Jason Turner 5c541c3d8e Implement valuetypes with small size optimizations
Reduces trivial types such as int down to 1 dynamic allocation instead
of 3.
2014-10-18 15:58:25 -06:00

1165 lines
35 KiB
C++

// This file is distributed under the BSD License.
// See "license.txt" for details.
// Copyright 2009-2012, Jonathan Turner (jonathan@emptycrate.com)
// Copyright 2009-2014, Jason Turner (jason@emptycrate.com)
// http://www.chaiscript.com
#ifndef CHAISCRIPT_DISPATCHKIT_HPP_
#define CHAISCRIPT_DISPATCHKIT_HPP_
#include <algorithm>
#include <cassert>
#include <deque>
#include <iostream>
#include <iterator>
#include <list>
#include <map>
#include <memory>
#include <set>
#include <stdexcept>
#include <string>
#include <typeinfo>
#include <utility>
#include <vector>
#include "../chaiscript_defines.hpp"
#include "../chaiscript_threading.hpp"
#include "boxed_cast.hpp"
#include "boxed_cast_helper.hpp"
#include "boxed_value.hpp"
#include "dynamic_cast_conversion.hpp"
#include "dynamic_object.hpp"
#include "proxy_constructors.hpp"
#include "proxy_functions.hpp"
#include "type_info.hpp"
namespace chaiscript {
class Boxed_Number;
} // namespace chaiscript
namespace chaiscript {
namespace dispatch {
class Dynamic_Proxy_Function;
class Proxy_Function_Base;
struct Placeholder_Object;
} // namespace dispatch
} // namespace chaiscript
/// \namespace chaiscript::dispatch
/// \brief Classes and functions specific to the runtime dispatch side of ChaiScript. Some items may be of use to the end user.
namespace chaiscript
{
namespace exception
{
/// Exception thrown in the case that an object name is invalid because it is a reserved word
class reserved_word_error : public std::runtime_error
{
public:
reserved_word_error(const std::string &t_word) CHAISCRIPT_NOEXCEPT
: std::runtime_error("Reserved word not allowed in object name: " + t_word), m_word(t_word)
{
}
virtual ~reserved_word_error() CHAISCRIPT_NOEXCEPT {}
std::string word() const
{
return m_word;
}
private:
std::string m_word;
};
/// Exception thrown in the case that an object name is invalid because it contains illegal characters
class illegal_name_error : public std::runtime_error
{
public:
illegal_name_error(const std::string &t_name) CHAISCRIPT_NOEXCEPT
: std::runtime_error("Reserved name not allowed in object name: " + t_name), m_name(t_name)
{
}
virtual ~illegal_name_error() CHAISCRIPT_NOEXCEPT {}
std::string name() const
{
return m_name;
}
private:
std::string m_name;
};
/// Exception thrown in the case that an object name is invalid because it already exists in current context
class name_conflict_error : public std::runtime_error
{
public:
name_conflict_error(const std::string &t_name) CHAISCRIPT_NOEXCEPT
: std::runtime_error("Name already exists in current context " + t_name), m_name(t_name)
{
}
virtual ~name_conflict_error() CHAISCRIPT_NOEXCEPT {}
std::string name() const
{
return m_name;
}
private:
std::string m_name;
};
/// Exception thrown in the case that a non-const object was added as a shared object
class global_non_const : public std::runtime_error
{
public:
global_non_const() CHAISCRIPT_NOEXCEPT
: std::runtime_error("a global object must be const")
{
}
virtual ~global_non_const() CHAISCRIPT_NOEXCEPT {}
};
}
/// \brief Holds a collection of ChaiScript settings which can be applied to the ChaiScript runtime.
