libagg/draw/Image.cpp

432 lines
10 KiB
C++

/**
*******************************************************************************
* @file draw/Image.cpp
* @brief draw Imaging system (Sources)
* @author Edouard DUPIN
* @date 21/08/2012
* @par Project
* draw
*
* @par Copyright
* Copyright 2011 Edouard DUPIN, all right reserved
*
* This software is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY.
*
* Licence summary :
* You can modify and redistribute the sources code and binaries.
* You can send me the bug-fix
*
* Term of the licence in in the file licence.txt.
*
*******************************************************************************
*/
#include <draw/Image.h>
draw::Image::Image(void) :
m_renderingBuffer(NULL),
m_pixFrame(NULL),
m_renderBase(NULL),
m_renderArea(NULL),
m_fillColor(0,0,0,0),
m_strokeColor(0,0,0,0),
m_strokeSize(0)
{
m_size.setX(32);
m_size.setY(32);
Init();
}
draw::Image::Image(ivec2 size) :
m_renderingBuffer(NULL),
m_pixFrame(NULL),
m_renderBase(NULL),
m_renderArea(NULL),
m_fillColor(0,0,0,0),
m_strokeColor(0,0,0,0),
m_strokeSize(0)
{
m_size = size;
Init();
}
void draw::Image::Init(void)
{
// basic element :
draw::Color tmpBg(0,0,0,0);
// preallocate data with a basic bg elements :
m_data.reSize(m_size.x()*m_size.y(), tmpBg);
if (m_size.x()*m_size.y() > m_data.size()) {
DRAW_ERROR("Allocation of data buffer in error");
return;
}
// Allocate the AGG renderer system :
m_renderingBuffer = new agg::rendering_buffer((uint8_t*)&m_data[0], m_size.x(), m_size.y(), m_size.x()*sizeof(draw::Color));
if (NULL == m_renderingBuffer) {
DRAW_ERROR("Allocation of the m_renderingBuffer for SVG drawing error");
return;
}
m_pixFrame = new agg::pixfmt_rgba32(*m_renderingBuffer);
if (NULL == m_pixFrame) {
DRAW_ERROR("Allocation of the m_pixFrame for Image system error");
delete(m_renderingBuffer);
m_renderingBuffer = NULL;
return;
}
m_renderBase = new rendererBase_t(*m_pixFrame);
if (NULL == m_renderBase) {
DRAW_ERROR("Allocation of the m_renderBase for Image system error");
delete(m_pixFrame);
m_pixFrame = NULL;
delete(m_renderingBuffer);
m_renderingBuffer = NULL;
return;
}
m_renderArea = new rendererSolid_t(*m_renderBase);
if (NULL == m_renderArea) {
DRAW_ERROR("Allocation of the m_renderArea for Image system error");
delete(m_renderArea);
m_renderArea = NULL;
delete(m_pixFrame);
m_pixFrame = NULL;
delete(m_renderingBuffer);
m_renderingBuffer = NULL;
return;
}
}
draw::Image::~Image(void)
{
if (NULL != m_renderArea) {
delete(m_renderArea);
m_renderArea = NULL;
}
if (NULL != m_renderBase) {
delete(m_renderBase);
m_renderBase = NULL;
}
if (NULL != m_pixFrame) {
delete(m_pixFrame);
m_pixFrame = NULL;
}
if (NULL != m_renderingBuffer) {
delete(m_renderingBuffer);
m_renderingBuffer = NULL;
}
}
void draw::Image::Resize(ivec2 size)
{
if (NULL != m_renderArea) {
delete(m_renderArea);
m_renderArea = NULL;
}
if (NULL != m_renderBase) {
delete(m_renderBase);
m_renderBase = NULL;
}
if (NULL != m_pixFrame) {
delete(m_pixFrame);
m_pixFrame = NULL;
}
if (NULL != m_renderingBuffer) {
delete(m_renderingBuffer);
m_renderingBuffer = NULL;
}
m_size = size;
// basic element :
draw::Color tmpBg(0,0,0,0);
// preallocate data with a basic bg elements :
m_data.reSize(m_size.x()*m_size.y(), tmpBg);
if (m_size.x()*m_size.y() > m_data.size()) {
DRAW_ERROR("Allocation of data buffer in error");
return;
}
// Allocate the AGG renderer system :
