TEST(math, remainder) {
ASSERT_DOUBLE_EQ(2.0, remainder(12.0, 10.0));
}
TEST(math, remainderf) {
ASSERT_FLOAT_EQ(2.0f, remainderf(12.0f, 10.0f));
}
TEST(math, remainderl) {
ASSERT_DOUBLE_EQ(2.0L, remainderl(12.0L, 10.0L));
}
TEST(math, drem) {
ASSERT_DOUBLE_EQ(2.0, drem(12.0, 10.0));
}
TEST(math, dremf) {
ASSERT_FLOAT_EQ(2.0f, dremf(12.0f, 10.0f));
}
TEST(math, fmax) {
ASSERT_DOUBLE_EQ(12.0, fmax(12.0, 10.0));
ASSERT_DOUBLE_EQ(12.0, fmax(12.0, nan("")));
ASSERT_DOUBLE_EQ(12.0, fmax(nan(""), 12.0));
}
TEST(math, fmaxf) {
ASSERT_FLOAT_EQ(12.0f, fmaxf(12.0f, 10.0f));
ASSERT_FLOAT_EQ(12.0f, fmaxf(12.0f, nanf("")));
ASSERT_FLOAT_EQ(12.0f, fmaxf(nanf(""), 12.0f));
}
TEST(math, fmaxl) {
ASSERT_DOUBLE_EQ(12.0L, fmaxl(12.0L, 10.0L));
ASSERT_DOUBLE_EQ(12.0L, fmaxl(12.0L, nanl("")));
ASSERT_DOUBLE_EQ(12.0L, fmaxl(nanl(""), 12.0L));
}
TEST(math, fmin) {
ASSERT_DOUBLE_EQ(10.0, fmin(12.0, 10.0));
ASSERT_DOUBLE_EQ(12.0, fmin(12.0, nan("")));
ASSERT_DOUBLE_EQ(12.0, fmin(nan(""), 12.0));
}
TEST(math, fminf) {
ASSERT_FLOAT_EQ(10.0f, fminf(12.0f, 10.0f));
ASSERT_FLOAT_EQ(12.0f, fminf(12.0f, nanf("")));
ASSERT_FLOAT_EQ(12.0f, fminf(nanf(""), 12.0f));
}
TEST(math, fminl) {
ASSERT_DOUBLE_EQ(10.0L, fminl(12.0L, 10.0L));
ASSERT_DOUBLE_EQ(12.0L, fminl(12.0L, nanl("")));
ASSERT_DOUBLE_EQ(12.0L, fminl(nanl(""), 12.0L));
}
TEST(math, fma) {
ASSERT_DOUBLE_EQ(10.0, fma(2.0, 3.0, 4.0));
}
TEST(math, fmaf) {
ASSERT_FLOAT_EQ(10.0f, fmaf(2.0f, 3.0f, 4.0f));
}
TEST(math, fmal) {
ASSERT_DOUBLE_EQ(10.0L, fmal(2.0L, 3.0L, 4.0L));
}
TEST(math, hypot) {
ASSERT_DOUBLE_EQ(5.0, hypot(3.0, 4.0));
}
TEST(math, hypotf) {
ASSERT_FLOAT_EQ(5.0f, hypotf(3.0f, 4.0f));
}
TEST(math, hypotl) {
ASSERT_DOUBLE_EQ(5.0L, hypotl(3.0L, 4.0L));
}
TEST(math, erf) {
ASSERT_DOUBLE_EQ(0.84270079294971489, erf(1.0));
}
TEST(math, erff) {
ASSERT_FLOAT_EQ(0.84270078f, erff(1.0f));
}
TEST(math, erfl) {
ASSERT_DOUBLE_EQ(0.84270079294971489L, erfl(1.0L));
}
TEST(math, erfc) {
ASSERT_DOUBLE_EQ(0.15729920705028513, erfc(1.0));
}
TEST(math, erfcf) {
ASSERT_FLOAT_EQ(0.15729921f, erfcf(1.0f));
}
TEST(math, erfcl) {
ASSERT_DOUBLE_EQ(0.15729920705028513l, erfcl(1.0L));
}
TEST(math, lrint) {
fesetround(FE_UPWARD); // lrint/lrintf/lrintl obey the rounding mode.