/// Used to implement loadable module support.
class Module
{
public:
Module &add(Type_Info ti, std::string name)
{
m_typeinfos.emplace_back(std::move(ti), std::move(name));
return *this;
}
Module &add(Dynamic_Cast_Conversion d)
{
m_conversions.push_back(std::move(d));
return *this;
}
Module &add(Proxy_Function f, std::string name)
{
m_funcs.emplace_back(std::move(f), std::move(name));
return *this;
}
Module &add_global_const(Boxed_Value t_bv, std::string t_name)
{
if (!t_bv.is_const())
{
// throw chaiscript::exception::global_non_const();
}
m_globals.emplace_back(std::move(t_bv), std::move(t_name));
return *this;
}
//Add a bit of ChaiScript to eval during module implementation
Module &eval(std::string str)
{
m_evals.push_back(std::move(str));
return *this;
}
Module &add(const std::shared_ptr<Module> &m)
{
m->apply(*this, *this);
return *m;
}
template<typename Eval, typename Engine>
void apply(Eval &t_eval, Engine &t_engine) const
{
apply(m_typeinfos.begin(), m_typeinfos.end(), t_engine);
apply(m_funcs.begin(), m_funcs.end(), t_engine);
apply_eval(m_evals.begin(), m_evals.end(), t_eval);
apply_single(m_conversions.begin(), m_conversions.end(), t_engine);
apply_globals(m_globals.begin(), m_globals.end(), t_engine);
}
~Module()
{
}
private:
std::vector<std::pair<Type_Info, std::string> > m_typeinfos;
std::vector<std::pair<Proxy_Function, std::string> > m_funcs;
std::vector<std::pair<Boxed_Value, std::string> > m_globals;
std::vector<std::string> m_evals;
std::vector<Dynamic_Cast_Conversion> m_conversions;
template<typename T, typename InItr>
static void apply(InItr begin, const InItr end, T &t)
{
for_each(begin, end, [&t](typename std::iterator_traits<InItr>::reference obj)
{
try {
t.add(obj.first, obj.second);
} catch (const chaiscript::exception::name_conflict_error &) {
/// \todo Should we throw an error if there's a name conflict
/// while applying a module?
}
}
);
}
template<typename T, typename InItr>
static void apply_globals(InItr begin, InItr end, T &t)
{
while (begin != end)
{
t.add_global_const(begin->first, begin->second);
++begin;
}
}
template<typename T, typename InItr>
static void apply_single(InItr begin, InItr end, T &t)
{
while (begin != end)
{
t.add(*begin);
++begin;
}
}
template<typename T, typename InItr>
static void apply_eval(InItr begin, InItr end, T &t)
{
while (begin != end)
{
t.eval(*begin);
++begin;
}
}
};
/// Convenience typedef for Module objects to be added to the ChaiScript runtime
typedef std::shared_ptr<Module> ModulePtr;
namespace detail
{
/// A Proxy_Function implementation that is able to take
/// a vector of Proxy_Functions and perform a dispatch on them. It is
/// used specifically in the case of dealing with Function object variables
class Dispatch_Function : public dispatch::Proxy_Function_Base
{
public:
Dispatch_Function(std::vector<Proxy_Function> t_funcs)
: Proxy_Function_Base(build_type_infos(t_funcs)),
m_funcs(std::move(t_funcs))
{
}
virtual bool operator==(const dispatch::Proxy_Function_Base &rhs) const CHAISCRIPT_OVERRIDE
{
try {
const Dispatch_Function &dispatchfun = dynamic_cast<const Dispatch_Function &>(rhs);
return m_funcs == dispatchfun.m_funcs;
} catch (const std::bad_cast &) {
return false;
}
}
virtual ~Dispatch_Function() {}
virtual std::vector<Const_Proxy_Function> get_contained_functions() const CHAISCRIPT_OVERRIDE
{
return std::vector<Const_Proxy_Function>(m_funcs.begin(), m_funcs.end());
}
virtual int get_arity() const CHAISCRIPT_OVERRIDE
{
if (m_funcs.empty()) {
return -1;
}
const int arity = m_funcs.front()->get_arity();
for (const auto &func : m_funcs)
{
if (arity != func->get_arity())
{
// The arities in the list do not match, so it's unspecified
return -1;
}
}
return arity;
}
virtual bool call_match(const std::vector<Boxed_Value> &vals, const Dynamic_Cast_Conversions &t_conversions) const CHAISCRIPT_OVERRIDE
{
for (const auto &func : m_funcs)
{
if (func->call_match(vals, t_conversions))
{
return true;
}
}
return false;
}
virtual std::string annotation() const CHAISCRIPT_OVERRIDE
{
return "Multiple method dispatch function wrapper.";
}
protected:
virtual Boxed_Value do_call(const std::vector<Boxed_Value> &params, const Dynamic_Cast_Conversions &t_conversions) const CHAISCRIPT_OVERRIDE
{
return dispatch::dispatch(m_funcs.begin(), m_funcs.end(), params, t_conversions);
