2017-02-22 15:18:56 -07:00

1573 lines
52 KiB
C++

// This file is distributed under the BSD License.
// See "license.txt" for details.
// Copyright 2009-2012, Jonathan Turner (jonathan@emptycrate.com)
// Copyright 2009-2016, Jason Turner (jason@emptycrate.com)
// http://www.chaiscript.com
// This is an open source non-commercial project. Dear PVS-Studio, please check it.
// PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com
#ifndef CHAISCRIPT_DISPATCHKIT_HPP_
#define CHAISCRIPT_DISPATCHKIT_HPP_
#include <algorithm>
#include <iostream>
#include <list>
#include <map>
#include <memory>
#include <set>
#include <stdexcept>
#include <string>
#include <typeinfo>
#include <utility>
#include <vector>
#include "../chaiscript_defines.hpp"
#include "../chaiscript_threading.hpp"
#include "bad_boxed_cast.hpp"
#include "boxed_cast.hpp"
#include "boxed_cast_helper.hpp"
#include "boxed_value.hpp"
#include "type_conversions.hpp"
#include "dynamic_object.hpp"
#include "proxy_constructors.hpp"
#include "proxy_functions.hpp"
#include "type_info.hpp"
#include "short_alloc.hpp"
namespace chaiscript {
class Boxed_Number;
} // namespace chaiscript
namespace chaiscript {
namespace parser {
class ChaiScript_Parser_Base;
}
namespace dispatch {
class Dynamic_Proxy_Function;
class Proxy_Function_Base;
struct Placeholder_Object;
} // namespace dispatch
} // namespace chaiscript
/// \namespace chaiscript::dispatch
/// \brief Classes and functions specific to the runtime dispatch side of ChaiScript. Some items may be of use to the end user.
namespace chaiscript
{
namespace exception
{
/// Exception thrown in the case that an object name is invalid because it is a reserved word
class reserved_word_error : public std::runtime_error
{
public:
explicit reserved_word_error(const std::string &t_word) noexcept
: std::runtime_error("Reserved word not allowed in object name: " + t_word), m_word(t_word)
{
}
reserved_word_error(const reserved_word_error &) = default;
~reserved_word_error() noexcept override = default;
std::string word() const
{
return m_word;
}
private:
std::string m_word;
};
/// Exception thrown in the case that an object name is invalid because it contains illegal characters
class illegal_name_error : public std::runtime_error
{
public:
explicit illegal_name_error(const std::string &t_name) noexcept
: std::runtime_error("Reserved name not allowed in object name: " + t_name), m_name(t_name)
{
}
illegal_name_error(const illegal_name_error &) = default;
~illegal_name_error() noexcept override = default;
std::string name() const
{
return m_name;
}
private:
std::string m_name;
};
/// Exception thrown in the case that an object name is invalid because it already exists in current context
class name_conflict_error : public std::runtime_error
{
public:
explicit name_conflict_error(const std::string &t_name) noexcept
: std::runtime_error("Name already exists in current context " + t_name), m_name(t_name)
{
}
name_conflict_error(const name_conflict_error &) = default;
~name_conflict_error() noexcept override = default;
std::string name() const
{
return m_name;
}
private:
std::string m_name;
};
/// Exception thrown in the case that a non-const object was added as a shared object
class global_non_const : public std::runtime_error
{
public:
global_non_const() noexcept
: std::runtime_error("a global object must be const")
{
}
global_non_const(const global_non_const &) = default;
~global_non_const() noexcept override = default;
};
}
/// \brief Holds a collection of ChaiScript settings which can be applied to the ChaiScript runtime.
/// Used to implement loadable module support.
class Module
{
public:
Module &add(Type_Info ti, std::string name)
{
m_typeinfos.emplace_back(ti, std::move(name));
return *this;
}
Module &add(Type_Conversion d)
{
m_conversions.push_back(std::move(d));
return *this;
}
Module &add(Proxy_Function f, std::string name)
{
m_funcs.emplace_back(std::move(f), std::move(name));
return *this;
}
Module &add_global_const(Boxed_Value t_bv, std::string t_name)
{
if (!t_bv.is_const())
{
throw chaiscript::exception::global_non_const();
}
m_globals.emplace_back(std::move(t_bv), std::move(t_name));
return *this;
}
//Add a bit of ChaiScript to eval during module implementation
Module &eval(const std::string &str)
{
m_evals.push_back(str);
return *this;
}
template<typename Eval, typename Engine>
void apply(Eval &t_eval, Engine &t_engine) const
{
apply(m_typeinfos.begin(), m_typeinfos.end(), t_engine);
apply(m_funcs.begin(), m_funcs.end(), t_engine);
apply_eval(m_evals.begin(), m_evals.end(), t_eval);
apply_single(m_conversions.begin(), m_conversions.end(), t_engine);
apply_globals(m_globals.begin(), m_globals.end(), t_engine);
}
bool has_function(const Proxy_Function &new_f, const std::string &name)
{
return std::any_of(m_funcs.begin(), m_funcs.end(),
[&](const std::pair<Proxy_Function, std::string> &existing_f) {
return existing_f.second == name && *(existing_f.first) == *(new_f);
}
);
}
private:
std::vector<std::pair<Type_Info, std::string>> m_typeinfos;
std::vector<std::pair<Proxy_Function, std::string>> m_funcs;
std::vector<std::pair<Boxed_Value, std::string>> m_globals;
std::vector<std::string> m_evals;
std::vector<Type_Conversion> m_conversions;
template<typename T, typename InItr>
static void apply(InItr begin, const InItr end, T &t)
{
for_each(begin, end,
[&t](const auto &obj) {
try {
t.add(obj.first, obj.second);
} catch (const chaiscript::exception::name_conflict_error &) {
/// \todo Should we throw an error if there's a name conflict
/// while applying a module?