ASSERT_EQ(1235, lrint(1234.01));
ASSERT_EQ(1235, lrintf(1234.01f));
ASSERT_EQ(1235, lrintl(1234.01L));
fesetround(FE_TOWARDZERO); // lrint/lrintf/lrintl obey the rounding mode.
ASSERT_EQ(1234, lrint(1234.01));
ASSERT_EQ(1234, lrintf(1234.01f));
ASSERT_EQ(1234, lrintl(1234.01L));
fesetround(FE_UPWARD); // llrint/llrintf/llrintl obey the rounding mode.
ASSERT_EQ(1235L, llrint(1234.01));
ASSERT_EQ(1235L, llrintf(1234.01f));
ASSERT_EQ(1235L, llrintl(1234.01L));
fesetround(FE_TOWARDZERO); // llrint/llrintf/llrintl obey the rounding mode.
ASSERT_EQ(1234L, llrint(1234.01));
ASSERT_EQ(1234L, llrintf(1234.01f));
ASSERT_EQ(1234L, llrintl(1234.01L));
}
TEST(math, rint) {
fesetround(FE_UPWARD); // rint/rintf/rintl obey the rounding mode.
feclearexcept(FE_ALL_EXCEPT); // rint/rintf/rintl do set the FE_INEXACT flag.
ASSERT_EQ(1234.0, rint(1234.0));
ASSERT_TRUE((fetestexcept(FE_ALL_EXCEPT) & FE_INEXACT) == 0);
ASSERT_EQ(1235.0, rint(1234.01));
ASSERT_TRUE((fetestexcept(FE_ALL_EXCEPT) & FE_INEXACT) != 0);
feclearexcept(FE_ALL_EXCEPT); // rint/rintf/rintl do set the FE_INEXACT flag.
ASSERT_EQ(1234.0f, rintf(1234.0f));
ASSERT_TRUE((fetestexcept(FE_ALL_EXCEPT) & FE_INEXACT) == 0);
ASSERT_EQ(1235.0f, rintf(1234.01f));
ASSERT_TRUE((fetestexcept(FE_ALL_EXCEPT) & FE_INEXACT) != 0);
feclearexcept(FE_ALL_EXCEPT); // rint/rintf/rintl do set the FE_INEXACT flag.
ASSERT_EQ(1234.0, rintl(1234.0L));
ASSERT_TRUE((fetestexcept(FE_ALL_EXCEPT) & FE_INEXACT) == 0);
ASSERT_EQ(1235.0, rintl(1234.01L));
ASSERT_TRUE((fetestexcept(FE_ALL_EXCEPT) & FE_INEXACT) != 0);
fesetround(FE_TOWARDZERO); // rint/rintf obey the rounding mode.
ASSERT_EQ(1234.0, rint(1234.01));
ASSERT_EQ(1234.0f, rintf(1234.01f));
ASSERT_EQ(1234.0, rintl(1234.01L));
}
TEST(math, nearbyint) {
fesetround(FE_UPWARD); // nearbyint/nearbyintf/nearbyintl obey the rounding mode.
feclearexcept(FE_ALL_EXCEPT); // nearbyint/nearbyintf/nearbyintl don't set the FE_INEXACT flag.
ASSERT_EQ(1234.0, nearbyint(1234.0));
ASSERT_TRUE((fetestexcept(FE_ALL_EXCEPT) & FE_INEXACT) == 0);
ASSERT_EQ(1235.0, nearbyint(1234.01));
ASSERT_TRUE((fetestexcept(FE_ALL_EXCEPT) & FE_INEXACT) == 0);
feclearexcept(FE_ALL_EXCEPT);
ASSERT_EQ(1234.0f, nearbyintf(1234.0f));
ASSERT_TRUE((fetestexcept(FE_ALL_EXCEPT) & FE_INEXACT) == 0);
ASSERT_EQ(1235.0f, nearbyintf(1234.01f));
ASSERT_TRUE((fetestexcept(FE_ALL_EXCEPT) & FE_INEXACT) == 0);
feclearexcept(FE_ALL_EXCEPT); // nearbyint/nearbyintf/nearbyintl don't set the FE_INEXACT flag.