}
private:
std::vector<Proxy_Function> m_funcs;
static std::vector<Type_Info> build_type_infos(const std::vector<Proxy_Function> &t_funcs)
{
typedef std::vector<Proxy_Function> function_vec;
auto begin = t_funcs.begin();
const function_vec::const_iterator end = t_funcs.end();
if (begin != end)
{
std::vector<Type_Info> type_infos = (*begin)->get_param_types();
++begin;
bool size_mismatch = false;
while (begin != end)
{
std::vector<Type_Info> param_types = (*begin)->get_param_types();
if (param_types.size() != type_infos.size())
{
size_mismatch = true;
}
for (size_t i = 0; i < type_infos.size() && i < param_types.size(); ++i)
{
if (!(type_infos[i] == param_types[i]))
{
type_infos[i] = detail::Get_Type_Info<Boxed_Value>::get();
}
}
++begin;
}
assert(type_infos.size() > 0 && " type_info vector size is < 0, this is only possible if something else is broken");
if (size_mismatch)
{
type_infos.resize(1);
}
return type_infos;
}
return std::vector<Type_Info>();
}
};
}
namespace detail
{
/**
* Main class for the dispatchkit. Handles management
* of the object stack, functions and registered types.
*/
class Dispatch_Engine
{
public:
typedef std::map<std::string, chaiscript::Type_Info> Type_Name_Map;
typedef std::map<std::string, Boxed_Value> Scope;
typedef std::vector<Scope> StackData;
struct State
{
std::map<std::string, std::vector<Proxy_Function> > m_functions;
std::map<std::string, Proxy_Function> m_function_objects;
std::map<std::string, Boxed_Value> m_global_objects;
Type_Name_Map m_types;
std::set<std::string> m_reserved_words;
State &operator=(const State &) = default;
};
Dispatch_Engine()
: m_stack_holder(this),
m_place_holder(std::make_shared<dispatch::Placeholder_Object>())
{
}
~Dispatch_Engine()
{
}
/// \brief casts an object while applying any Dynamic_Conversion available
template<typename Type>
typename detail::Cast_Helper<Type>::Result_Type boxed_cast(const Boxed_Value &bv) const
{
return chaiscript::boxed_cast<Type>(bv, &m_conversions);
}
/// Add a new conversion for upcasting to a base class
void add(const Dynamic_Cast_Conversion &d)
{
m_conversions.add_conversion(d);
}
/// Add a new named Proxy_Function to the system
void add(const Proxy_Function &f, const std::string &name)
{
validate_object_name(name);
add_function(f, name);
}
/// Set the value of an object, by name. If the object
/// is not available in the current scope it is created
void add(const Boxed_Value &obj, const std::string &name)
{
validate_object_name(name);
StackData &stack = get_stack_data();
for (int i = static_cast<int>(stack.size())-1; i >= 0; --i)
{
const auto itr = stack[i].find(name);
if (itr != stack[i].end())
{
itr->second = std::move(obj);
return;
}
}
add_object(name, std::move(obj));
}
/// Adds a named object to the current scope
void add_object(const std::string &name, const Boxed_Value &obj) const
{
StackData &stack = get_stack_data();
validate_object_name(name);
const Scope &scope = stack.back();
if (scope.find(name) != scope.end())
{
throw chaiscript::exception::name_conflict_error(name);
} else {
stack.back().insert(std::make_pair(name, std::move(obj)));
}
}
/// Adds a new global shared object, between all the threads
void add_global_const(const Boxed_Value &obj, const std::string &name)
{
validate_object_name(name);
if (!obj.is_const())
{
// throw chaiscript::exception::global_non_const();
}
chaiscript::detail::threading::unique_lock<chaiscript::detail::threading::shared_mutex> l(m_global_object_mutex);
if (m_state.m_global_objects.find(name) != m_state.m_global_objects.end())
{
throw chaiscript::exception::name_conflict_error(name);
} else {
m_state.m_global_objects.insert(std::make_pair(name, obj));
}
}
/// Adds a new global (non-const) shared object, between all the threads
void add_global(const Boxed_Value &obj, const std::string &name)
{
validate_object_name(name);
chaiscript::detail::threading::unique_lock<chaiscript::detail::threading::shared_mutex> l(m_global_object_mutex);
if (m_state.m_global_objects.find(name) != m_state.m_global_objects.end())
{
throw chaiscript::exception::name_conflict_error(name);
} else {
m_state.m_global_objects.insert(std::make_pair(name, obj));
}
}
/// Adds a new scope to the stack
void new_scope()
{
get_stack_data().emplace_back();
}
/// Pops the current scope from the stack