}
}
);
}
template<typename T, typename InItr>
static void apply_globals(InItr begin, InItr end, T &t)
{
while (begin != end)
{
t.add_global_const(begin->first, begin->second);
++begin;
}
}
template<typename T, typename InItr>
static void apply_single(InItr begin, InItr end, T &t)
{
while (begin != end)
{
t.add(*begin);
++begin;
}
}
template<typename T, typename InItr>
static void apply_eval(InItr begin, InItr end, T &t)
{
while (begin != end)
{
t.eval(*begin);
++begin;
}
}
};
/// Convenience typedef for Module objects to be added to the ChaiScript runtime
typedef std::shared_ptr<Module> ModulePtr;
namespace detail
{
/// A Proxy_Function implementation that is able to take
/// a vector of Proxy_Functions and perform a dispatch on them. It is
/// used specifically in the case of dealing with Function object variables
class Dispatch_Function final : public dispatch::Proxy_Function_Base
{
public:
explicit Dispatch_Function(std::vector<Proxy_Function> t_funcs)
: Proxy_Function_Base(build_type_infos(t_funcs), calculate_arity(t_funcs)),
m_funcs(std::move(t_funcs))
{
}
bool operator==(const dispatch::Proxy_Function_Base &rhs) const override
{
try {
const auto &dispatch_fun = dynamic_cast<const Dispatch_Function &>(rhs);
return m_funcs == dispatch_fun.m_funcs;
} catch (const std::bad_cast &) {
return false;
}
}
std::vector<Const_Proxy_Function> get_contained_functions() const override
{
return std::vector<Const_Proxy_Function>(m_funcs.begin(), m_funcs.end());
}
static int calculate_arity(const std::vector<Proxy_Function> &t_funcs)
{
if (t_funcs.empty()) {
return -1;
}
const auto arity = t_funcs.front()->get_arity();
for (const auto &func : t_funcs)
{
if (arity != func->get_arity())
{
// The arities in the list do not match, so it's unspecified
return -1;
}
}
return arity;
}
bool call_match(const std::vector<Boxed_Value> &vals, const Type_Conversions_State &t_conversions) const override
{
return std::any_of(std::begin(m_funcs), std::end(m_funcs),
[&vals, &t_conversions](const Proxy_Function &f){ return f->call_match(vals, t_conversions); });
}
protected:
Boxed_Value do_call(const std::vector<Boxed_Value> &params, const Type_Conversions_State &t_conversions) const override
{
return dispatch::dispatch(m_funcs, params, t_conversions);
}
private:
std::vector<Proxy_Function> m_funcs;
static std::vector<Type_Info> build_type_infos(const std::vector<Proxy_Function> &t_funcs)
{
auto begin = t_funcs.cbegin();
const auto &end = t_funcs.cend();
if (begin != end)
{
std::vector<Type_Info> type_infos = (*begin)->get_param_types();
++begin;
bool size_mismatch = false;
while (begin != end)
{
std::vector<Type_Info> param_types = (*begin)->get_param_types();
if (param_types.size() != type_infos.size())
{
size_mismatch = true;
}
for (size_t i = 0; i < type_infos.size() && i < param_types.size(); ++i)
{
if (!(type_infos[i] == param_types[i]))
{
type_infos[i] = detail::Get_Type_Info<Boxed_Value>::get();
}
}
++begin;
}
assert(!type_infos.empty() && " type_info vector size is < 0, this is only possible if something else is broken");
if (size_mismatch)
{
type_infos.resize(1);
}
return type_infos;
}
return std::vector<Type_Info>();
}
};
}
namespace detail
{
struct Stack_Holder
{
//template <class T, std::size_t BufSize = sizeof(T)*20000>
// using SmallVector = std::vector<T, short_alloc<T, BufSize>>;
template <class T>
using SmallVector = std::vector<T>;
typedef SmallVector<std::pair<std::string, Boxed_Value>> Scope;
typedef SmallVector<Scope> StackData;
typedef SmallVector<StackData> Stacks;
typedef SmallVector<Boxed_Value> Call_Param_List;
typedef SmallVector<Call_Param_List> Call_Params;
Stack_Holder()
{
push_stack();
push_call_params();
}
void push_stack_data()
{
stacks.back().emplace_back();
// stacks.back().emplace_back(Scope(scope_allocator));
}
void push_stack()
{
stacks.emplace_back(1);
// stacks.emplace_back(StackData(1, Scope(scope_allocator), stack_data_allocator));
}
void push_call_params()
{
call_params.emplace_back();
// call_params.emplace_back(Call_Param_List(call_param_list_allocator));
}
//Scope::allocator_type::arena_type scope_allocator;
//StackData::allocator_type::arena_type stack_data_allocator;
//Stacks::allocator_type::arena_type stacks_allocator;
//Call_Param_List::allocator_type::arena_type call_param_list_allocator;
//Call_Params::allocator_type::arena_type call_params_allocator;
// Stacks stacks = Stacks(stacks_allocator);
// Call_Params call_params = Call_Params(call_params_allocator);
Stacks stacks;
Call_Params call_params;
int call_depth = 0;
};
/// Main class for the dispatchkit. Handles management
/// of the object stack, functions and registered types.
