bionic/tests/malloc_test.cpp

394 lines
11 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include <limits.h>
#include <stdint.h>
#include <stdlib.h>
#include <malloc.h>
#include <unistd.h>
#include <tinyxml2.h>
#include "private/bionic_config.h"
TEST(malloc, malloc_std) {
// Simple malloc test.
void *ptr = malloc(100);
ASSERT_TRUE(ptr != NULL);
ASSERT_LE(100U, malloc_usable_size(ptr));
free(ptr);
}
TEST(malloc, malloc_overflow) {
errno = 0;
ASSERT_EQ(NULL, malloc(SIZE_MAX));
ASSERT_EQ(ENOMEM, errno);
}
TEST(malloc, calloc_std) {
// Simple calloc test.
size_t alloc_len = 100;
char *ptr = (char *)calloc(1, alloc_len);
ASSERT_TRUE(ptr != NULL);
ASSERT_LE(alloc_len, malloc_usable_size(ptr));
for (size_t i = 0; i < alloc_len; i++) {
ASSERT_EQ(0, ptr[i]);
}
free(ptr);
}
TEST(malloc, calloc_illegal) {
errno = 0;
ASSERT_EQ(NULL, calloc(-1, 100));
ASSERT_EQ(ENOMEM, errno);
}
TEST(malloc, calloc_overflow) {
errno = 0;
ASSERT_EQ(NULL, calloc(1, SIZE_MAX));
ASSERT_EQ(ENOMEM, errno);
errno = 0;
ASSERT_EQ(NULL, calloc(SIZE_MAX, SIZE_MAX));
ASSERT_EQ(ENOMEM, errno);
errno = 0;
ASSERT_EQ(NULL, calloc(2, SIZE_MAX));
ASSERT_EQ(ENOMEM, errno);
errno = 0;
ASSERT_EQ(NULL, calloc(SIZE_MAX, 2));
ASSERT_EQ(ENOMEM, errno);
}
TEST(malloc, memalign_multiple) {
// Memalign test where the alignment is any value.
for (size_t i = 0; i <= 12; i++) {
for (size_t alignment = 1 << i; alignment < (1U << (i+1)); alignment++) {
char *ptr = reinterpret_cast<char*>(memalign(alignment, 100));
ASSERT_TRUE(ptr != NULL) << "Failed at alignment " << alignment;
ASSERT_LE(100U, malloc_usable_size(ptr)) << "Failed at alignment " << alignment;
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) % ((1U << i)))
<< "Failed at alignment " << alignment;
free(ptr);
}
}
}
TEST(malloc, memalign_overflow) {
ASSERT_EQ(NULL, memalign(4096, SIZE_MAX));
}
TEST(malloc, memalign_non_power2) {
void* ptr;
for (size_t align = 0; align <= 256; align++) {
ptr = memalign(align, 1024);
ASSERT_TRUE(ptr != NULL) << "Failed at align " << align;
free(ptr);
}
}
TEST(malloc, posix_memalign_non_power2) {
void* ptr;
ASSERT_EQ(EINVAL, posix_memalign(&ptr, 17, 1024));
}
TEST(malloc, posix_memalign_overflow) {
void* ptr;
ASSERT_NE(0, posix_memalign(&ptr, 16, SIZE_MAX));
}
TEST(malloc, memalign_realloc) {
// Memalign and then realloc the pointer a couple of times.
for (size_t alignment = 1; alignment <= 4096; alignment <<= 1) {
char *ptr = (char*)memalign(alignment, 100);
ASSERT_TRUE(ptr != NULL);
ASSERT_LE(100U, malloc_usable_size(ptr));
ASSERT_EQ(0U, (intptr_t)ptr % alignment);
memset(ptr, 0x23, 100);
ptr = (char*)realloc(ptr, 200);
ASSERT_TRUE(ptr != NULL);
ASSERT_LE(200U, malloc_usable_size(ptr));
ASSERT_TRUE(ptr != NULL);
for (size_t i = 0; i < 100; i++) {
ASSERT_EQ(0x23, ptr[i]);
}
memset(ptr, 0x45, 200);
ptr = (char*)realloc(ptr, 300);
ASSERT_TRUE(ptr != NULL);
ASSERT_LE(300U, malloc_usable_size(ptr));
for (size_t i = 0; i < 200; i++) {
ASSERT_EQ(0x45, ptr[i]);
}
memset(ptr, 0x67, 300);
ptr = (char*)realloc(ptr, 250);
ASSERT_TRUE(ptr != NULL);
ASSERT_LE(250U, malloc_usable_size(ptr));
for (size_t i = 0; i < 250; i++) {
ASSERT_EQ(0x67, ptr[i]);
}
free(ptr);
}
}
TEST(malloc, malloc_realloc_larger) {
// Realloc to a larger size, malloc is used for the original allocation.