void pop_scope()
{
StackData &stack = get_stack_data();
if (stack.size() > 1)
{
stack.pop_back();
} else {
throw std::range_error("Unable to pop global stack");
}
}
/// Pushes a new stack on to the list of stacks
void new_stack()
{
// add a new Stack with 1 element
m_stack_holder->stacks.emplace_back(1);
}
void pop_stack()
{
m_stack_holder->stacks.pop_back();
}
/// Searches the current stack for an object of the given name
/// includes a special overload for the _ place holder object to
/// ensure that it is always in scope.
Boxed_Value get_object(const std::string &name) const
{
// Is it a placeholder object?
if (name == "_")
{
return m_place_holder;
}
StackData &stack = get_stack_data();
// Is it in the stack?
for (int i = static_cast<int>(stack.size())-1; i >= 0; --i)
{
const auto stackitr = stack[i].find(name);
if (stackitr != stack[i].end())
{
return stackitr->second;
}
}
// Is the value we are looking for a global?
{
chaiscript::detail::threading::shared_lock<chaiscript::detail::threading::shared_mutex> l(m_global_object_mutex);
const auto itr = m_state.m_global_objects.find(name);
if (itr != m_state.m_global_objects.end())
{
return itr->second;
}
}
// If all that failed, then check to see if it's a function
return get_function_object(name);
}
/// Registers a new named type
void add(const Type_Info &ti, const std::string &name)
{
add_global_const(const_var(ti), name + "_type");
chaiscript::detail::threading::unique_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
m_state.m_types.insert(std::make_pair(name, ti));
}
/// Returns the type info for a named type
Type_Info get_type(const std::string &name) const
{
chaiscript::detail::threading::shared_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
const auto itr = m_state.m_types.find(name);
if (itr != m_state.m_types.end())
{
return itr->second;
}
throw std::range_error("Type Not Known");
}
/// Returns the registered name of a known type_info object
/// compares the "bare_type_info" for the broadest possible
/// match
std::string get_type_name(const Type_Info &ti) const
{
chaiscript::detail::threading::shared_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
for (const auto & elem : m_state.m_types)
{
if (elem.second.bare_equal(ti))
{
return elem.first;
}
}
return ti.bare_name();
}
/// Return all registered types
std::vector<std::pair<std::string, Type_Info> > get_types() const
{
chaiscript::detail::threading::shared_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
return std::vector<std::pair<std::string, Type_Info> >(m_state.m_types.begin(), m_state.m_types.end());
}
/// Return a function by name
std::vector< Proxy_Function > get_function(const std::string &t_name) const
{
chaiscript::detail::threading::shared_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
const auto &funs = get_functions_int();
auto itr = funs.find(t_name);
if (itr != funs.end())
{
return itr->second;
} else {
return std::vector<Proxy_Function>();
}
}
/// \returns a function object (Boxed_Value wrapper) if it exists
/// \throws std::range_error if it does not
Boxed_Value get_function_object(const std::string &t_name) const
{
chaiscript::detail::threading::shared_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
const auto &funs = get_function_objects_int();
auto itr = funs.find(t_name);
if (itr != funs.end())
{
return const_var(itr->second);
} else {
throw std::range_error("Object not found: " + t_name);
}
}
/// Return true if a function exists
bool function_exists(const std::string &name) const
{
chaiscript::detail::threading::shared_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
const auto &functions = get_functions_int();
return functions.find(name) != functions.end();
}
/// \returns All values in the local thread state in the parent scope, or if it doesn't exist,
/// the current scope.
std::map<std::string, Boxed_Value> get_parent_locals() const
{
StackData &stack = get_stack_data();
if (stack.size() > 1)
{
return stack[1];
} else {
return stack[0];
}
}
/// \returns All values in the local thread state, added through the add() function
std::map<std::string, Boxed_Value> get_locals() const
{
StackData &stack = get_stack_data();
Scope &scope = stack.front();
return scope;
}
/// \brief Sets all of the locals for the current thread state.
