Jason Turner c0bf6ee99d Apply corrections from the "include what you use" tool
Generally cleanups of the includes. Making sure each file
can properly stand on its own and forward declares when possible.
2014-05-10 18:41:11 -06:00

568 lines
19 KiB
C++

// This file is distributed under the BSD License.
// See "license.txt" for details.
// Copyright 2009-2012, Jonathan Turner (jonathan@emptycrate.com)
// Copyright 2009-2014, Jason Turner (jason@emptycrate.com)
// http://www.chaiscript.com
/// \file
/// This file contains utility functions for registration of STL container
/// classes. The methodology used is based on the SGI STL concepts.
/// http://www.sgi.com/tech/stl/table_of_contents.html
#ifndef CHAISCRIPT_BOOTSTRAP_STL_HPP_
#define CHAISCRIPT_BOOTSTRAP_STL_HPP_
#include <functional>
#include <iterator>
#include <memory>
#include <stdexcept>
#include <string>
#include <typeinfo>
#include <vector>
#include "bootstrap.hpp"
#include "boxed_value.hpp"
#include "dispatchkit.hpp"
#include "operators.hpp"
#include "proxy_constructors.hpp"
#include "register_function.hpp"
#include "type_info.hpp"
namespace chaiscript
{
namespace bootstrap
{
namespace standard_library
{
/// Bidir_Range, based on the D concept of ranges.
/// \todo Update the Range code to base its capabilities on
/// the user_typetraits of the iterator passed in
template<typename Container>
struct Bidir_Range
{
typedef Container container_type;
typedef typename std::iterator_traits<typename Container::iterator>::reference reference_type;
Bidir_Range(Container &c)
: m_begin(c.begin()), m_end(c.end())
{
}
bool empty() const
{
return m_begin == m_end;
}
void pop_front()
{
if (empty())
{
throw std::range_error("Range empty");
}
++m_begin;
}
void pop_back()
{
if (empty())
{
throw std::range_error("Range empty");
}
--m_end;
}
reference_type front() const
{
if (empty())
{
throw std::range_error("Range empty");
}
return *m_begin;
}
reference_type back() const
{
if (empty())
{
throw std::range_error("Range empty");
}
typename Container::iterator pos = m_end;
--pos;
return *(pos);
}
typename Container::iterator m_begin;
typename Container::iterator m_end;
};
template<typename Container>
struct Const_Bidir_Range
{
typedef const Container container_type;
typedef typename std::iterator_traits<typename Container::const_iterator>::reference const_reference_type;
Const_Bidir_Range(const Container &c)
: m_begin(c.begin()), m_end(c.end())
{
}
bool empty() const
{
return m_begin == m_end;
}
void pop_front()
{
if (empty())
{
throw std::range_error("Range empty");
}
++m_begin;
}
void pop_back()
{
if (empty())
{
throw std::range_error("Range empty");
}
--m_end;
}
const_reference_type front() const
{
if (empty())
{
throw std::range_error("Range empty");
}
return *m_begin;
}
const_reference_type back() const
{
if (empty())
{
throw std::range_error("Range empty");
}
typename Container::const_iterator pos = m_end;
--pos;
return *(pos);
}
typename Container::const_iterator m_begin;
typename Container::const_iterator m_end;
};
namespace detail {
template<typename T>
size_t count(const T &t_target, const typename T::key_type &t_key)
{
return t_target.count(t_key);
}
template<typename T>
void insert(T &t_target, const T &t_other)
{
t_target.insert(t_other.begin(), t_other.end());
}
template<typename T>
void insert_ref(T &t_target, const typename T::value_type &t_val)
{
t_target.insert(t_val);
}
/// Add Bidir_Range support for the given ContainerType
template<typename Bidir_Type>
ModulePtr input_range_type_impl(const std::string &type, ModulePtr m = ModulePtr(new Module()))
{
m->add(user_type<Bidir_Type>(), type + "_Range");
copy_constructor<Bidir_Type>(type + "_Range", m);
m->add(constructor<Bidir_Type (typename Bidir_Type::container_type &)>(), "range");
m->add(fun(&Bidir_Type::empty), "empty");
m->add(fun(&Bidir_Type::pop_front), "pop_front");
m->add(fun(&Bidir_Type::front), "front");
