// This file is distributed under the BSD License. // See "license.txt" for details. // Copyright 2009-2012, Jonathan Turner (jonathan@emptycrate.com) // and Jason Turner (jason@emptycrate.com) // http://www.chaiscript.com /** * \file * This file contains utility functions for registration of STL container * classes. The methodology used is based on the SGI STL concepts. * http://www.sgi.com/tech/stl/table_of_contents.html */ #ifndef CHAISCRIPT_BOOTSTRAP_STL_HPP_ #define CHAISCRIPT_BOOTSTRAP_STL_HPP_ #include "dispatchkit.hpp" #include "bootstrap.hpp" #include "register_function.hpp" namespace chaiscript { namespace bootstrap { namespace standard_library { /** * Bidir_Range, based on the D concept of ranges. * \todo Update the Range code to base its capabilities on * the user_typetraits of the iterator passed in */ template struct Bidir_Range { typedef Container container_type; typedef typename std::iterator_traits::reference reference_type; Bidir_Range(Container &c) : m_begin(c.begin()), m_end(c.end()) { } bool empty() const { return m_begin == m_end; } void pop_front() { if (empty()) { throw std::range_error("Range empty"); } ++m_begin; } void pop_back() { if (empty()) { throw std::range_error("Range empty"); } --m_end; } reference_type front() const { if (empty()) { throw std::range_error("Range empty"); } return *m_begin; } reference_type back() const { if (empty()) { throw std::range_error("Range empty"); } typename Container::iterator pos = m_end; --pos; return *(pos); } typename Container::iterator m_begin; typename Container::iterator m_end; }; template struct Const_Bidir_Range { typedef const Container container_type; typedef typename std::iterator_traits::reference const_reference_type; Const_Bidir_Range(const Container &c) : m_begin(c.begin()), m_end(c.end()) { } bool empty() const { return m_begin == m_end; } void pop_front() { if (empty()) { throw std::range_error("Range empty"); } ++m_begin; } void pop_back() { if (empty()) { throw std::range_error("Range empty"); } --m_end; } const_reference_type front() const { if (empty()) { throw std::range_error("Range empty"); } return *m_begin; } const_reference_type back() const { if (empty()) { throw std::range_error("Range empty"); } typename Container::const_iterator pos = m_end; --pos; return *(pos); } typename Container::const_iterator m_begin; typename Container::const_iterator m_end; }; namespace detail { template size_t count(T &t_target, const typename T::key_type &t_key) { return t_target.count(t_key); } template void insert(T &t_target, const T &t_other) { t_target.insert(t_other.begin(), t_other.end()); } template void insert_ref(T &t_target, const typename T::value_type &t_val) { t_target.insert(t_val); } /** * Add Bidir_Range support for the given ContainerType */ template ModulePtr input_range_type_impl(const std::string &type, ModulePtr m = ModulePtr(new Module())) { m->add(user_type(), type + "_Range"); copy_constructor(type + "_Range", m); m->add(constructor(), "range"); m->add(fun(&Bidir_Type::empty), "empty"); m->add(fun(&Bidir_Type::pop_front), "pop_front"); m->add(fun(&Bidir_Type::front), "front"); m->add(fun(&Bidir_Type::pop_back), "pop_back"); m->add(fun(&Bidir_Type::back), "back"); return m; } /** * Algorithm for inserting at a specific position into a container */ template void insert_at(Type &container, int pos, const typename Type::value_type &v) { typename Type::iterator itr = container.begin(); typename Type::iterator end = container.end(); if (pos < 0 || std::distance(itr, end) < pos) { throw std::range_error("Cannot insert past end of range"); } std::advance(itr, pos); container.insert(itr, v); } /** * Algorithm for erasing a specific position from a container */ template void erase_at(Type &container, int pos) { typename Type::iterator itr = container.begin(); typename Type::iterator end = container.end(); if (pos < 0 || std::distance(itr, end) < (pos-1)) { throw std::range_error("Cannot erase past end of range"); } std::advance(itr, pos); container.erase(itr); } } template ModulePtr input_range_type(const std::string &type, ModulePtr m = ModulePtr(new Module())) { detail::input_range_type_impl >(type,m); detail::input_range_type_impl >("Const_" + type, m); return m; } /** * Add random_access_container concept to the given ContainerType * http://www.sgi.com/tech/stl/RandomAccessContainer.html */ template ModulePtr random_access_container_type(const