ASSERT_EQ(1234.0, nearbyintl(1234.0L));
ASSERT_TRUE((fetestexcept(FE_ALL_EXCEPT) & FE_INEXACT) == 0);
ASSERT_EQ(1235.0, nearbyintl(1234.01L));
ASSERT_TRUE((fetestexcept(FE_ALL_EXCEPT) & FE_INEXACT) == 0);
fesetround(FE_TOWARDZERO); // nearbyint/nearbyintf/nearbyintl obey the rounding mode.
ASSERT_EQ(1234.0, nearbyint(1234.01));
ASSERT_EQ(1234.0f, nearbyintf(1234.01f));
ASSERT_EQ(1234.0, nearbyintl(1234.01L));
}
TEST(math, lround) {
fesetround(FE_UPWARD); // lround ignores the rounding mode.
ASSERT_EQ(1234, lround(1234.01));
ASSERT_EQ(1234, lroundf(1234.01f));
ASSERT_EQ(1234, lroundl(1234.01L));
}
TEST(math, llround) {
fesetround(FE_UPWARD); // llround ignores the rounding mode.
ASSERT_EQ(1234L, llround(1234.01));
ASSERT_EQ(1234L, llroundf(1234.01f));
ASSERT_EQ(1234L, llroundl(1234.01L));
}
TEST(math, ilogb) {
ASSERT_EQ(FP_ILOGB0, ilogb(0.0));
ASSERT_EQ(FP_ILOGBNAN, ilogb(nan("")));
ASSERT_EQ(INT_MAX, ilogb(HUGE_VAL));
ASSERT_EQ(0, ilogb(1.0));
ASSERT_EQ(3, ilogb(10.0));
}
TEST(math, ilogbf) {
ASSERT_EQ(FP_ILOGB0, ilogbf(0.0f));
ASSERT_EQ(FP_ILOGBNAN, ilogbf(nanf("")));
ASSERT_EQ(INT_MAX, ilogbf(HUGE_VALF));
ASSERT_EQ(0, ilogbf(1.0f));
ASSERT_EQ(3, ilogbf(10.0f));
}
TEST(math, ilogbl) {
ASSERT_EQ(FP_ILOGB0, ilogbl(0.0L));
ASSERT_EQ(FP_ILOGBNAN, ilogbl(nanl("")));
ASSERT_EQ(INT_MAX, ilogbl(HUGE_VALL));
ASSERT_EQ(0L, ilogbl(1.0L));
ASSERT_EQ(3L, ilogbl(10.0L));
}
TEST(math, logb) {
ASSERT_EQ(-HUGE_VAL, logb(0.0));
ASSERT_TRUE(isnan(logb(nan(""))));
ASSERT_TRUE(isinf(logb(HUGE_VAL)));
ASSERT_EQ(0.0, logb(1.0));
ASSERT_EQ(3.0, logb(10.0));
}
TEST(math, logbf) {
ASSERT_EQ(-HUGE_VALF, logbf(0.0f));
ASSERT_TRUE(isnanf(logbf(nanf(""))));
ASSERT_TRUE(__isinff(logbf(HUGE_VALF)));
ASSERT_EQ(0.0f, logbf(1.0f));
ASSERT_EQ(3.0f, logbf(10.0f));
}
TEST(math, logbl) {
ASSERT_EQ(-HUGE_VAL, logbl(0.0L));
ASSERT_TRUE(isnan(logbl(nanl(""))));
ASSERT_TRUE(isinf(logbl(HUGE_VALL)));
ASSERT_EQ(0.0L, logbl(1.0L));
ASSERT_EQ(3.0L, logbl(10.0L));
}
TEST(math, log1p) {
ASSERT_EQ(-HUGE_VAL, log1p(-1.0));
ASSERT_TRUE(isnan(log1p(nan(""))));
ASSERT_TRUE(isinf(log1p(HUGE_VAL)));
ASSERT_DOUBLE_EQ(1.0, log1p(M_E - 1.0));
}
TEST(math, log1pf) {
ASSERT_EQ(-HUGE_VALF, log1pf(-1.0f));
ASSERT_TRUE(isnanf(log1pf(nanf(""))));
ASSERT_TRUE(__isinff(log1pf(HUGE_VALF)));
ASSERT_FLOAT_EQ(1.0f, log1pf(static_cast<float>(M_E) - 1.0f));
}
TEST(math, log1pl) {
ASSERT_EQ(-HUGE_VALL, log1pl(-1.0L));