char *ptr = (char *)malloc(100);
ASSERT_TRUE(ptr != NULL);
ASSERT_LE(100U, malloc_usable_size(ptr));
memset(ptr, 67, 100);
ptr = (char *)realloc(ptr, 200);
ASSERT_TRUE(ptr != NULL);
ASSERT_LE(200U, malloc_usable_size(ptr));
for (size_t i = 0; i < 100; i++) {
ASSERT_EQ(67, ptr[i]);
}
free(ptr);
}
TEST(malloc, malloc_realloc_smaller) {
// Realloc to a smaller size, malloc is used for the original allocation.
char *ptr = (char *)malloc(200);
ASSERT_TRUE(ptr != NULL);
ASSERT_LE(200U, malloc_usable_size(ptr));
memset(ptr, 67, 200);
ptr = (char *)realloc(ptr, 100);
ASSERT_TRUE(ptr != NULL);
ASSERT_LE(100U, malloc_usable_size(ptr));
for (size_t i = 0; i < 100; i++) {
ASSERT_EQ(67, ptr[i]);
}
free(ptr);
}
TEST(malloc, malloc_multiple_realloc) {
// Multiple reallocs, malloc is used for the original allocation.
char *ptr = (char *)malloc(200);
ASSERT_TRUE(ptr != NULL);
ASSERT_LE(200U, malloc_usable_size(ptr));
memset(ptr, 0x23, 200);
ptr = (char *)realloc(ptr, 100);
ASSERT_TRUE(ptr != NULL);
ASSERT_LE(100U, malloc_usable_size(ptr));
for (size_t i = 0; i < 100; i++) {
ASSERT_EQ(0x23, ptr[i]);
}
ptr = (char*)realloc(ptr, 50);
ASSERT_TRUE(ptr != NULL);
ASSERT_LE(50U, malloc_usable_size(ptr));
for (size_t i = 0; i < 50; i++) {
ASSERT_EQ(0x23, ptr[i]);
}
ptr = (char*)realloc(ptr, 150);
ASSERT_TRUE(ptr != NULL);
ASSERT_LE(150U, malloc_usable_size(ptr));
for (size_t i = 0; i < 50; i++) {
ASSERT_EQ(0x23, ptr[i]);
}
memset(ptr, 0x23, 150);
ptr = (char*)realloc(ptr, 425);
ASSERT_TRUE(ptr != NULL);
ASSERT_LE(425U, malloc_usable_size(ptr));
for (size_t i = 0; i < 150; i++) {
ASSERT_EQ(0x23, ptr[i]);
}
free(ptr);
}
TEST(malloc, calloc_realloc_larger) {
// Realloc to a larger size, calloc is used for the original allocation.
char *ptr = (char *)calloc(1, 100);
ASSERT_TRUE(ptr != NULL);
ASSERT_LE(100U, malloc_usable_size(ptr));
ptr = (char *)realloc(ptr, 200);
ASSERT_TRUE(ptr != NULL);
ASSERT_LE(200U, malloc_usable_size(ptr));
for (size_t i = 0; i < 100; i++) {
ASSERT_EQ(0, ptr[i]);
}
free(ptr);
}
TEST(malloc, calloc_realloc_smaller) {
// Realloc to a smaller size, calloc is used for the original allocation.
char *ptr = (char *)calloc(1, 200);
ASSERT_TRUE(ptr != NULL);
ASSERT_LE(200U, malloc_usable_size(ptr));
ptr = (char *)realloc(ptr, 100);
ASSERT_TRUE(ptr != NULL);
ASSERT_LE(100U, malloc_usable_size(ptr));
for (size_t i = 0; i < 100; i++) {
ASSERT_EQ(0, ptr[i]);
}
free(ptr);
}
TEST(malloc, calloc_multiple_realloc) {
// Multiple reallocs, calloc is used for the original allocation.
