609 lines
16 KiB
C++

// This file is distributed under the BSD License.
// See "license.txt" for details.
// Copyright 2009, Jonathan Turner (jturner@minnow-lang.org)
// and Jason Turner (lefticus@gmail.com)
// http://www.chaiscript.com
#ifndef __dispatchkit_hpp__
#define __dispatchkit_hpp__
#include <typeinfo>
#include <string>
#include <map>
#include <set>
#include <boost/shared_ptr.hpp>
#include <boost/lexical_cast.hpp>
#include <stdexcept>
#include <vector>
#include <iostream>
#include <deque>
#include <boost/thread.hpp>
#include "boxed_value.hpp"
#include "type_info.hpp"
#include "proxy_functions.hpp"
#include "proxy_constructors.hpp"
namespace chaiscript
{
class Module
{
public:
Module &add(const Type_Info &ti, const std::string &name)
{
m_typeinfos.push_back(std::make_pair(ti, name));
return *this;
}
Module &add(const Proxy_Function &f, const std::string &name)
{
m_funcs.push_back(std::make_pair(f, name));
return *this;
}
template<typename T>
void apply(T &t) const
{
apply(m_typeinfos.begin(), m_typeinfos.end(), t);
apply(m_funcs.begin(), m_funcs.end(), t);
}
private:
std::vector<std::pair<Type_Info, std::string> > m_typeinfos;
std::vector<std::pair<Proxy_Function, std::string> > m_funcs;
template<typename T, typename InItr>
void apply(InItr begin, InItr end, T &t) const
{
while (begin != end)
{
t.add(begin->first, begin->second);
++begin;
}
}
};
typedef boost::shared_ptr<Module> ModulePtr;
/**
* A Proxy_Function implementation that is able to take
* a vector of Proxy_Functions and perform a dispatch on them. It is
* used specifically in the case of dealing with Function object variables
*/
class Dispatch_Function : public Proxy_Function_Base
{
public:
Dispatch_Function(const std::vector<std::pair<std::string, Proxy_Function > > &t_funcs)
: m_funcs(t_funcs)
{
}
virtual bool operator==(const Proxy_Function_Base &) const
{
return false;
}
virtual ~Dispatch_Function() {}
virtual Boxed_Value operator()(const std::vector<Boxed_Value> &params)
{
return dispatch(m_funcs.begin(), m_funcs.end(), params);
}
virtual std::vector<Type_Info> get_param_types() const
{
return std::vector<Type_Info>();
}
virtual int get_arity() const
{
return -1;
}
virtual bool call_match(const std::vector<Boxed_Value> &vals) const
{
typedef std::vector<std::pair<std::string, Proxy_Function > > function_vec;
function_vec::const_iterator begin = m_funcs.begin();
function_vec::const_iterator end = m_funcs.end();
while (begin != end)
{
if (begin->second->call_match(vals))
{
return true;
} else {
++begin;
}
}
return false;
}
virtual std::string annotation() const
{
return "";
}
private:
std::vector<std::pair<std::string, Proxy_Function > > m_funcs;
};
/**
* Exception thrown in the case that a multi method dispatch fails
* because no matching function was found
* at runtime due to either an arity_error, a guard_error or a bad_boxed_cast
* exception
*/
struct reserved_word_error : std::runtime_error
{
reserved_word_error(const std::string &word) throw()
: std::runtime_error("Reserved word not allowed in object name: " + word)
{
}
virtual ~reserved_word_error() throw() {}
};
/**
* Main class for the dispatchkit. Handles management
* of the object stack, functions and registered types.