m->add(fun(&Bidir_Type::pop_back), "pop_back");
m->add(fun(&Bidir_Type::back), "back");
return m;
}
/// Algorithm for inserting at a specific position into a container
template<typename Type>
void insert_at(Type &container, int pos, const typename Type::value_type &v)
{
auto itr = container.begin();
auto end = container.end();
if (pos < 0 || std::distance(itr, end) < pos)
{
throw std::range_error("Cannot insert past end of range");
}
std::advance(itr, pos);
container.insert(itr, v);
}
/// Algorithm for erasing a specific position from a container
template<typename Type>
void erase_at(Type &container, int pos)
{
auto itr = container.begin();
auto end = container.end();
if (pos < 0 || std::distance(itr, end) < (pos-1))
{
throw std::range_error("Cannot erase past end of range");
}
std::advance(itr, pos);
container.erase(itr);
}
}
template<typename ContainerType>
ModulePtr input_range_type(const std::string &type, ModulePtr m = ModulePtr(new Module()))
{
detail::input_range_type_impl<Bidir_Range<ContainerType> >(type,m);
detail::input_range_type_impl<Const_Bidir_Range<ContainerType> >("Const_" + type, m);
return m;
}
/// Add random_access_container concept to the given ContainerType
/// http://www.sgi.com/tech/stl/RandomAccessContainer.html
template<typename ContainerType>
ModulePtr random_access_container_type(const std::string &/*type*/, ModulePtr m = ModulePtr(new Module()))
{
typedef typename ContainerType::reference(ContainerType::*indexoper)(size_t);
typedef typename ContainerType::const_reference(ContainerType::*constindexoper)(size_t) const;
//In the interest of runtime safety for the m, we prefer the at() method for [] access,
//to throw an exception in an out of bounds condition.
m->add(
fun(std::function<typename ContainerType::reference (ContainerType *, int)>
(std::mem_fn(static_cast<indexoper>(&ContainerType::at)))), "[]");
m->add(
fun(std::function<typename ContainerType::const_reference (const ContainerType *, int)>
(std::mem_fn(static_cast<constindexoper>(&ContainerType::at)))), "[]");
return m;
}
/// Add assignable concept to the given ContainerType
/// http://www.sgi.com/tech/stl/Assignable.html
template<typename ContainerType>
ModulePtr assignable_type(const std::string &type, ModulePtr m = ModulePtr(new Module()))
{
basic_constructors<ContainerType>(type, m);
operators::assign<ContainerType>(m);
return m;
}
/// Add container concept to the given ContainerType
/// http://www.sgi.com/tech/stl/Container.html
template<typename ContainerType>
ModulePtr container_type(const std::string &/*type*/, ModulePtr m = ModulePtr(new Module()))
{
m->add(fun( std::function<size_t (const ContainerType *)>( [](const ContainerType *a) { return a->size(); } ) ), "size");
m->add(fun( std::function<bool (const ContainerType *)>( [](const ContainerType *a) { return a->empty(); } ) ), "empty");
m->add(fun( std::function<void (ContainerType *)>( [](ContainerType *a) { a->clear(); } ) ), "clear");
return m;
}
/// Add default constructable concept to the given Type
/// http://www.sgi.com/tech/stl/DefaultConstructible.html
template<typename Type>
ModulePtr default_constructible_type(const std::string &type, ModulePtr m = ModulePtr(new Module()))
{
m->add(constructor<Type ()>(), type);
return m;
}
/// Add sequence concept to the given ContainerType
/// http://www.sgi.com/tech/stl/Sequence.html
template<typename ContainerType>
ModulePtr sequence_type(const std::string &/*type*/, ModulePtr m = ModulePtr(new Module()))
{
std::string insert_name;
if (typeid(typename ContainerType::value_type) == typeid(Boxed_Value))
{
insert_name = "insert_ref_at";
} else {
insert_name = "insert_at";
}
m->add(fun(&detail::insert_at<ContainerType>), insert_name);
m->add(fun(&detail::erase_at<ContainerType>), "erase_at");
return m;
}
/// Add back insertion sequence concept to the given ContainerType
/// http://www.sgi.com/tech/stl/BackInsertionSequence.html
template<typename ContainerType>