ASSERT_TRUE(isnan(log1pl(nanl(""))));
ASSERT_TRUE(isinf(log1pl(HUGE_VALL)));
ASSERT_DOUBLE_EQ(1.0L, log1pl(M_E - 1.0L));
}
TEST(math, fdim) {
ASSERT_DOUBLE_EQ(0.0, fdim(1.0, 1.0));
ASSERT_DOUBLE_EQ(1.0, fdim(2.0, 1.0));
ASSERT_DOUBLE_EQ(0.0, fdim(1.0, 2.0));
}
TEST(math, fdimf) {
ASSERT_FLOAT_EQ(0.0f, fdimf(1.0f, 1.0f));
ASSERT_FLOAT_EQ(1.0f, fdimf(2.0f, 1.0f));
ASSERT_FLOAT_EQ(0.0f, fdimf(1.0f, 2.0f));
}
TEST(math, fdiml) {
ASSERT_DOUBLE_EQ(0.0L, fdiml(1.0L, 1.0L));
ASSERT_DOUBLE_EQ(1.0L, fdiml(2.0L, 1.0L));
ASSERT_DOUBLE_EQ(0.0L, fdiml(1.0L, 2.0L));
}
TEST(math, round) {
fesetround(FE_TOWARDZERO); // round ignores the rounding mode and always rounds away from zero.
ASSERT_DOUBLE_EQ(1.0, round(0.5));
ASSERT_DOUBLE_EQ(-1.0, round(-0.5));
ASSERT_DOUBLE_EQ(0.0, round(0.0));
ASSERT_DOUBLE_EQ(-0.0, round(-0.0));
ASSERT_TRUE(isnan(round(nan(""))));
ASSERT_DOUBLE_EQ(HUGE_VAL, round(HUGE_VAL));
}
TEST(math, roundf) {
fesetround(FE_TOWARDZERO); // roundf ignores the rounding mode and always rounds away from zero.
ASSERT_FLOAT_EQ(1.0f, roundf(0.5f));
ASSERT_FLOAT_EQ(-1.0f, roundf(-0.5f));
ASSERT_FLOAT_EQ(0.0f, roundf(0.0f));
ASSERT_FLOAT_EQ(-0.0f, roundf(-0.0f));
ASSERT_TRUE(isnanf(roundf(nanf(""))));
ASSERT_FLOAT_EQ(HUGE_VALF, roundf(HUGE_VALF));
}
TEST(math, roundl) {
fesetround(FE_TOWARDZERO); // roundl ignores the rounding mode and always rounds away from zero.
ASSERT_DOUBLE_EQ(1.0L, roundl(0.5L));
ASSERT_DOUBLE_EQ(-1.0L, roundl(-0.5L));
ASSERT_DOUBLE_EQ(0.0L, roundl(0.0L));
ASSERT_DOUBLE_EQ(-0.0L, roundl(-0.0L));
ASSERT_TRUE(isnan(roundl(nanl(""))));
ASSERT_DOUBLE_EQ(HUGE_VALL, roundl(HUGE_VALL));
}
TEST(math, trunc) {
fesetround(FE_UPWARD); // trunc ignores the rounding mode and always rounds toward zero.
ASSERT_DOUBLE_EQ(1.0, trunc(1.5));
ASSERT_DOUBLE_EQ(-1.0, trunc(-1.5));
ASSERT_DOUBLE_EQ(0.0, trunc(0.0));
ASSERT_DOUBLE_EQ(-0.0, trunc(-0.0));
ASSERT_TRUE(isnan(trunc(nan(""))));
ASSERT_DOUBLE_EQ(HUGE_VAL, trunc(HUGE_VAL));
}
TEST(math, truncf) {
fesetround(FE_UPWARD); // truncf ignores the rounding mode and always rounds toward zero.
ASSERT_FLOAT_EQ(1.0f, truncf(1.5f));
ASSERT_FLOAT_EQ(-1.0f, truncf(-1.5f));
ASSERT_FLOAT_EQ(0.0f, truncf(0.0f));
ASSERT_FLOAT_EQ(-0.0f, truncf(-0.0f));
ASSERT_TRUE(isnan(truncf(nanf(""))));
ASSERT_FLOAT_EQ(HUGE_VALF, truncf(HUGE_VALF));
}
TEST(math, truncl) {
fesetround(FE_UPWARD); // truncl ignores the rounding mode and always rounds toward zero.