class Dispatch_Engine
{
public:
typedef std::map<std::string, chaiscript::Type_Info> Type_Name_Map;
typedef std::vector<std::pair<std::string, Boxed_Value>> Scope;
typedef Stack_Holder::StackData StackData;
struct State
{
std::vector<std::pair<std::string, std::shared_ptr<std::vector<Proxy_Function>>>> m_functions;
std::vector<std::pair<std::string, Proxy_Function>> m_function_objects;
std::vector<std::pair<std::string, Boxed_Value>> m_boxed_functions;
std::map<std::string, Boxed_Value> m_global_objects;
Type_Name_Map m_types;
};
explicit Dispatch_Engine(chaiscript::parser::ChaiScript_Parser_Base &parser)
: m_stack_holder(this),
m_parser(parser)
{
}
/// \brief casts an object while applying any Dynamic_Conversion available
template<typename Type>
decltype(auto) boxed_cast(const Boxed_Value &bv) const
{
Type_Conversions_State state(m_conversions, m_conversions.conversion_saves());
return(chaiscript::boxed_cast<Type>(bv, &state));
}
/// Add a new conversion for upcasting to a base class
void add(const Type_Conversion &d)
{
m_conversions.add_conversion(d);
}
/// Add a new named Proxy_Function to the system
void add(const Proxy_Function &f, const std::string &name)
{
add_function(f, name);
}
/// Set the value of an object, by name. If the object
/// is not available in the current scope it is created
void add(Boxed_Value obj, const std::string &name)
{
auto &stack = get_stack_data();
for (auto stack_elem = stack.rbegin(); stack_elem != stack.rend(); ++stack_elem)
{
auto itr = std::find_if(stack_elem->begin(), stack_elem->end(),
[&](const std::pair<std::string, Boxed_Value> &o) {
return o.first == name;
});
if (itr != stack_elem->end())
{
itr->second = std::move(obj);
return;
}
}
add_object(name, std::move(obj));
}
/// Adds a named object to the current scope
/// \warning This version does not check the validity of the name
/// it is meant for internal use only
Boxed_Value &add_get_object(const std::string &t_name, Boxed_Value obj, Stack_Holder &t_holder)
{
auto &stack_elem = get_stack_data(t_holder).back();
if (std::any_of(stack_elem.begin(), stack_elem.end(),
[&](const std::pair<std::string, Boxed_Value> &o) {
return o.first == t_name;
}))
{
throw chaiscript::exception::name_conflict_error(t_name);
}
stack_elem.emplace_back(t_name, std::move(obj));
return stack_elem.back().second;
}
/// Adds a named object to the current scope
/// \warning This version does not check the validity of the name
/// it is meant for internal use only
void add_object(const std::string &t_name, Boxed_Value obj, Stack_Holder &t_holder)
{
auto &stack_elem = get_stack_data(t_holder).back();
if (std::any_of(stack_elem.begin(), stack_elem.end(),
[&](const std::pair<std::string, Boxed_Value> &o) {
return o.first == t_name;
}))
{
throw chaiscript::exception::name_conflict_error(t_name);
}
stack_elem.emplace_back(t_name, std::move(obj));
}
/// Adds a named object to the current scope
/// \warning This version does not check the validity of the name
/// it is meant for internal use only
void add_object(const std::string &name, Boxed_Value obj)
{
add_object(name, std::move(obj), get_stack_holder());
}
/// Adds a new global shared object, between all the threads
void add_global_const(const Boxed_Value &obj, const std::string &name)
{
if (!obj.is_const())
{
throw chaiscript::exception::global_non_const();
}
chaiscript::detail::threading::unique_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
if (m_state.m_global_objects.find(name) != m_state.m_global_objects.end())
{
throw chaiscript::exception::name_conflict_error(name);
} else {
m_state.m_global_objects.insert(std::make_pair(name, obj));
}
}
/// Adds a new global (non-const) shared object, between all the threads
Boxed_Value add_global_no_throw(const Boxed_Value &obj, const std::string &name)
{
chaiscript::detail::threading::unique_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
const auto itr = m_state.m_global_objects.find(name);
if (itr == m_state.m_global_objects.end())
{
m_state.m_global_objects.insert(std::make_pair(name, obj));
return obj;
} else {
return itr->second;
}
}
/// Adds a new global (non-const) shared object, between all the threads
void add_global(const Boxed_Value &obj, const std::string &name)
{
chaiscript::detail::threading::unique_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
if (m_state.m_global_objects.find(name) != m_state.m_global_objects.end())
{
throw chaiscript::exception::name_conflict_error(name);
} else {
m_state.m_global_objects.insert(std::make_pair(name, obj));
}
}
/// Updates an existing global shared object or adds a new global shared object if not found
void set_global(const Boxed_Value &obj, const std::string &name)
{
chaiscript::detail::threading::unique_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
const auto itr = m_state.m_global_objects.find(name);
if (itr != m_state.m_global_objects.end())
{
itr->second.assign(obj);
} else {
m_state.m_global_objects.insert(std::make_pair(name, obj));
}
}
/// Adds a new scope to the stack
void new_scope()
{
new_scope(*m_stack_holder);
}
/// Pops the current scope from the stack
void pop_scope()
{
pop_scope(*m_stack_holder);
}
/// Adds a new scope to the stack
static void new_scope(Stack_Holder &t_holder)
{
t_holder.push_stack_data();
t_holder.push_call_params();
}
/// Pops the current scope from the stack
static void pop_scope(Stack_Holder &t_holder)
{
t_holder.call_params.pop_back();
StackData &stack = get_stack_data(t_holder);
assert(!stack.empty());
stack.pop_back();
}
/// Pushes a new stack on to the list of stacks
static void new_stack(Stack_Holder &t_holder)
{
// add a new Stack with 1 element
t_holder.push_stack();
}
static void pop_stack(Stack_Holder &t_holder)
{
t_holder.stacks.pop_back();
}
/// Searches the current stack for an object of the given name
/// includes a special overload for the _ place holder object to
/// ensure that it is always in scope.