std::string &/*type*/, ModulePtr m = ModulePtr(new Module())) { typedef typename ContainerType::reference(ContainerType::*indexoper)(size_t); typedef typename ContainerType::const_reference(ContainerType::*constindexoper)(size_t) const; //In the interest of runtime safety for the m, we prefer the at() method for [] access, //to throw an exception in an out of bounds condition. m->add( fun(std::function (std::mem_fn(static_cast(&ContainerType::at)))), "[]"); m->add( fun(std::function (std::mem_fn(static_cast(&ContainerType::at)))), "[]"); return m; } /** * Add assignable concept to the given ContainerType * http://www.sgi.com/tech/stl/Assignable.html */ template ModulePtr assignable_type(const std::string &type, ModulePtr m = ModulePtr(new Module())) { basic_constructors(type, m); operators::assign(m); return m; } /** * Add container concept to the given ContainerType * http://www.sgi.com/tech/stl/Container.html */ template ModulePtr container_type(const std::string &/*type*/, ModulePtr m = ModulePtr(new Module())) { m->add(fun( std::function( [](const ContainerType *a) { return a->size(); } ) ), "size"); m->add(fun( std::function( [](const ContainerType *a) { return a->empty(); } ) ), "empty"); m->add(fun( std::function( [](ContainerType *a) { a->clear(); } ) ), "clear"); return m; } /** * Add default constructable concept to the given Type * http://www.sgi.com/tech/stl/DefaultConstructible.html */ template ModulePtr default_constructible_type(const std::string &type, ModulePtr m = ModulePtr(new Module())) { m->add(constructor(), type); return m; } /** * Add sequence concept to the given ContainerType * http://www.sgi.com/tech/stl/Sequence.html */ template ModulePtr sequence_type(const std::string &/*type*/, ModulePtr m = ModulePtr(new Module())) { std::string insert_name; if (typeid(typename ContainerType::value_type) == typeid(Boxed_Value)) { insert_name = "insert_ref_at"; } else { insert_name = "insert_at"; } m->add(fun(&detail::insert_at), insert_name); m->add(fun(&detail::erase_at), "erase_at"); return m; } /** * Add back insertion sequence concept to the given ContainerType * http://www.sgi.com/tech/stl/BackInsertionSequence.html */ template ModulePtr back_insertion_sequence_type(const std::string &/*type*/, ModulePtr m = ModulePtr(new Module())) { typedef typename ContainerType::reference (ContainerType::*backptr)(); m->add(fun(static_cast(&ContainerType::back)), "back"); std::string push_back_name; if (typeid(typename ContainerType::value_type) == typeid(Boxed_Value)) { push_back_name = "push_back_ref"; } else { push_back_name = "push_back"; } typedef void (ContainerType::*pushback)(const typename ContainerType::value_type &); m->add(fun(static_cast(&ContainerType::push_back)), push_back_name); m->add(fun(&ContainerType::pop_back), "pop_back"); return m; } /** *Front insertion sequence *http://www.sgi.com/tech/stl/FrontInsertionSequence.html */ template ModulePtr front_insertion_sequence_type(const std::string &, ModulePtr m = ModulePtr(new Module())) { typedef typename ContainerType::reference (ContainerType::*frontptr)(); typedef void (ContainerType::*pushptr)(typename ContainerType::const_reference); typedef void (ContainerType::*popptr)(); m->add(fun(static_cast(&ContainerType::front)), "front"); std::string push_front_name; if (typeid(typename ContainerType::value_type) == typeid(Boxed_Value)) { push_front_name = "push_front_ref"; } else { push_front_name = "push_front"; } m->add(fun(static_cast(&ContainerType::push_front)), push_front_name); m->add(fun(static_cast(&ContainerType::pop_front)), "pop_front"); return m; } /** * bootstrap a given PairType * http://www.sgi.com/tech/stl/pair.html */ template ModulePtr pair_type(const std::string &type, ModulePtr m = ModulePtr(new Module())) { m->add(user_type(), type); typename PairType::first_type PairType::* f = &PairType::first; typename PairType::second_type PairType::* s = &PairType::second; m->add(fun(f), "first"); m->add(fun(s), "second"); basic_constructors(type, m); m->add(constructor(), type); return m; } /** * Add pair associative container concept to the given ContainerType * http://www.sgi.com/tech/stl/PairAssociativeContainer.html */ template ModulePtr pair_associative_container_type(const std::string &type, ModulePtr m = ModulePtr(new Module())) { pair_type(type + "_Pair", m); return m; } /** * Add unique associative container concept