*/
class Dispatch_Engine
{
public:
typedef std::map<std::string, chaiscript::Type_Info> Type_Name_Map;
typedef std::map<std::string, Boxed_Value> Scope;
typedef std::pair<std::map<std::string, Boxed_Value>, std::deque<Scope> > StackData;
typedef boost::shared_ptr<StackData> Stack;
Dispatch_Engine()
: m_place_holder(boost::shared_ptr<Placeholder_Object>(new Placeholder_Object()))
{
StackData &stack = get_stack_data();
stack.second.push_back(Scope());
}
/**
* Add a new named Proxy_Function to the system
*/
bool add(const Proxy_Function &f, const std::string &name)
{
validate_object_name(name);
StackData &stack = get_stack_data();
stack.first.erase(name);
return add_function(f, name);
}
/**
* Add a module's worth of registrations to the system
*/
void add(const ModulePtr &m)
{
m->apply(*this);
}
/**
* Set the value of an object, by name. If the object
* is not available in the current scope it is created
*/
void add(const Boxed_Value &obj, const std::string &name)
{
validate_object_name(name);
StackData &stack = get_stack_data();
for (int i = stack.second.size()-1; i >= 0; --i)
{
std::map<std::string, Boxed_Value>::const_iterator itr = (stack.second)[i].find(name);
if (itr != (stack.second)[i].end())
{
stack.first.erase(name);
(stack.second)[i][name] = Boxed_Value(obj);
return;
}
}
add_object(name, obj);
}
/**
* Adds a named object to the current scope
*/
void add_object(const std::string &name, const Boxed_Value &obj)
{
StackData &stack = get_stack_data();
validate_object_name(name);
stack.first.erase(name);
stack.second.back()[name] = Boxed_Value(obj);
}
/**
* Adds a new scope to the stack
*/
void new_scope()
{
StackData &stack = get_stack_data();
stack.second.push_back(Scope());
}
/**
* Pops the current scope from the stack
*/
void pop_scope()
{
StackData &stack = get_stack_data();
if (stack.second.size() > 1)
{
Scope &scope(stack.second.back());
for (Scope::const_iterator itr = scope.begin();
itr != scope.end();
++itr)
{
stack.first.erase(itr->first);
}
stack.second.pop_back();
} else {
throw std::range_error("Unable to pop global stack");
}
}
/**
* Returns the current stack
*/
Stack get_stack()
{
setup_stack();
return m_thread_stack->stack;
}
/**
* Swaps out the stack with a new stack
* \returns the old stack
* \param[in] s The new stack
*/
Stack set_stack(const Stack &s)
{
setup_stack();
Stack old = m_thread_stack->stack;
m_thread_stack->stack = s;
return old;
}
Stack new_stack() const
{
Stack s(new Stack::element_type());
s->second.push_back(Scope());
return s;
}
void sync_cache()
{
get_stack()->first.clear();
}
/**
* Searches the current stack for an object of the given name
* includes a special overload for the _ place holder object to
* ensure that it is always in scope.
*/
Boxed_Value get_object(const std::string &name) const
{
if (name == "_")
{
return m_place_holder;
}
StackData &stack = get_stack_data();
std::map<std::string, Boxed_Value> &cache = stack.first;
std::map<std::string, Boxed_Value>::const_iterator itr = cache.find(name);
if (itr != cache.end())
{
return itr->second;
}
for (int i = stack.second.size()-1; i >= 0; --i)
{
std::map<std::string, Boxed_Value>::const_iterator itr = (stack.second)[i].find(name);
if (itr != (stack.second)[i].end())
{
cache[name] = itr->second;
return itr->second;
}
}
std::vector<std::pair<std::string, std::multimap<std::string, Proxy_Function >::mapped_type> > funcs = get_function(name);
if (funcs.empty())
{
throw std::range_error("Object not known: " + name);
} else {
Boxed_Value f(Proxy_Function(new Dispatch_Function(funcs)));
cache[name] = f;
return f;
}
}
/**
* Registers a new named type
*/
void add(const Type_Info &ti, const std::string &name)
{
boost::unique_lock<boost::shared_mutex> l(m_mutex);
m_types.insert(std::make_pair(name, ti));
}
/**
* Returns the type info for a named type
*/
Type_Info get_type(const std::string &name) const
{
boost::shared_lock<boost::shared_mutex> l(m_mutex);
Type_Name_Map::const_iterator itr = m_types.find(name);
if (itr != m_types.end())
{
return itr->second;
}
throw std::range_error("Type Not Known");
}
/**
* Returns the registered name of a known type_info object
* compares the "bare_type_info" for the broadest possible
* match
*/
std::string get_type_name(const Type_Info &ti) const
{
boost::shared_lock<boost::shared_mutex> l(m_mutex);
for (Type_Name_Map::const_iterator itr = m_types.begin();
itr != m_types.end();
++itr)
{
if (itr->second.m_bare_type_info == ti.m_bare_type_info)
{
return itr->first;
}
}
return ti.m_bare_type_info->name();
}
/**
* Return all registered types
*/
std::vector<std::pair<std::string, Type_Info> > get_types() const
{
boost::shared_lock<boost::shared_mutex> l(m_mutex);
return std::vector<std::pair<std::string, Type_Info> >(m_types.begin(), m_types.end());
}
/**
* Return a function by name
*/
std::vector<std::pair<std::string, std::multimap<std::string, Proxy_Function >::mapped_type> >
get_function(const std::string &t_name) const
{