char *ptr = (char *)calloc(1, 200);
ASSERT_TRUE(ptr != NULL);
ASSERT_LE(200U, malloc_usable_size(ptr));
ptr = (char *)realloc(ptr, 100);
ASSERT_TRUE(ptr != NULL);
ASSERT_LE(100U, malloc_usable_size(ptr));
for (size_t i = 0; i < 100; i++) {
ASSERT_EQ(0, ptr[i]);
}
ptr = (char*)realloc(ptr, 50);
ASSERT_TRUE(ptr != NULL);
ASSERT_LE(50U, malloc_usable_size(ptr));
for (size_t i = 0; i < 50; i++) {
ASSERT_EQ(0, ptr[i]);
}
ptr = (char*)realloc(ptr, 150);
ASSERT_TRUE(ptr != NULL);
ASSERT_LE(150U, malloc_usable_size(ptr));
for (size_t i = 0; i < 50; i++) {
ASSERT_EQ(0, ptr[i]);
}
memset(ptr, 0, 150);
ptr = (char*)realloc(ptr, 425);
ASSERT_TRUE(ptr != NULL);
ASSERT_LE(425U, malloc_usable_size(ptr));
for (size_t i = 0; i < 150; i++) {
ASSERT_EQ(0, ptr[i]);
}
free(ptr);
}
TEST(malloc, realloc_overflow) {
errno = 0;
ASSERT_EQ(NULL, realloc(NULL, SIZE_MAX));
ASSERT_EQ(ENOMEM, errno);
void* ptr = malloc(100);
ASSERT_TRUE(ptr != NULL);
errno = 0;
ASSERT_EQ(NULL, realloc(ptr, SIZE_MAX));
ASSERT_EQ(ENOMEM, errno);
free(ptr);
}
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
extern "C" void* pvalloc(size_t);
extern "C" void* valloc(size_t);
TEST(malloc, pvalloc_std) {
size_t pagesize = sysconf(_SC_PAGESIZE);
void* ptr = pvalloc(100);
ASSERT_TRUE(ptr != NULL);
ASSERT_TRUE((reinterpret_cast<uintptr_t>(ptr) & (pagesize-1)) == 0);
ASSERT_LE(pagesize, malloc_usable_size(ptr));
free(ptr);
}
TEST(malloc, pvalloc_overflow) {
ASSERT_EQ(NULL, pvalloc(SIZE_MAX));
}
TEST(malloc, valloc_std) {
size_t pagesize = sysconf(_SC_PAGESIZE);
void* ptr = pvalloc(100);
ASSERT_TRUE(ptr != NULL);
ASSERT_TRUE((reinterpret_cast<uintptr_t>(ptr) & (pagesize-1)) == 0);
free(ptr);
}
TEST(malloc, valloc_overflow) {
ASSERT_EQ(NULL, valloc(SIZE_MAX));
}
#endif
TEST(malloc, malloc_info) {
#ifdef __BIONIC__
char* buf;
size_t bufsize;
FILE* memstream = open_memstream(&buf, &bufsize);
ASSERT_NE(nullptr, memstream);
ASSERT_EQ(0, malloc_info(0, memstream));
ASSERT_EQ(0, fclose(memstream));
tinyxml2::XMLDocument doc;
ASSERT_EQ(tinyxml2::XML_SUCCESS, doc.Parse(buf));
auto root = doc.FirstChildElement();
ASSERT_NE(nullptr, root);
ASSERT_STREQ("malloc", root->Name());
ASSERT_STREQ("jemalloc-1", root->Attribute("version"));
auto arena = root->FirstChildElement();
for (; arena != nullptr; arena = arena->NextSiblingElement()) {
int val;
ASSERT_STREQ("heap", arena->Name());
ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->QueryIntAttribute("nr", &val));
ASSERT_EQ(tinyxml2::XML_SUCCESS,
arena->FirstChildElement("allocated-large")->QueryIntText(&val));
ASSERT_EQ(tinyxml2::XML_SUCCESS,
arena->FirstChildElement("allocated-huge")->QueryIntText(&val));
ASSERT_EQ(tinyxml2::XML_SUCCESS,
arena->FirstChildElement("allocated-bins")->QueryIntText(&val));
ASSERT_EQ(tinyxml2::XML_SUCCESS,
arena->FirstChildElement("bins-total")->QueryIntText(&val));
auto bin = arena->FirstChildElement("bin");
for (; bin != nullptr; bin = bin ->NextSiblingElement()) {
if (strcmp(bin->Name(), "bin") == 0) {
ASSERT_EQ(tinyxml2::XML_SUCCESS, bin->QueryIntAttribute("nr", &val));
ASSERT_EQ(tinyxml2::XML_SUCCESS,
bin->FirstChildElement("allocated")->QueryIntText(&val));
ASSERT_EQ(tinyxml2::XML_SUCCESS,
bin->FirstChildElement("nmalloc")->QueryIntText(&val));
ASSERT_EQ(tinyxml2::XML_SUCCESS,
bin->FirstChildElement("ndalloc")->QueryIntText(&val));
}
}
}
#endif
}
TEST(malloc, calloc_usable_size) {
for (size_t size = 1; size <= 2048; size++) {
void* pointer = malloc(size);
ASSERT_TRUE(pointer != nullptr);
memset(pointer, 0xeb, malloc_usable_size(pointer));
free(pointer);
// We should get a previous pointer that has been set to non-zero.
// If calloc does not zero out all of the data, this will fail.
uint8_t* zero_mem = reinterpret_cast<uint8_t*>(calloc(1, size));
ASSERT_TRUE(pointer != nullptr);
size_t usable_size = malloc_usable_size(zero_mem);
for (size_t i = 0; i < usable_size; i++) {
ASSERT_EQ(0, zero_mem[i]) << "Failed at allocation size " << size << " at byte " << i;
}
free(zero_mem);
}
}