Boxed_Value get_object(const std::string &name, std::atomic_uint_fast32_t &t_loc, Stack_Holder &t_holder) const
{
enum class Loc : uint_fast32_t {
located = 0x80000000,
is_local = 0x40000000,
stack_mask = 0x0FFF0000,
loc_mask = 0x0000FFFF
};
uint_fast32_t loc = t_loc;
if (loc == 0)
{
auto &stack = get_stack_data(t_holder);
// Is it in the stack?
for (auto stack_elem = stack.rbegin(); stack_elem != stack.rend(); ++stack_elem)
{
for (auto s = stack_elem->begin(); s != stack_elem->end(); ++s )
{
if (s->first == name) {
t_loc = static_cast<uint_fast32_t>(std::distance(stack.rbegin(), stack_elem) << 16)
| static_cast<uint_fast32_t>(std::distance(stack_elem->begin(), s))
| static_cast<uint_fast32_t>(Loc::located)
| static_cast<uint_fast32_t>(Loc::is_local);
return s->second;
}
}
}
t_loc = static_cast<uint_fast32_t>(Loc::located);
} else if ((loc & static_cast<uint_fast32_t>(Loc::is_local)) != 0u) {
auto &stack = get_stack_data(t_holder);
return stack[stack.size() - 1 - ((loc & static_cast<uint_fast32_t>(Loc::stack_mask)) >> 16)][loc & static_cast<uint_fast32_t>(Loc::loc_mask)].second;
}
// Is the value we are looking for a global or function?
chaiscript::detail::threading::shared_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
const auto itr = m_state.m_global_objects.find(name);
if (itr != m_state.m_global_objects.end())
{
return itr->second;
}
// no? is it a function object?
auto obj = get_function_object_int(name, loc);
if (obj.first != loc) { t_loc = uint_fast32_t(obj.first); }
return obj.second;
}
/// Registers a new named type
void add(const Type_Info &ti, const std::string &name)
{
add_global_const(const_var(ti), name + "_type");
chaiscript::detail::threading::unique_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
m_state.m_types.insert(std::make_pair(name, ti));
}
/// Returns the type info for a named type
Type_Info get_type(const std::string &name, bool t_throw = true) const
{
chaiscript::detail::threading::shared_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
const auto itr = m_state.m_types.find(name);
if (itr != m_state.m_types.end())
{
return itr->second;
}
if (t_throw) {
throw std::range_error("Type Not Known");
} else {
return Type_Info();
}
}
/// Returns the registered name of a known type_info object
/// compares the "bare_type_info" for the broadest possible
/// match
std::string get_type_name(const Type_Info &ti) const
{
chaiscript::detail::threading::shared_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
for (const auto & elem : m_state.m_types)
{
if (elem.second.bare_equal(ti))
{
return elem.first;
}
}
return ti.bare_name();
}
/// Return all registered types
std::vector<std::pair<std::string, Type_Info> > get_types() const
{
chaiscript::detail::threading::shared_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
return std::vector<std::pair<std::string, Type_Info> >(m_state.m_types.begin(), m_state.m_types.end());
}
std::shared_ptr<std::vector<Proxy_Function>> get_method_missing_functions() const
{
uint_fast32_t method_missing_loc = m_method_missing_loc;
auto method_missing_funs = get_function("method_missing", method_missing_loc);
if (method_missing_funs.first != method_missing_loc) {
m_method_missing_loc = uint_fast32_t(method_missing_funs.first);
}
return std::move(method_missing_funs.second);
}
/// Return a function by name
std::pair<size_t, std::shared_ptr<std::vector< Proxy_Function>>> get_function(const std::string &t_name, const size_t t_hint) const
{
chaiscript::detail::threading::shared_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
const auto &funs = get_functions_int();
auto itr = find_keyed_value(funs, t_name, t_hint);
if (itr != funs.end())
{
return std::make_pair(std::distance(funs.begin(), itr), itr->second);
} else {
return std::make_pair(size_t(0), std::make_shared<std::vector<Proxy_Function>>());
}
}
/// \returns a function object (Boxed_Value wrapper) if it exists
/// \throws std::range_error if it does not
Boxed_Value get_function_object(const std::string &t_name) const
{
chaiscript::detail::threading::shared_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
return get_function_object_int(t_name, 0).second;
}
/// \returns a function object (Boxed_Value wrapper) if it exists
/// \throws std::range_error if it does not
/// \warn does not obtain a mutex lock. \sa get_function_object for public version
std::pair<size_t, Boxed_Value> get_function_object_int(const std::string &t_name, const size_t t_hint) const
{
const auto &funs = get_boxed_functions_int();
auto itr = find_keyed_value(funs, t_name, t_hint);
if (itr != funs.end())
{
return std::make_pair(std::distance(funs.begin(), itr), itr->second);
} else {
throw std::range_error("Object not found: " + t_name);
}
}
/// Return true if a function exists
bool function_exists(const std::string &name) const
{
chaiscript::detail::threading::shared_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
const auto &functions = get_functions_int();
return find_keyed_value(functions, name) != functions.end();
}
/// \returns All values in the local thread state in the parent scope, or if it doesn't exist,
/// the current scope.