ModulePtr back_insertion_sequence_type(const std::string &/*type*/, ModulePtr m = ModulePtr(new Module()))
{
typedef typename ContainerType::reference (ContainerType::*backptr)();
m->add(fun(static_cast<backptr>(&ContainerType::back)), "back");
std::string push_back_name;
if (typeid(typename ContainerType::value_type) == typeid(Boxed_Value))
{
push_back_name = "push_back_ref";
} else {
push_back_name = "push_back";
}
typedef void (ContainerType::*pushback)(const typename ContainerType::value_type &);
m->add(fun(static_cast<pushback>(&ContainerType::push_back)), push_back_name);
m->add(fun(&ContainerType::pop_back), "pop_back");
return m;
}
/// Front insertion sequence
/// http://www.sgi.com/tech/stl/FrontInsertionSequence.html
template<typename ContainerType>
ModulePtr front_insertion_sequence_type(const std::string &, ModulePtr m = ModulePtr(new Module()))
{
typedef typename ContainerType::reference (ContainerType::*frontptr)();
typedef void (ContainerType::*pushptr)(typename ContainerType::const_reference);
typedef void (ContainerType::*popptr)();
m->add(fun(static_cast<frontptr>(&ContainerType::front)), "front");
std::string push_front_name;
if (typeid(typename ContainerType::value_type) == typeid(Boxed_Value))
{
push_front_name = "push_front_ref";
} else {
push_front_name = "push_front";
}
m->add(fun(static_cast<pushptr>(&ContainerType::push_front)), push_front_name);
m->add(fun(static_cast<popptr>(&ContainerType::pop_front)), "pop_front");
return m;
}
/// bootstrap a given PairType
/// http://www.sgi.com/tech/stl/pair.html
template<typename PairType>
ModulePtr pair_type(const std::string &type, ModulePtr m = ModulePtr(new Module()))
{
m->add(user_type<PairType>(), type);
typename PairType::first_type PairType::* f = &PairType::first;
typename PairType::second_type PairType::* s = &PairType::second;
m->add(fun(f), "first");
m->add(fun(s), "second");
basic_constructors<PairType>(type, m);
m->add(constructor<PairType (const typename PairType::first_type &, const typename PairType::second_type &)>(), type);
return m;
}
/// Add pair associative container concept to the given ContainerType
/// http://www.sgi.com/tech/stl/PairAssociativeContainer.html
template<typename ContainerType>
ModulePtr pair_associative_container_type(const std::string &type, ModulePtr m = ModulePtr(new Module()))
{
pair_type<typename ContainerType::value_type>(type + "_Pair", m);
return m;
}
/// Add unique associative container concept to the given ContainerType
/// http://www.sgi.com/tech/stl/UniqueAssociativeContainer.html
template<typename ContainerType>
ModulePtr unique_associative_container_type(const std::string &/*type*/, ModulePtr m = ModulePtr(new Module()))
{
m->add(fun(detail::count<ContainerType>), "count");
typedef size_t (ContainerType::*erase_ptr)(const typename ContainerType::key_type &);
m->add(fun(static_cast<erase_ptr>(&ContainerType::erase)), "erase");
m->add(fun(&detail::insert<ContainerType>), "insert");
std::string insert_name;
if (typeid(typename ContainerType::mapped_type) == typeid(Boxed_Value))
{
insert_name = "insert_ref";
} else {
insert_name = "insert";
}
m->add(fun(&detail::insert_ref<ContainerType>), insert_name);
return m;
}
/// Add a MapType container
/// http://www.sgi.com/tech/stl/Map.html
template<typename MapType>
ModulePtr map_type(const std::string &type, ModulePtr m = ModulePtr(new Module()))
{
m->add(user_type<MapType>(), type);
typedef typename MapType::mapped_type &(MapType::*elemaccess)(const typename MapType::key_type &);
m->add(fun(static_cast<elemaccess>(&MapType::operator[])), "[]");
container_type<MapType>(type, m);
assignable_type<MapType>(type, m);
unique_associative_container_type<MapType>(type, m);
pair_associative_container_type<MapType>(type, m);
input_range_type<MapType>(type, m);
return m;
}
/// hopefully working List type
/// http://www.sgi.com/tech/stl/List.html
template<typename ListType>