ASSERT_DOUBLE_EQ(1.0L, truncl(1.5L));
ASSERT_DOUBLE_EQ(-1.0L, truncl(-1.5L));
ASSERT_DOUBLE_EQ(0.0L, truncl(0.0L));
ASSERT_DOUBLE_EQ(-0.0L, truncl(-0.0L));
ASSERT_TRUE(isnan(truncl(nan(""))));
ASSERT_DOUBLE_EQ(HUGE_VALL, truncl(HUGE_VALL));
}
TEST(math, nextafter) {
ASSERT_DOUBLE_EQ(0.0, nextafter(0.0, 0.0));
ASSERT_DOUBLE_EQ(4.9406564584124654e-324, nextafter(0.0, 1.0));
ASSERT_DOUBLE_EQ(0.0, nextafter(0.0, -1.0));
}
TEST(math, nextafterf) {
ASSERT_FLOAT_EQ(0.0f, nextafterf(0.0f, 0.0f));
ASSERT_FLOAT_EQ(1.4012985e-45f, nextafterf(0.0f, 1.0f));
ASSERT_FLOAT_EQ(0.0f, nextafterf(0.0f, -1.0f));
}
TEST(math, nextafterl) {
ASSERT_DOUBLE_EQ(0.0L, nextafterl(0.0L, 0.0L));
// Use a runtime value to accomodate the case when
// sizeof(double) == sizeof(long double)
long double smallest_positive = ldexpl(1.0L, LDBL_MIN_EXP - LDBL_MANT_DIG);
ASSERT_DOUBLE_EQ(smallest_positive, nextafterl(0.0L, 1.0L));
ASSERT_DOUBLE_EQ(0.0L, nextafterl(0.0L, -1.0L));
}
TEST(math, nexttoward) {
ASSERT_DOUBLE_EQ(0.0, nexttoward(0.0, 0.0L));
ASSERT_DOUBLE_EQ(4.9406564584124654e-324, nexttoward(0.0, 1.0L));
ASSERT_DOUBLE_EQ(0.0, nexttoward(0.0, -1.0L));
}
TEST(math, nexttowardf) {
ASSERT_FLOAT_EQ(0.0f, nexttowardf(0.0f, 0.0L));
ASSERT_FLOAT_EQ(1.4012985e-45f, nexttowardf(0.0f, 1.0L));
ASSERT_FLOAT_EQ(0.0f, nexttowardf(0.0f, -1.0L));
}
TEST(math, nexttowardl) {
ASSERT_DOUBLE_EQ(0.0L, nexttowardl(0.0L, 0.0L));
// Use a runtime value to accomodate the case when
// sizeof(double) == sizeof(long double)
long double smallest_positive = ldexpl(1.0L, LDBL_MIN_EXP - LDBL_MANT_DIG);
ASSERT_DOUBLE_EQ(smallest_positive, nexttowardl(0.0L, 1.0L));
ASSERT_DOUBLE_EQ(0.0L, nexttowardl(0.0L, -1.0L));
}
TEST(math, copysign) {
ASSERT_DOUBLE_EQ(0.0, copysign(0.0, 1.0));
ASSERT_DOUBLE_EQ(-0.0, copysign(0.0, -1.0));
ASSERT_DOUBLE_EQ(2.0, copysign(2.0, 1.0));
ASSERT_DOUBLE_EQ(-2.0, copysign(2.0, -1.0));
}
TEST(math, copysignf) {
ASSERT_FLOAT_EQ(0.0f, copysignf(0.0f, 1.0f));
ASSERT_FLOAT_EQ(-0.0f, copysignf(0.0f, -1.0f));
ASSERT_FLOAT_EQ(2.0f, copysignf(2.0f, 1.0f));
ASSERT_FLOAT_EQ(-2.0f, copysignf(2.0f, -1.0f));
}
TEST(math, copysignl) {
ASSERT_DOUBLE_EQ(0.0L, copysignl(0.0L, 1.0L));
ASSERT_DOUBLE_EQ(-0.0L, copysignl(0.0L, -1.0L));
ASSERT_DOUBLE_EQ(2.0L, copysignl(2.0L, 1.0L));
ASSERT_DOUBLE_EQ(-2.0L, copysignl(2.0L, -1.0L));
}
TEST(math, significand) {
ASSERT_DOUBLE_EQ(0.0, significand(0.0));
ASSERT_DOUBLE_EQ(1.2, significand(1.2));
ASSERT_DOUBLE_EQ(1.5375, significand(12.3));
}
TEST(math, significandf) {
ASSERT_FLOAT_EQ(0.0f, significandf(0.0f));
ASSERT_FLOAT_EQ(1.2f, significandf(1.2f));
ASSERT_FLOAT_EQ(1.5375f, significandf(12.3f));
}
extern "C" long double significandl(long double); // BSD's <math.h> doesn't declare this.