std::map<std::string, Boxed_Value> get_parent_locals() const
{
auto &stack = get_stack_data();
if (stack.size() > 1)
{
return std::map<std::string, Boxed_Value>(stack[1].begin(), stack[1].end());
} else {
return std::map<std::string, Boxed_Value>(stack[0].begin(), stack[0].end());
}
}
/// \returns All values in the local thread state, added through the add() function
std::map<std::string, Boxed_Value> get_locals() const
{
auto &stack = get_stack_data();
auto &scope = stack.front();
return std::map<std::string, Boxed_Value>(scope.begin(), scope.end());
}
/// \brief Sets all of the locals for the current thread state.
///
/// \param[in] t_locals The map<name, value> set of variables to replace the current state with
///
/// Any existing locals are removed and the given set of variables is added
void set_locals(const std::map<std::string, Boxed_Value> &t_locals)
{
auto &stack = get_stack_data();
auto &scope = stack.front();
scope.assign(t_locals.begin(), t_locals.end());
}
///
/// Get a map of all objects that can be seen from the current scope in a scripting context
///
std::map<std::string, Boxed_Value> get_scripting_objects() const
{
const Stack_Holder &s = *m_stack_holder;
// We don't want the current context, but one up if it exists
const StackData &stack = (s.stacks.size()==1)?(s.stacks.back()):(s.stacks[s.stacks.size()-2]);
std::map<std::string, Boxed_Value> retval;
// note: map insert doesn't overwrite existing values, which is why this works
for (auto itr = stack.rbegin(); itr != stack.rend(); ++itr)
{
retval.insert(itr->begin(), itr->end());
}
// add the global values
chaiscript::detail::threading::shared_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
retval.insert(m_state.m_global_objects.begin(), m_state.m_global_objects.end());
return retval;
}
///
/// Get a map of all functions that can be seen from a scripting context
///
std::map<std::string, Boxed_Value> get_function_objects() const
{
chaiscript::detail::threading::shared_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
const auto &funs = get_function_objects_int();
std::map<std::string, Boxed_Value> objs;
for (const auto & fun : funs)
{
objs.insert(std::make_pair(fun.first, const_var(fun.second)));
}
return objs;
}
/// Get a vector of all registered functions
std::vector<std::pair<std::string, Proxy_Function > > get_functions() const
{
chaiscript::detail::threading::shared_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
std::vector<std::pair<std::string, Proxy_Function> > rets;
const auto &functions = get_functions_int();
for (const auto & function : functions)
{
for (const auto & internal_func : *function.second)
{
rets.emplace_back(function.first, internal_func);
}
}
return rets;
}
const Type_Conversions &conversions() const
{
return m_conversions;
}
static bool is_attribute_call(const std::vector<Proxy_Function> &t_funs, const std::vector<Boxed_Value> &t_params,
bool t_has_params, const Type_Conversions_State &t_conversions)
{
if (!t_has_params || t_params.empty()) {
return false;
}
return std::any_of(std::begin(t_funs), std::end(t_funs),
[&](const auto &fun) {
return fun->is_attribute_function() && fun->compare_first_type(t_params[0], t_conversions);
}
);
}
#ifdef CHAISCRIPT_MSVC
// MSVC is unable to recognize that "rethrow_exception" causes the function to return
// so we must disable it here.