///
/// \param[in] t_locals The map<name, value> set of variables to replace the current state with
///
/// Any existing locals are removed and the given set of variables is added
void set_locals(const std::map<std::string, Boxed_Value> &t_locals)
{
StackData &stack = get_stack_data();
Scope &scope = stack.front();
scope = t_locals;
}
///
/// Get a map of all objects that can be seen from the current scope in a scripting context
///
std::map<std::string, Boxed_Value> get_scripting_objects() const
{
Stack_Holder &s = *m_stack_holder;
// We don't want the current context, but one up if it exists
StackData &stack = (s.stacks.size()==1)?(s.stacks.back()):(s.stacks[s.stacks.size()-2]);
std::map<std::string, Boxed_Value> retval;
// note: map insert doesn't overwrite existing values, which is why this works
for (auto itr = stack.rbegin(); itr != stack.rend(); ++itr)
{
retval.insert(itr->begin(), itr->end());
}
// add the global values
{
chaiscript::detail::threading::shared_lock<chaiscript::detail::threading::shared_mutex> l(m_global_object_mutex);
retval.insert(m_state.m_global_objects.begin(), m_state.m_global_objects.end());
}
return retval;
}
///
/// Get a map of all functions that can be seen from a scripting context
///
std::map<std::string, Boxed_Value> get_function_objects() const
{
chaiscript::detail::threading::shared_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
const auto &funs = get_function_objects_int();
std::map<std::string, Boxed_Value> objs;
for (const auto & fun : funs)
{
objs.insert(std::make_pair(fun.first, const_var(fun.second)));
}
return objs;
}
/// Get a vector of all registered functions
std::vector<std::pair<std::string, Proxy_Function > > get_functions() const
{
chaiscript::detail::threading::shared_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
std::vector<std::pair<std::string, Proxy_Function> > rets;
const auto &functions = get_functions_int();
for (const auto & function : functions)
{
for (const auto & internal_func : function.second)
{
rets.emplace_back(function.first, internal_func);
}
}
return rets;
}
void add_reserved_word(const std::string &name)
{
chaiscript::detail::threading::unique_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
m_state.m_reserved_words.insert(name);
}
const Dynamic_Cast_Conversions &conversions() const
{
return m_conversions;
}
Boxed_Value call_function(const std::string &t_name, const std::vector<Boxed_Value> &params) const
{
std::vector<Proxy_Function> functions = get_function(t_name);
return dispatch::dispatch(functions.begin(), functions.end(), params, m_conversions);
}
Boxed_Value call_function(const std::string &t_name) const
{
return call_function(t_name, std::vector<Boxed_Value>());
}
Boxed_Value call_function(const std::string &t_name, Boxed_Value p1) const
{
return call_function(t_name, std::vector<Boxed_Value>({std::move(p1)}));
}
Boxed_Value call_function(const std::string &t_name, Boxed_Value p1, Boxed_Value p2) const
{
return call_function(t_name, std::vector<Boxed_Value>({std::move(p1), std::move(p2)}));
}
/// Dump object info to stdout
void dump_object(const Boxed_Value &o) const
{
std::cout << (o.is_const()?"const ":"") << type_name(o) << std::endl;
}
/// Dump type info to stdout
void dump_type(const Type_Info &type) const
{
std::cout << (type.is_const()?"const ":"") << get_type_name(type);
}
/// Dump function to stdout
void dump_function(const std::pair<const std::string, Proxy_Function > &f) const
{
std::vector<Type_Info> params = f.second->get_param_types();
std::string annotation = f.second->annotation();
if (annotation.size() > 0) {
std::cout << annotation;
}
dump_type(params.front());
std::cout << " " << f.first << "(";
for (std::vector<Type_Info>::const_iterator itr = params.begin() + 1;
itr != params.end();
)
{
dump_type(*itr);
++itr;
if (itr != params.end())
{
std::cout << ", ";
}
}
std::cout << ") " << std::endl;
}
/// Returns true if a call can be made that consists of the first parameter
/// (the function) with the remaining parameters as its arguments.