m_renderingBuffer = new agg::rendering_buffer((uint8_t*)&m_data[0], m_size.x(), m_size.y(), m_size.x()*sizeof(draw::Color));
if (NULL == m_renderingBuffer) {
DRAW_ERROR("Allocation of the m_renderingBuffer for SVG drawing error");
return;
}
m_pixFrame = new agg::pixfmt_rgba32(*m_renderingBuffer);
if (NULL == m_pixFrame) {
DRAW_ERROR("Allocation of the m_pixFrame for Image system error");
delete(m_renderingBuffer);
m_renderingBuffer = NULL;
return;
}
m_renderBase = new rendererBase_t(*m_pixFrame);
if (NULL == m_renderBase) {
DRAW_ERROR("Allocation of the m_renderBase for Image system error");
delete(m_pixFrame);
m_pixFrame = NULL;
delete(m_renderingBuffer);
m_renderingBuffer = NULL;
return;
}
m_renderArea = new rendererSolid_t(*m_renderBase);
if (NULL == m_renderArea) {
DRAW_ERROR("Allocation of the m_renderArea for Image system error");
delete(m_renderArea);
m_renderArea = NULL;
delete(m_pixFrame);
m_pixFrame = NULL;
delete(m_renderingBuffer);
m_renderingBuffer = NULL;
return;
}
}
void draw::Image::Begin(void)
{
}
void draw::Image::End(void)
{
}
void draw::Image::MoveTo(vec2 pos)
{
}
void draw::Image::MoveToAbs(vec2 pos)
{
}
void draw::Image::LineTo(vec2 pos)
{
}
void draw::Image::LineToAbs(vec2 pos)
{
}
// link the curent line with his start
void draw::Image::Join(void)
{
}
// generate the display
void draw::Image::draw(void)
{
}
void draw::Image::Dot(vec2 pos)
{
/*
Begin();
MoveTo(pos);
LineTo(pos+etk::Vector2D<float>(1,1));
End();
*/
set(pos, m_fillColor);
}
void draw::Image::Line(vec2 posStart, vec2 posEnd)
{
Begin();
MoveTo(posStart);
LineTo(posEnd);
End();
}
void draw::Image::Rectangle(vec2 pos, vec2 size)
{
Begin();
vec2 tmp = pos;
MoveTo(pos);
tmp += vec2(size.x(),0);
LineTo(tmp);
tmp += vec2(0,size.y());
LineTo(tmp);
tmp -= vec2(size.x(),0);
LineTo(tmp);
Join();
End();
}
void draw::Image::Circle(vec2 pos, float radius, float angleStart, float angleStop)
{
}
void draw::Image::Disc(vec2 pos, float radius, float angleStart, float angleStop)
{
}
#ifdef BASIC_GRADIENT
void Grid::generateSDF()
{
// Pass 0
ivec2 tmpPos(1,1);
for (tmpPos.setY(1) ; tmpPos.y()<m_size.y()-1 ; tmpPos+=vec2(0,1)) {
for (tmpPos.setX(1) ; tmpPos.x()<m_size.x()-1 ; tmpPos+=vec2(1,0) ) {
ivec2 p = get(tmpPos);
Compare(p, tmpPos, -1, 0 );
Compare(p, tmpPos, 0, -1 );
Compare(p, tmpPos, -1, -1 );
Compare(p, tmpPos, 1, -1 );
set(tmpPos, p);
}
for (tmpPos.setX(m_size.x()-2) ; tmpPos.x()>0 ; tmpPos-=vec2(1,0) ) {
ivec2 p = get(tmpPos);
Compare(p, tmpPos, 1, 0 );
set(tmpPos, p );
}
}
// Pass 1
for (tmpPos.setY(m_size.y()-2) ; tmpPos.y()>0 ; tmpPos-=vec2(0,1)) {
for (tmpPos.setX(m_size.x()-2) ; tmpPos.x()>1 ; tmpPos-=vec2(1,0)) {
ivec2 p = get(tmpPos);
Compare(p, tmpPos, 1, 0 );
Compare(p, tmpPos, 0, 1 );
Compare(p, tmpPos, -1, 1 );
Compare(p, tmpPos, 1, 1 );
set(tmpPos, p);
}
for (tmpPos.setX(1) ; tmpPos.x()<m_size.x()-1 ; tmpPos+=vec2(1,0)) {
ivec2 p = get(tmpPos);
Compare(p, tmpPos, -1, 0 );
set(tmpPos, p);
}
}
}
// see : http://www.codersnotes.com/notes/signed-distance-fields
void draw::Image::DistanceField(void)
{
DistanceField(ivec2(0,0), m_size);
}
#endif
#define META_DIST (8)
void draw::Image::DistanceField(ivec2 pos, ivec2 size, int32_t upscaler, int32_t startPos)
{
#ifndef BASIC_GRADIENT
float maxVal = 1/(1000.0*sqrtf(META_DIST*META_DIST+META_DIST*META_DIST));
etk::Vector2D<int32_t> tmpPos;
// generate distance system ... matrix ...