to the given ContainerType * http://www.sgi.com/tech/stl/UniqueAssociativeContainer.html */ template ModulePtr unique_associative_container_type(const std::string &/*type*/, ModulePtr m = ModulePtr(new Module())) { m->add(fun(detail::count), "count"); typedef size_t (ContainerType::*erase_ptr)(const typename ContainerType::key_type &); m->add(fun(static_cast(&ContainerType::erase)), "erase"); m->add(fun(&detail::insert), "insert"); std::string insert_name; if (typeid(typename ContainerType::mapped_type) == typeid(Boxed_Value)) { insert_name = "insert_ref"; } else { insert_name = "insert"; } m->add(fun(&detail::insert_ref), insert_name); return m; } /** * Add a MapType container * http://www.sgi.com/tech/stl/Map.html */ template ModulePtr map_type(const std::string &type, ModulePtr m = ModulePtr(new Module())) { m->add(user_type(), type); typedef typename MapType::mapped_type &(MapType::*elemaccess)(const typename MapType::key_type &); m->add(fun(static_cast(&MapType::operator[])), "[]"); container_type(type, m); assignable_type(type, m); unique_associative_container_type(type, m); pair_associative_container_type(type, m); input_range_type(type, m); return m; } /** * hopefully working List type * http://www.sgi.com/tech/stl/List.html */ template ModulePtr list_type(const std::string &type, ModulePtr m = ModulePtr(new Module())) { m->add(user_type(), type); front_insertion_sequence_type(type, m); back_insertion_sequence_type(type, m); sequence_type(type, m); container_type(type, m); default_constructible_type(type, m); assignable_type(type, m); input_range_type(type, m); return m; } /** * Create a vector type with associated concepts * http://www.sgi.com/tech/stl/Vector.html */ template ModulePtr vector_type(const std::string &type, ModulePtr m = ModulePtr(new Module())) { m->add(user_type(), type); typedef typename VectorType::reference (VectorType::*frontptr)(); m->add(fun(static_cast(&VectorType::front)), "front"); back_insertion_sequence_type(type, m); sequence_type(type, m); random_access_container_type(type, m); container_type(type, m); default_constructible_type(type, m); assignable_type(type, m); input_range_type(type, m); if (typeid(VectorType) == typeid(std::vector)) { m->eval("def Vector::`==`(rhs) : type_match(rhs, this) { \ if ( rhs.size() != this.size() ) { \ return false; \ } else { \ auto r1 = range(this); \ auto r2 = range(rhs); \ while (!r1.empty()) \ { \ if (!eq(r1.front(), r2.front())) \ { \ return false; \ } \ r1.pop_front(); \ r2.pop_front(); \ } \ return true; \ } \ }"); } return m; } /** * Add a String container * http://www.sgi.com/tech/stl/basic_string.html */ template ModulePtr string_type(const std::string &type, ModulePtr m = ModulePtr(new Module())) { m->add(user_type(), type); operators::addition(m); operators::assign_sum(m); opers_comparison(m); random_access_container_type(type, m); sequence_type(type, m); default_constructible_type(type, m); container_type(type, m); assignable_type(type, m); input_range_type(type, m); //Special case: add push_back to string (which doesn't support other back_insertion operations std::string push_back_name; if (typeid(typename String::value_type) == typeid(Boxed_Value)) { push_back_name = "push_back_ref"; } else { push_back_name = "push_back"; } m->add(fun(&String::push_back), push_back_name); typedef std::function find_func; m->add(fun(find_func( [](const String *s, const String &f, int pos) { return s->find(f, pos); } )), "find"); m->add(fun(find_func( [](const String *s, const String &f, int pos) { return s->rfind(f, pos); } ) ), "rfind"); m->add(fun(find_func( [](const String *s, const String &f, int pos) { return s->find_first_of(f, pos); } ) ), "find_first_of"); m->add(fun(find_func( [](const String *s, const String &f, int pos) { return s->find_last_of(f, pos); } ) ), "find_last_of"); m->add(fun(find_func( [](const String *s, const String &f, int pos) { return s->find_last_not_of(f, pos); } ) ), "find_last_not_of"); m->add(fun(find_func( [](const String *s, const String &f, int pos) { return s->find_first_not_of(f, pos); } ) ), "find_first_not_of"); m->add(fun( std::function( [](const String *s) { return s->c_str(); } ) ), "c_str"); m->add(fun( std::function( [](const String *s) { return s->data(); } ) ), "data"); m->add(fun( std::function( [](const String *s, int pos, int len) { return s->substr(pos, len); } ) ), "substr"); return m; } } } } #endif