boost::shared_lock<boost::shared_mutex> l(m_mutex);
std::pair<std::multimap<std::string, Proxy_Function >::const_iterator, std::multimap<std::string, Proxy_Function >::const_iterator> range
= m_functions.equal_range(t_name);
return std::vector<std::pair<std::string, std::multimap<std::string, Proxy_Function >::mapped_type> >(range.first, range.second);
}
/**
* Return true if a function exists
*/
bool function_exists(const std::string &name) const
{
boost::shared_lock<boost::shared_mutex> l(m_mutex);
return m_functions.find(name) != m_functions.end();
}
/**
* Get a vector of all registered functions
*/
std::vector<std::pair<std::string, Proxy_Function > > get_functions() const
{
boost::shared_lock<boost::shared_mutex> l(m_mutex);
return std::vector<std::pair<std::string, Proxy_Function > >(m_functions.begin(), m_functions.end());
}
void add_reserved_word(const std::string &name)
{
boost::unique_lock<boost::shared_mutex> l(m_mutex);
m_reserved_words.insert(name);
}
Boxed_Value call_function(const std::string &t_name, const std::vector<Boxed_Value> &params) const
{
boost::shared_lock<boost::shared_mutex> l(m_mutex);
std::pair<std::multimap<std::string, Proxy_Function >::const_iterator, std::multimap<std::string, Proxy_Function >::const_iterator> range
= m_functions.equal_range(t_name);
l.unlock();
return dispatch(range.first, range.second, params);
}
private:
/**
* Returns the current stack
*/
StackData &get_stack_data() const
{
setup_stack();
return *(m_thread_stack->stack);
}
void setup_stack() const
{
if (!m_thread_stack.get())
{
m_thread_stack.reset(new Stack_Holder(new_stack()));
}
}
/**
* Throw a reserved_word exception if the name is not allowed
*/
void validate_object_name(const std::string &name) const
{
boost::shared_lock<boost::shared_mutex> l(m_mutex);
if (m_reserved_words.find(name) != m_reserved_words.end())
{
throw reserved_word_error(name);
}
}
/**
* Implementation detail for adding a function. Returns
* true if the function was added, false if a function with the
* same signature and name already exists.
*/
bool add_function(const Proxy_Function &f, const std::string &t_name)
{
boost::unique_lock<boost::shared_mutex> l(m_mutex);
std::pair<std::multimap<std::string, Proxy_Function >::const_iterator, std::multimap<std::string, Proxy_Function >::const_iterator> range
= m_functions.equal_range(t_name);
while (range.first != range.second)
{
if ((*f) == *(range.first->second))
{
return false;
}
++range.first;
}
m_functions.insert(std::make_pair(t_name, f));
return true;
}
mutable boost::shared_mutex m_mutex;
struct Stack_Holder
{
Stack_Holder(Stack s)
: stack(s)
{
}
Stack stack;
};
mutable boost::thread_specific_ptr<Stack_Holder> m_thread_stack;
std::multimap<std::string, Proxy_Function > m_functions;
Type_Name_Map m_types;
Boxed_Value m_place_holder;
std::set<std::string> m_reserved_words;
};
/**
* Dump object info to stdout
*/
void dump_object(Boxed_Value o, const Dispatch_Engine &e)
{
Type_Info ti = o.get_type_info();
std::cout << (ti.m_is_const?"const ":"") << e.get_type_name(ti) << std::endl;
}
/**
* Dump type info to stdout
*/
void dump_type(const Type_Info &type, const Dispatch_Engine &e)
{
std::cout << (type.m_is_const?"const ":"") << e.get_type_name(type);
}
/**
* Dump function to stdout
*/
void dump_function(const std::pair<const std::string, Proxy_Function > &f, const Dispatch_Engine &e)
{
std::vector<Type_Info> params = f.second->get_param_types();
std::string annotation = f.second->annotation();
if (annotation.size() > 0) {
std::cout << annotation;
}
dump_type(params.front(), e);
std::cout << " " << f.first << "(";
for (std::vector<Type_Info>::const_iterator itr = params.begin() + 1;
itr != params.end();
)
{
dump_type(*itr, e);
++itr;
if (itr != params.end())
{
std::cout << ", ";
}
}
std::cout << ") " << std::endl;
}
/**
* Dump all system info to stdout
*/
void dump_system(const Dispatch_Engine &s)
{
std::cout << "Registered Types: " << std::endl;
std::vector<std::pair<std::string, Type_Info> > types = s.get_types();
for (std::vector<std::pair<std::string, Type_Info> >::const_iterator itr = types.begin();
itr != types.end();
++itr)
{
std::cout << itr->first << ": ";
std::cout << itr->second.m_bare_type_info->name();
std::cout << std::endl;
}
std::cout << std::endl;
std::vector<std::pair<std::string, Proxy_Function > > funcs = s.get_functions();
std::cout << "Functions: " << std::endl;
for (std::vector<std::pair<std::string, Proxy_Function > >::const_iterator itr = funcs.begin();
itr != funcs.end();
++itr)
{
dump_function(*itr, s);
}
std::cout << std::endl;
}
/**
* return true if the Boxed_Value matches the registered type by name
*/
bool is_type(const Dispatch_Engine &e, const std::string &user_typename, Boxed_Value r)
{
try {
return e.get_type(user_typename) == r.get_type_info();
} catch (const std::range_error &) {
return false;
}
}
std::string type_name(const Dispatch_Engine &e, Boxed_Value obj)
{
return e.get_type_name(obj.get_type_info());
}
}
#endif