#pragma warning(push)
#pragma warning(disable : 4715)
#endif
Boxed_Value call_member(const std::string &t_name, std::atomic_uint_fast32_t &t_loc, const std::vector<Boxed_Value> &params, bool t_has_params,
const Type_Conversions_State &t_conversions)
{
uint_fast32_t loc = t_loc;
const auto funs = get_function(t_name, loc);
if (funs.first != loc) { t_loc = uint_fast32_t(funs.first); }
const auto do_attribute_call =
[this](int l_num_params, const std::vector<Boxed_Value> &l_params, const std::vector<Proxy_Function> &l_funs, const Type_Conversions_State &l_conversions)->Boxed_Value
{
std::vector<Boxed_Value> attr_params{l_params.begin(), l_params.begin() + l_num_params};
Boxed_Value bv = dispatch::dispatch(l_funs, attr_params, l_conversions);
if (l_num_params < int(l_params.size()) || bv.get_type_info().bare_equal(user_type<dispatch::Proxy_Function_Base>())) {
struct This_Foist {
This_Foist(Dispatch_Engine &e, const Boxed_Value &t_bv) : m_e(e) {
m_e.get().new_scope();
m_e.get().add_object("__this", t_bv);
}
~This_Foist() {
m_e.get().pop_scope();
}
std::reference_wrapper<Dispatch_Engine> m_e;
};
This_Foist fi(*this, l_params.front());
try {
auto func = boxed_cast<const dispatch::Proxy_Function_Base *>(bv);
try {
return (*func)({l_params.begin() + l_num_params, l_params.end()}, l_conversions);
} catch (const chaiscript::exception::bad_boxed_cast &) {
} catch (const chaiscript::exception::arity_error &) {
} catch (const chaiscript::exception::guard_error &) {
}
throw chaiscript::exception::dispatch_error({l_params.begin() + l_num_params, l_params.end()},
std::vector<Const_Proxy_Function>{boxed_cast<Const_Proxy_Function>(bv)});
} catch (const chaiscript::exception::bad_boxed_cast &) {
// unable to convert bv into a Proxy_Function_Base
throw chaiscript::exception::dispatch_error({l_params.begin() + l_num_params, l_params.end()},
std::vector<Const_Proxy_Function>(l_funs.begin(), l_funs.end()));
}
} else {
return bv;
}
};
if (is_attribute_call(*funs.second, params, t_has_params, t_conversions)) {
return do_attribute_call(1, params, *funs.second, t_conversions);
} else {
std::exception_ptr except;
if (!funs.second->empty()) {
try {
return dispatch::dispatch(*funs.second, params, t_conversions);
} catch(chaiscript::exception::dispatch_error&) {
except = std::current_exception();
}
}
// If we get here we know that either there was no method with that name,
// or there was no matching method
const auto functions = [&]()->std::vector<Proxy_Function> {
std::vector<Proxy_Function> fs;
const auto method_missing_funs = get_method_missing_functions();
for (const auto &f : *method_missing_funs)
{
if(f->compare_first_type(params[0], t_conversions)) {
fs.push_back(f);
}
}
return fs;
}();
const bool is_no_param = [&]()->bool{
for (const auto &f : functions) {
if (f->get_arity() != 2) {
return false;
}
}
return true;
}();
if (!functions.empty()) {
try {
if (is_no_param) {
std::vector<Boxed_Value> tmp_params(params);
tmp_params.insert(tmp_params.begin() + 1, var(t_name));
return do_attribute_call(2, tmp_params, functions, t_conversions);
} else {
return dispatch::dispatch(functions, {params[0], var(t_name), var(std::vector<Boxed_Value>(params.begin()+1, params.end()))}, t_conversions);
}
} catch (const dispatch::option_explicit_set &e) {
throw chaiscript::exception::dispatch_error(params, std::vector<Const_Proxy_Function>(funs.second->begin(), funs.second->end()),
e.what());
}
}
// If we get all the way down here we know there was no "method_missing"
// method at all.
if (except) {
std::rethrow_exception(except);
} else {
throw chaiscript::exception::dispatch_error(params, std::vector<Const_Proxy_Function>(funs.second->begin(), funs.second->end()));
}
}
}
#ifdef CHAISCRIPT_MSVC
#pragma warning(pop)
#endif
Boxed_Value call_function(const std::string &t_name, std::atomic_uint_fast32_t &t_loc, const std::vector<Boxed_Value> &params,
const Type_Conversions_State &t_conversions) const
{
uint_fast32_t loc = t_loc;
const auto funs = get_function(t_name, loc);
if (funs.first != loc) { t_loc = uint_fast32_t(funs.first);
}
return dispatch::dispatch(*funs.second, params, t_conversions);
}
/// Dump object info to stdout
void dump_object(const Boxed_Value &o) const
{
std::cout << (o.is_const()?"const ":"") << type_name(o) << '\n';
}
/// Dump type info to stdout
void dump_type(const Type_Info &type) const
{
std::cout << (type.is_const()?"const ":"") << get_type_name(type);
}
/// Dump function to stdout
void dump_function(const std::pair<const std::string, Proxy_Function > &f) const
{
std::vector<Type_Info> params = f.second->get_param_types();
dump_type(params.front());
std::cout << " " << f.first << "(";
for (std::vector<Type_Info>::const_iterator itr = params.begin() + 1;
itr != params.end();
)
{
dump_type(*itr);
++itr;
if (itr != params.end())
{
std::cout << ", ";
}
}
std::cout << ") \n";
}
/// Returns true if a call can be made that consists of the first parameter
/// (the function) with the remaining parameters as its arguments.