TEST(math, significandl) {
ASSERT_DOUBLE_EQ(0.0L, significandl(0.0L));
ASSERT_DOUBLE_EQ(1.2L, significandl(1.2L));
ASSERT_DOUBLE_EQ(1.5375L, significandl(12.3L));
}
TEST(math, scalb) {
ASSERT_DOUBLE_EQ(12.0, scalb(3.0, 2.0));
}
TEST(math, scalbf) {
ASSERT_FLOAT_EQ(12.0f, scalbf(3.0f, 2.0f));
}
TEST(math, scalbln) {
ASSERT_DOUBLE_EQ(12.0, scalbln(3.0, 2L));
}
TEST(math, scalblnf) {
ASSERT_FLOAT_EQ(12.0f, scalblnf(3.0f, 2L));
}
TEST(math, scalblnl) {
ASSERT_DOUBLE_EQ(12.0L, scalblnl(3.0L, 2L));
}
TEST(math, scalbn) {
ASSERT_DOUBLE_EQ(12.0, scalbn(3.0, 2));
}
TEST(math, scalbnf) {
ASSERT_FLOAT_EQ(12.0f, scalbnf(3.0f, 2));
}
TEST(math, scalbnl) {
ASSERT_DOUBLE_EQ(12.0L, scalbnl(3.0L, 2));
}
TEST(math, gamma) {
ASSERT_DOUBLE_EQ(log(24.0), gamma(5.0));
}
TEST(math, gammaf) {
ASSERT_FLOAT_EQ(logf(24.0f), gammaf(5.0f));
}
TEST(math, gamma_r) {
#if defined(__BIONIC__)
int sign;
ASSERT_DOUBLE_EQ(log(24.0), gamma_r(5.0, &sign));
ASSERT_EQ(1, sign);
#else // __BIONIC__
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif // __BIONIC__
}
TEST(math, gammaf_r) {
#if defined(__BIONIC__)
int sign;
ASSERT_FLOAT_EQ(logf(24.0f), gammaf_r(5.0f, &sign));
ASSERT_EQ(1, sign);
#else // __BIONIC__
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif // __BIONIC__
}
TEST(math, lgamma) {
ASSERT_DOUBLE_EQ(log(24.0), lgamma(5.0));
}
TEST(math, lgammaf) {
ASSERT_FLOAT_EQ(logf(24.0f), lgammaf(5.0f));
}
TEST(math, lgammal) {
ASSERT_DOUBLE_EQ(logl(24.0L), lgammal(5.0L));
}
TEST(math, lgamma_r) {
int sign;
ASSERT_DOUBLE_EQ(log(24.0), lgamma_r(5.0, &sign));
ASSERT_EQ(1, sign);
}
TEST(math, lgammaf_r) {
int sign;
ASSERT_FLOAT_EQ(logf(24.0f), lgammaf_r(5.0f, &sign));
ASSERT_EQ(1, sign);
}
TEST(math, tgamma) {
ASSERT_DOUBLE_EQ(24.0, tgamma(5.0));
}
TEST(math, tgammaf) {
ASSERT_FLOAT_EQ(24.0f, tgammaf(5.0f));
}
TEST(math, tgammal) {
ASSERT_DOUBLE_EQ(24.0L, tgammal(5.0L));
}
TEST(math, j0) {
ASSERT_DOUBLE_EQ(1.0, j0(0.0));
ASSERT_DOUBLE_EQ(0.76519768655796661, j0(1.0));
}
TEST(math, j0f) {
ASSERT_FLOAT_EQ(1.0f, j0f(0.0f));
ASSERT_FLOAT_EQ(0.76519769f, j0f(1.0f));
}
TEST(math, j1) {
ASSERT_DOUBLE_EQ(0.0, j1(0.0));
ASSERT_DOUBLE_EQ(0.44005058574493355, j1(1.0));
}