ModulePtr list_type(const std::string &type, ModulePtr m = ModulePtr(new Module()))
{
m->add(user_type<ListType>(), type);
front_insertion_sequence_type<ListType>(type, m);
back_insertion_sequence_type<ListType>(type, m);
sequence_type<ListType>(type, m);
container_type<ListType>(type, m);
default_constructible_type<ListType>(type, m);
assignable_type<ListType>(type, m);
input_range_type<ListType>(type, m);
return m;
}
/// Create a vector type with associated concepts
/// http://www.sgi.com/tech/stl/Vector.html
template<typename VectorType>
ModulePtr vector_type(const std::string &type, ModulePtr m = ModulePtr(new Module()))
{
m->add(user_type<VectorType>(), type);
typedef typename VectorType::reference (VectorType::*frontptr)();
m->add(fun(static_cast<frontptr>(&VectorType::front)), "front");
back_insertion_sequence_type<VectorType>(type, m);
sequence_type<VectorType>(type, m);
random_access_container_type<VectorType>(type, m);
container_type<VectorType>(type, m);
default_constructible_type<VectorType>(type, m);
assignable_type<VectorType>(type, m);
input_range_type<VectorType>(type, m);
if (typeid(VectorType) == typeid(std::vector<Boxed_Value>))
{
m->eval("def Vector::`==`(rhs) : type_match(rhs, this) { \
if ( rhs.size() != this.size() ) { \
return false; \
} else { \
auto r1 = range(this); \
auto r2 = range(rhs); \
while (!r1.empty()) \
{ \
if (!eq(r1.front(), r2.front())) \
{ \
return false; \
} \
r1.pop_front(); \
r2.pop_front(); \
} \
return true; \
} \
}");
}
return m;
}
/// Add a String container
/// http://www.sgi.com/tech/stl/basic_string.html
template<typename String>
ModulePtr string_type(const std::string &type, ModulePtr m = ModulePtr(new Module()))
{
m->add(user_type<String>(), type);
operators::addition<String>(m);
operators::assign_sum<String>(m);
opers_comparison<String>(m);
random_access_container_type<String>(type, m);
sequence_type<String>(type, m);
default_constructible_type<String>(type, m);
// container_type<String>(type, m);
assignable_type<String>(type, m);
input_range_type<String>(type, m);
//Special case: add push_back to string (which doesn't support other back_insertion operations
std::string push_back_name;
if (typeid(typename String::value_type) == typeid(Boxed_Value))
{
push_back_name = "push_back_ref";
} else {
push_back_name = "push_back";
}
m->add(fun(&String::push_back), push_back_name);
typedef std::function<size_t (const String *, const String &, size_t)> find_func;
m->add(fun(find_func( [](const String *s, const String &f, size_t pos) { return s->find(f, pos); } )), "find");
m->add(fun(find_func( [](const String *s, const String &f, size_t pos) { return s->rfind(f, pos); } ) ), "rfind");
m->add(fun(find_func( [](const String *s, const String &f, size_t pos) { return s->find_first_of(f, pos); } ) ), "find_first_of");
m->add(fun(find_func( [](const String *s, const String &f, size_t pos) { return s->find_last_of(f, pos); } ) ), "find_last_of");
m->add(fun(find_func( [](const String *s, const String &f, size_t pos) { return s->find_last_not_of(f, pos); } ) ), "find_last_not_of");
m->add(fun(find_func( [](const String *s, const String &f, size_t pos) { return s->find_first_not_of(f, pos); } ) ), "find_first_not_of");
m->add(fun( std::function<void (String *)>( [](String *s) { return s->clear(); } ) ), "clear");
m->add(fun( std::function<bool (const String *)>( [](const String *s) { return s->empty(); } ) ), "empty");
m->add(fun( std::function<size_t (const String *)>( [](const String *s) { return s->size(); } ) ), "size");
m->add(fun( std::function<const char *(const String *)>( [](const String *s) { return s->c_str(); } ) ), "c_str");
m->add(fun( std::function<const char *(const String *)>( [](const String *s) { return s->data(); } ) ), "data");
m->add(fun( std::function<String (const String *, int, int)>( [](const String *s, int pos, int len) { return s->substr(pos, len); } ) ), "substr");
return m;
}
}
}
}
#endif