Boxed_Value call_exists(const std::vector<Boxed_Value> &params) const
{
if (params.empty())
{
throw chaiscript::exception::arity_error(static_cast<int>(params.size()), 1);
}
const Const_Proxy_Function &f = this->boxed_cast<Const_Proxy_Function>(params[0]);
const Type_Conversions_State convs(m_conversions, m_conversions.conversion_saves());
return const_var(f->call_match(std::vector<Boxed_Value>(params.begin() + 1, params.end()), convs));
}
/// Dump all system info to stdout
void dump_system() const
{
std::cout << "Registered Types: \n";
std::vector<std::pair<std::string, Type_Info> > types = get_types();
for (std::vector<std::pair<std::string, Type_Info> >::const_iterator itr = types.begin();
itr != types.end();
++itr)
{
std::cout << itr->first << ": ";
std::cout << itr->second.bare_name();
std::cout << '\n';
}
std::cout << '\n';
std::vector<std::pair<std::string, Proxy_Function > > funcs = get_functions();
std::cout << "Functions: \n";
for (std::vector<std::pair<std::string, Proxy_Function > >::const_iterator itr = funcs.begin();
itr != funcs.end();
++itr)
{
dump_function(*itr);
}
std::cout << '\n';
}
/// return true if the Boxed_Value matches the registered type by name
bool is_type(const Boxed_Value &r, const std::string &user_typename) const
{
try {
if (get_type(user_typename).bare_equal(r.get_type_info()))
{
return true;
}
} catch (const std::range_error &) {
}
try {
const dispatch::Dynamic_Object &d = boxed_cast<const dispatch::Dynamic_Object &>(r);
return d.get_type_name() == user_typename;
} catch (const std::bad_cast &) {
}
return false;
}
std::string type_name(const Boxed_Value &obj) const
{
return get_type_name(obj.get_type_info());
}
State get_state() const
{
chaiscript::detail::threading::shared_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
return m_state;
}
void set_state(const State &t_state)
{
chaiscript::detail::threading::unique_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
m_state = t_state;
}
static void save_function_params(Stack_Holder &t_s, std::initializer_list<Boxed_Value> t_params)
{
t_s.call_params.back().insert(t_s.call_params.back().begin(), t_params);
}
static void save_function_params(Stack_Holder &t_s, std::vector<Boxed_Value> &&t_params)
{
for (auto &&param : t_params)
{
t_s.call_params.back().insert(t_s.call_params.back().begin(), std::move(param));
}
}
static void save_function_params(Stack_Holder &t_s, const std::vector<Boxed_Value> &t_params)
{
t_s.call_params.back().insert(t_s.call_params.back().begin(), t_params.begin(), t_params.end());
}
void save_function_params(std::initializer_list<Boxed_Value> t_params)
{
save_function_params(*m_stack_holder, t_params);
}
void save_function_params(std::vector<Boxed_Value> &&t_params)
{
save_function_params(*m_stack_holder, std::move(t_params));
}
void save_function_params(const std::vector<Boxed_Value> &t_params)
{
save_function_params(*m_stack_holder, t_params);
}
void new_function_call(Stack_Holder &t_s, Type_Conversions::Conversion_Saves &t_saves)
{
if (t_s.call_depth == 0)
{
m_conversions.enable_conversion_saves(t_saves, true);
}
++t_s.call_depth;
save_function_params(m_conversions.take_saves(t_saves));
}
void pop_function_call(Stack_Holder &t_s, Type_Conversions::Conversion_Saves &t_saves)
{
--t_s.call_depth;
assert(t_s.call_depth >= 0);
if (t_s.call_depth == 0)
{
t_s.call_params.back().clear();
m_conversions.enable_conversion_saves(t_saves, false);
}
}
void new_function_call()
{
new_function_call(*m_stack_holder, m_conversions.conversion_saves());
}
void pop_function_call()
{
pop_function_call(*m_stack_holder, m_conversions.conversion_saves());
}
Stack_Holder &get_stack_holder()
{
return *m_stack_holder;
}
/// Returns the current stack
/// make const/non const versions
const StackData &get_stack_data() const
{
return m_stack_holder->stacks.back();
}
static StackData &get_stack_data(Stack_Holder &t_holder)
{
return t_holder.stacks.back();
}
StackData &get_stack_data()
{
return m_stack_holder->stacks.back();
}
parser::ChaiScript_Parser_Base &get_parser()
{
return m_parser.get();
}
private:
const std::vector<std::pair<std::string, Boxed_Value>> &get_boxed_functions_int() const
{
return m_state.m_boxed_functions;
}
std::vector<std::pair<std::string, Boxed_Value>> &get_boxed_functions_int()
{
return m_state.m_boxed_functions;
}
const std::vector<std::pair<std::string, Proxy_Function>> &get_function_objects_int() const
{
return m_state.m_function_objects;
}
std::vector<std::pair<std::string, Proxy_Function>> &get_function_objects_int()
{
return m_state.m_function_objects;
}
const std::vector<std::pair<std::string, std::shared_ptr<std::vector<Proxy_Function>>>> &get_functions_int() const
{
return m_state.m_functions;
}
std::vector<std::pair<std::string, std::shared_ptr<std::vector<Proxy_Function>>>> &get_functions_int()
{
return m_state.m_functions;
}
static bool function_less_than(const Proxy_Function &lhs, const Proxy_Function &rhs)
{
auto dynamic_lhs(std::dynamic_pointer_cast<const dispatch::Dynamic_Proxy_Function>(lhs));
auto dynamic_rhs(std::dynamic_pointer_cast<const dispatch::Dynamic_Proxy_Function>(rhs));
if (dynamic_lhs && dynamic_rhs)
{
if (dynamic_lhs->get_guard())
{
return dynamic_rhs->get_guard() ? false : true;
} else {
return false;
}
}
if (dynamic_lhs && !dynamic_rhs)
{
return false;
}
if (!dynamic_lhs && dynamic_rhs)
{
return true;
}
const auto &lhsparamtypes = lhs->get_param_types();
const auto &rhsparamtypes = rhs->get_param_types();
const auto lhssize = lhsparamtypes.size();