Boxed_Value call_exists(const std::vector<Boxed_Value> &params)
{
if (params.size() < 1)
{
throw chaiscript::exception::arity_error(static_cast<int>(params.size()), 1);
}
const Const_Proxy_Function &f = this->boxed_cast<Const_Proxy_Function>(params[0]);
return Boxed_Value(f->call_match(std::vector<Boxed_Value>(params.begin() + 1, params.end()), m_conversions));
}
/// Dump all system info to stdout
void dump_system() const
{
std::cout << "Registered Types: " << std::endl;
std::vector<std::pair<std::string, Type_Info> > types = get_types();
for (std::vector<std::pair<std::string, Type_Info> >::const_iterator itr = types.begin();
itr != types.end();
++itr)
{
std::cout << itr->first << ": ";
std::cout << itr->second.bare_name();
std::cout << std::endl;
}
std::cout << std::endl;
std::vector<std::pair<std::string, Proxy_Function > > funcs = get_functions();
std::cout << "Functions: " << std::endl;
for (std::vector<std::pair<std::string, Proxy_Function > >::const_iterator itr = funcs.begin();
itr != funcs.end();
++itr)
{
dump_function(*itr);
}
std::cout << std::endl;
}
/// return true if the Boxed_Value matches the registered type by name
bool is_type(const Boxed_Value &r, const std::string &user_typename) const
{
try {
if (get_type(user_typename).bare_equal(r.get_type_info()))
{
return true;
}
} catch (const std::range_error &) {
}
try {
const dispatch::Dynamic_Object &d = boxed_cast<const dispatch::Dynamic_Object &>(r);
return d.get_type_name() == user_typename;
} catch (const std::bad_cast &) {
}
return false;
}
std::string type_name(const Boxed_Value &obj) const
{
return get_type_name(obj.get_type_info());
}
State get_state() const
{
chaiscript::detail::threading::shared_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
chaiscript::detail::threading::shared_lock<chaiscript::detail::threading::shared_mutex> l2(m_global_object_mutex);
return m_state;
}
void set_state(const State &t_state)
{
chaiscript::detail::threading::unique_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
chaiscript::detail::threading::unique_lock<chaiscript::detail::threading::shared_mutex> l2(m_global_object_mutex);
m_state = t_state;
}
void save_function_params(const std::vector<Boxed_Value> &t_params)
{
Stack_Holder &s = *m_stack_holder;
s.call_params.insert(s.call_params.begin(), t_params.begin(), t_params.end());
}
void new_function_call()
{
++m_stack_holder->call_depth;
}
void pop_function_call()
{
Stack_Holder &s = *m_stack_holder;
--s.call_depth;
assert(s.call_depth >= 0);
if (s.call_depth == 0)
{
/// \todo Critical: this needs to be smarter, memory can expand quickly
/// in tight loops involving function calls
s.call_params.clear();
}
}
private:
/// Returns the current stack
/// make const/non const versions
StackData &get_stack_data() const
{
return m_stack_holder->stacks.back();
}
const std::map<std::string, Proxy_Function> &get_function_objects_int() const
{
return m_state.m_function_objects;
}
std::map<std::string, Proxy_Function> &get_function_objects_int()
{
return m_state.m_function_objects;
}
const std::map<std::string, std::vector<Proxy_Function> > &get_functions_int() const
{
return m_state.m_functions;
}
std::map<std::string, std::vector<Proxy_Function> > &get_functions_int()
{
return m_state.m_functions;
}
static bool function_less_than(const Proxy_Function &lhs, const Proxy_Function &rhs)
{
const std::vector<Type_Info> &lhsparamtypes = lhs->get_param_types();
const std::vector<Type_Info> &rhsparamtypes = rhs->get_param_types();
const size_t lhssize = lhsparamtypes.size();
const size_t rhssize = rhsparamtypes.size();