Grid grid2(ivec2(META_DIST*2,META_DIST*2));
for(tmpPos.setY(0) ; tmpPos.y()<META_DIST*2 ; tmpPos+=vec2(0,1) ) {
for(tmpPos.setX(0) ; tmpPos.x<META_DIST*2 ; tmpPos+=vec2(1,0) ) {
int32_t val = 1000.0*sqrtf((tmpPos.x()-META_DIST)*(tmpPos.x()-META_DIST) + (tmpPos.y()-META_DIST)*(tmpPos.y()-META_DIST));
grid2.set(tmpPos, val);
}
}
Grid grid1(size);
grid1.setErrorVal(0);
for(tmpPos.setY(0) ; tmpPos.y()<size.y() ; tmpPos+=vec2(0,1) ) {
for(tmpPos.setX(0) ; tmpPos.x<size.x() ; tmpPos+=vec2(1,0) ) {
draw::Color tmpColor = get(pos+tmpPos);
// Points inside get marked with a x/y of zero.
// Points outside get marked with an infinitely large distance.
if (tmpColor.a<=0x7F) {
grid1.setInide(tmpPos);
} else {
grid1.setOutside(tmpPos);
}
}
}
for(tmpPos.setY(startPos) ; tmpPos.y()<size.y() ; tmpPos+=vec2(0,upscaler) ) {
for(tmpPos.setX(startPos) ; tmpPos.x<size.x() ; tmpPos+=vec2(upscaler,0) ) {
int32_t insideOrOutsideCurrentPixel = grid1.get(tmpPos);
// when out no distance find ...
grid1.setErrorVal(insideOrOutsideCurrentPixel);
ivec2 tmpPos2;
int32_t newDist = 50000000;
for(tmpPos2.setY(-META_DIST) ; tmpPos2.y()<META_DIST ; tmpPos+=vec2(0,1) ) {
for(tmpPos2.setX(-META_DIST) ; tmpPos2.x()<META_DIST ; tmpPos+=vec2(1,0) ) {
// we have an opposite factor ...
if (insideOrOutsideCurrentPixel != grid1.get(tmpPos+tmpPos2)) {
// get new distance
int32_t tmpDist = grid2.get(tmpPos2 + ivec2(META_DIST,META_DIST));
if (newDist > tmpDist) {
newDist = tmpDist;
}
}
}
}
// set the finded distance :
draw::Color tmpColor = get(pos+tmpPos);
float tmpValue = ((1.0-((float)newDist * maxVal)) * 0.5) * 128.0;
if (tmpColor.a<=0x7F) {
tmpColor.a = etk_avg(0, tmpValue, 255);
} else {
tmpColor.a = etk_avg(0, 255-tmpValue, 255);
}
set(pos+tmpPos, tmpColor);
}
}
#else
Grid grid1(size);
Grid grid2(size);
grid1.setOutsideVal(500000);
grid2.setOutsideVal(500000);
grid1.setErrorVal(0);
grid2.setErrorVal(500000);
ivec2 tmpPos;
for(tmpPos.setY(0) ; tmpPos.y()<size.y() ; tmpPos+=vec2(0,1) ) {
for(tmpPos.setX(0) ; tmpPos.x()<size.x() ; tmpPos+=vec2(1,0) ) {
draw::Color tmpColor = get(pos+tmpPos);
// Points inside get marked with a x/y of zero.
// Points outside get marked with an infinitely large distance.
if (tmpColor.a<=0x7F) {
grid1.setInide(tmpPos);
grid2.setOutside(tmpPos);
} else {
grid2.setInide(tmpPos);
grid1.setOutside(tmpPos);
}
}
}
// generate the SDF:
grid1.generateSDF();
grid2.generateSDF();
for(tmpPos.setY(startPos) ; tmpPos.y()<size.y() ; tmpPos+=vec2(0,upscaler) ) {
for(tmpPos.setX(startPos) ; tmpPos.x()<size.x() ; tmpPos+=vec2(upscaler,0) ) {
ivec2 elem1 = grid1.get(tmpPos);
ivec2 elem2 = grid2.get(tmpPos);
// Calculate the actual distance from the x/y
float dist1 = elem1.length();
float dist2 = elem2.length();
float dist = dist1 - dist2;
/*
if (tmpPos.y < 32) {
if (tmpPos.x < 32) {
DRAW_DEBUG( "generate Distance : " << dist1 << "," << dist2 << " == > " << (dist*3 + 128));
} else if (tmpPos.x == 32) {
DRAW_DEBUG( " ---" );
}
}
*/
draw::Color tmpColor = get(pos+tmpPos);
// Clamp and scale it, just for display purposes.
tmpColor.a = etk_avg(0, (dist*3 + 128), 255);
set(pos+tmpPos, tmpColor);
}
}
#endif
}