const auto rhssize = rhsparamtypes.size();
static const auto boxed_type = user_type<Boxed_Value>();
static const auto boxed_pod_type = user_type<Boxed_Number>();
for (size_t i = 1; i < lhssize && i < rhssize; ++i)
{
const Type_Info &lt = lhsparamtypes[i];
const Type_Info &rt = rhsparamtypes[i];
if (lt.bare_equal(rt) && lt.is_const() == rt.is_const())
{
continue; // The first two types are essentially the same, next iteration
}
// const is after non-const for the same type
if (lt.bare_equal(rt) && lt.is_const() && !rt.is_const())
{
return false;
}
if (lt.bare_equal(rt) && !lt.is_const())
{
return true;
}
// boxed_values are sorted last
if (lt.bare_equal(boxed_type))
{
return false;
}
if (rt.bare_equal(boxed_type))
{
return true;
}
if (lt.bare_equal(boxed_pod_type))
{
return false;
}
if (rt.bare_equal(boxed_pod_type))
{
return true;
}
// otherwise, we want to sort by typeid
return lt < rt;
}
return false;
}
template<typename Container, typename Key, typename Value>
static void add_keyed_value(Container &t_c, const Key &t_key, Value &&t_value)
{
auto itr = find_keyed_value(t_c, t_key);
if (itr == t_c.end()) {
t_c.reserve(t_c.size() + 1); // tightly control growth of memory usage here
t_c.emplace_back(t_key, std::forward<Value>(t_value));
} else {
typedef typename Container::value_type value_type;
*itr = value_type(t_key, std::forward<Value>(t_value));
}
}
template<typename Container, typename Key>
static typename Container::iterator find_keyed_value(Container &t_c, const Key &t_key)
{
return std::find_if(t_c.begin(), t_c.end(),
[&t_key](const typename Container::value_type &o) {
return o.first == t_key;
});
}
template<typename Container, typename Key>
static typename Container::const_iterator find_keyed_value(const Container &t_c, const Key &t_key)
{
return std::find_if(t_c.begin(), t_c.end(),
[&t_key](const typename Container::value_type &o) {
return o.first == t_key;
});
}
template<typename Container, typename Key>
static typename Container::const_iterator find_keyed_value(const Container &t_c, const Key &t_key, const size_t t_hint)
{
if (t_c.size() > t_hint && t_c[t_hint].first == t_key) {
return std::next(t_c.begin(), static_cast<typename std::iterator_traits<typename Container::const_iterator>::difference_type>(t_hint));
} else {
return find_keyed_value(t_c, t_key);
}
}
/// Implementation detail for adding a function.
/// \throws exception::name_conflict_error if there's a function matching the given one being added
void add_function(const Proxy_Function &t_f, const std::string &t_name)
{
chaiscript::detail::threading::unique_lock<chaiscript::detail::threading::shared_mutex> l(m_mutex);
auto &funcs = get_functions_int();
auto itr = find_keyed_value(funcs, t_name);
Proxy_Function new_func =
[&]() -> Proxy_Function {
if (itr != funcs.end())
{
auto vec = *itr->second;
for (const auto &func : vec)
{
if ((*t_f) == *(func))
{
throw chaiscript::exception::name_conflict_error(t_name);
}
}
vec.reserve(vec.size() + 1); // tightly control vec growth
vec.push_back(t_f);
std::stable_sort(vec.begin(), vec.end(), &function_less_than);
itr->second = std::make_shared<std::vector<Proxy_Function>>(vec);
return std::make_shared<Dispatch_Function>(std::move(vec));
} else if (t_f->has_arithmetic_param()) {
// if the function is the only function but it also contains
// arithmetic operators, we must wrap it in a dispatch function
// to allow for automatic arithmetic type conversions
std::vector<Proxy_Function> vec({t_f});
funcs.emplace_back(t_name, std::make_shared<std::vector<Proxy_Function>>(vec));
return std::make_shared<Dispatch_Function>(std::move(vec));
} else {
funcs.emplace_back(t_name, std::make_shared<std::vector<Proxy_Function>>(std::initializer_list<Proxy_Function>({t_f})));
return t_f;
}
}();
add_keyed_value(get_boxed_functions_int(), t_name, const_var(new_func));
add_keyed_value(get_function_objects_int(), t_name, std::move(new_func));
}
mutable chaiscript::detail::threading::shared_mutex m_mutex;
Type_Conversions m_conversions;
chaiscript::detail::threading::Thread_Storage<Stack_Holder> m_stack_holder;
std::reference_wrapper<parser::ChaiScript_Parser_Base> m_parser;
mutable std::atomic_uint_fast32_t m_method_missing_loc = {0};
State m_state;
};
class Dispatch_State
{
public:
explicit Dispatch_State(Dispatch_Engine &t_engine)
: m_engine(t_engine),
m_stack_holder(t_engine.get_stack_holder()),
m_conversions(t_engine.conversions(), t_engine.conversions().conversion_saves())
{
}
Dispatch_Engine *operator->() const {
return &m_engine.get();
}
Dispatch_Engine &operator*() const {
return m_engine.get();
}
Stack_Holder &stack_holder() const {
return m_stack_holder.get();
}
const Type_Conversions_State &conversions() const {
return m_conversions;
}
Type_Conversions::Conversion_Saves &conversion_saves() const {
return m_conversions.saves();
}
Boxed_Value &add_get_object(const std::string &t_name, Boxed_Value obj) const {
return m_engine.get().add_get_object(t_name, std::move(obj), m_stack_holder.get());
}
void add_object(const std::string &t_name, Boxed_Value obj) const {
return m_engine.get().add_object(t_name, std::move(obj), m_stack_holder.get());
}
Boxed_Value get_object(const std::string &t_name, std::atomic_uint_fast32_t &t_loc) const {
return m_engine.get().get_object(t_name, t_loc, m_stack_holder.get());
}
private:
std::reference_wrapper<Dispatch_Engine> m_engine;
std::reference_wrapper<Stack_Holder> m_stack_holder;
Type_Conversions_State m_conversions;
};
}
}
#endif