TEST(math, j1f) {
ASSERT_FLOAT_EQ(0.0f, j1f(0.0f));
ASSERT_FLOAT_EQ(0.44005057f, j1f(1.0f));
}
TEST(math, jn) {
ASSERT_DOUBLE_EQ(0.0, jn(4, 0.0));
ASSERT_DOUBLE_EQ(0.0024766389641099553, jn(4, 1.0));
}
TEST(math, jnf) {
ASSERT_FLOAT_EQ(0.0f, jnf(4, 0.0f));
ASSERT_FLOAT_EQ(0.0024766389f, jnf(4, 1.0f));
}
TEST(math, y0) {
ASSERT_DOUBLE_EQ(-HUGE_VAL, y0(0.0));
ASSERT_DOUBLE_EQ(0.08825696421567697, y0(1.0));
}
TEST(math, y0f) {
ASSERT_FLOAT_EQ(-HUGE_VALF, y0f(0.0f));
ASSERT_FLOAT_EQ(0.088256963f, y0f(1.0f));
}
TEST(math, y1) {
ASSERT_DOUBLE_EQ(-HUGE_VAL, y1(0.0));
ASSERT_DOUBLE_EQ(-0.78121282130028868, y1(1.0));
}
TEST(math, y1f) {
ASSERT_FLOAT_EQ(-HUGE_VALF, y1f(0.0f));
ASSERT_FLOAT_EQ(-0.78121281f, y1f(1.0f));
}
TEST(math, yn) {
ASSERT_DOUBLE_EQ(-HUGE_VAL, yn(4, 0.0));
ASSERT_DOUBLE_EQ(-33.278423028972114, yn(4, 1.0));
}
TEST(math, ynf) {
ASSERT_FLOAT_EQ(-HUGE_VALF, ynf(4, 0.0f));
ASSERT_FLOAT_EQ(-33.278423f, ynf(4, 1.0f));
}
TEST(math, frexp) {
int exp;
double dr = frexp(1024.0, &exp);
ASSERT_DOUBLE_EQ(1024.0, scalbn(dr, exp));
}
TEST(math, frexpf) {
int exp;
float fr = frexpf(1024.0f, &exp);
ASSERT_FLOAT_EQ(1024.0f, scalbnf(fr, exp));
}
TEST(math, frexpl) {
int exp;
long double ldr = frexpl(1024.0L, &exp);
ASSERT_DOUBLE_EQ(1024.0L, scalbnl(ldr, exp));
}
TEST(math, modf) {
double di;
double df = modf(123.75, &di);
ASSERT_DOUBLE_EQ(123.0, di);
ASSERT_DOUBLE_EQ(0.75, df);
}
TEST(math, modff) {
float fi;
float ff = modff(123.75f, &fi);
ASSERT_FLOAT_EQ(123.0f, fi);
ASSERT_FLOAT_EQ(0.75f, ff);
}
TEST(math, modfl) {
long double ldi;
long double ldf = modfl(123.75L, &ldi);
ASSERT_DOUBLE_EQ(123.0L, ldi);
ASSERT_DOUBLE_EQ(0.75L, ldf);
}
TEST(math, remquo) {
int q;
double d = remquo(13.0, 4.0, &q);
ASSERT_EQ(3, q);
ASSERT_DOUBLE_EQ(1.0, d);
}
TEST(math, remquof) {
int q;
float f = remquof(13.0f, 4.0f, &q);
ASSERT_EQ(3, q);
ASSERT_FLOAT_EQ(1.0, f);
}
TEST(math, remquol) {
int q;
long double ld = remquol(13.0L, 4.0L, &q);
ASSERT_DOUBLE_EQ(3L, q);
ASSERT_DOUBLE_EQ(1.0L, ld);
}
// https://code.google.com/p/android/issues/detail?id=6697
TEST(math, frexpf_public_bug_6697) {
int exp;
float fr = frexpf(14.1f, &exp);
ASSERT_FLOAT_EQ(14.1f, scalbnf(fr, exp));
}