const Type_Info boxed_type = user_type<Boxed_Value>();
const Type_Info boxed_pod_type = user_type<Boxed_Number>();
std::shared_ptr<const dispatch::Dynamic_Proxy_Function> dynamic_lhs(std::dynamic_pointer_cast<const dispatch::Dynamic_Proxy_Function>(lhs));
std::shared_ptr<const dispatch::Dynamic_Proxy_Function> dynamic_rhs(std::dynamic_pointer_cast<const dispatch::Dynamic_Proxy_Function>(rhs));
if (dynamic_lhs && dynamic_rhs)
{
if (dynamic_lhs->get_guard())
{
if (dynamic_rhs->get_guard())
{
return false;
} else {
return true;
}
} else {
return false;
}
}
if (dynamic_lhs && !dynamic_rhs)
{
return false;
}
if (!dynamic_lhs && dynamic_rhs)
{
return true;
}
for (size_t i = 1; i < lhssize && i < rhssize; ++i)
{
const Type_Info &lt = lhsparamtypes[i];
const Type_Info &rt = rhsparamtypes[i];
if (lt.bare_equal(rt) && lt.is_const() == rt.is_const())
{
continue; // The first two types are essentially the same, next iteration
}
// const is after non-const for the same type
if (lt.bare_equal(rt) && lt.is_const() && !rt.is_const())
{
return false;
}
if (lt.bare_equal(rt) && !lt.is_const())
{
return true;
}
// boxed_values are sorted last
if (lt.bare_equal(boxed_type))
{
return false;
}
if (rt.bare_equal(boxed_type))
{
if (lt.bare_equal(boxed_pod_type))
{
return true;
}
return true;
}
if (lt.bare_equal(boxed_pod_type))
{
return false;
}
if (rt.bare_equal(boxed_pod_type))
{
return true;
}
// otherwise, we want to sort by typeid
return lt < rt;
}
return false;
}
/// Throw a reserved_word exception if the name is not allowed
void validate_object_name(const std::string &name) const
{
if (name.find("::") != std::string::npos) {
throw chaiscript::exception::illegal_name_error(name);
}
chaiscript::detail::threading::shared_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
if (m_state.m_reserved_words.find(name) != m_state.m_reserved_words.end())
{
throw chaiscript::exception::reserved_word_error(name);
}
}
/// Implementation detail for adding a function.
/// \throws exception::name_conflict_error if there's a function matching the given one being added
void add_function(const Proxy_Function &t_f, const std::string &t_name)
{
chaiscript::detail::threading::unique_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
auto &funcs = get_functions_int();
auto itr = funcs.find(t_name);
auto &func_objs = get_function_objects_int();
if (itr != funcs.end())
{
auto &vec = itr->second;
for (const auto &func : vec)
{
if ((*t_f) == *(func))
{
throw chaiscript::exception::name_conflict_error(t_name);
}
}
vec.push_back(t_f);
std::stable_sort(vec.begin(), vec.end(), &function_less_than);
func_objs[t_name] = std::make_shared<Dispatch_Function>(vec);
} else if (t_f->has_arithmetic_param()) {
// if the function is the only function but it also contains
// arithmetic operators, we must wrap it in a dispatch function
// to allow for automatic arithmetic type conversions
std::vector<Proxy_Function> vec({t_f});
funcs.insert(std::make_pair(t_name, vec));
func_objs[t_name] = std::make_shared<Dispatch_Function>(std::move(vec));
} else {
funcs.insert(std::make_pair(t_name, std::vector<Proxy_Function>{t_f}));
func_objs[t_name] = t_f;
}
}
mutable chaiscript::detail::threading::shared_mutex m_mutex;
mutable chaiscript::detail::threading::shared_mutex m_global_object_mutex;
struct Stack_Holder
{
Stack_Holder()
: call_depth(0)
{
stacks.emplace_back(1);
}
std::deque<StackData> stacks;
std::list<Boxed_Value> call_params;
int call_depth;
};
Dynamic_Cast_Conversions m_conversions;
chaiscript::detail::threading::Thread_Storage<Stack_Holder> m_stack_holder;
State m_state;
Boxed_Value m_place_holder;
};
}
}
#endif