
GRAME - Computer Music Research Lab.
Technical Note - 01-11-06

Porting PortAudio API on ASIO

Stéphane Letz
November 2001

Grame - Computer Music Research Laboratory
9, rue du Garet BP 1185 69202 FR - LYON Cedex 01

letz@grame.fr

Abstract

This document describes a port of the PortAudio API using the ASIO API on Macintosh and Windows. It explains
technical choices used, buffer size adaptation techniques that guarantee minimal additional latency, results and
limitations.

1 The ASIO API
ASIO (Audio Streaming Input Ouput) is an API defined and proposed by Steinberg. It addesses the area of efficient
audio processing, synchronization, low latency and extentibility on the hardware side. ASIO allows the handling of
multi-channel professional audio cards, and different sample rates (32 kHz to 96 kHz), different sample formats (16,
24, 32 bits of 32/64 floating point formats). ASIO is available on MacOS and Windows.

2 PortAudio API
PortAudio is a library that provides streaming audio input and output. It is a cross-platform API that works on
Windows, Macintosh, Linux, SGI, FreeBSD and BeOS. This means that programs that need to process or generate an
audio signal, can run on several different computers just by recompiling the source code. PortAudio is intended to
promote the exchange of audio synthesis software between developers on different platforms.

3 Technical choices
Porting PortAudio to ASIO means that some technical choices have to be made. The life cycle of the ASIO driver
must be “mapped” to the life cycle of a PortAudio application. Each PortAudio function will be implemented using
one or more ASIO functions.

3.1 Life cycle of the ASIO driver :

The most important functions that must be used to open and use the ASIO driver are the following :

1

• From Loaded to Initialized state : ASIOInit

• From Initialized to Prepared state : ASIOCreateBuffers

• From Prepared to Running state : ASIOStart

ASIO drivers are callback based. In their running state, an audio callback will be called with the index of the double
buffer half (0 or 1) which has to be processed by the application.

The most important functions that must be used to close the ASIO driver are the following :

• From Running to Prepared state : ASIOStop

• From Prepared to Initialized state : ASIODisposeBuffers

• From Initialized to Loaded state : ASIOExit

3.2 Life cycle of an PortAudio application

A standard PortAudio application uses the following functions during it’s life time :

• Pa_Initialize : to initialize the library

• Pa_OpenSteam : to access the diver and open a stream

• Pa_StartStream : to start audio processing

• Pa_StopStream : to stop audio processing

• Pa_CloseStream : to deallocate the stream structure

• Pa_Terminate : to deallocate the library structures

3.3 PortAudio to ASIO mapping

Most PortAudio API functions have an internal platform dependant version that must be implemented on each
platform. They are named PaHost_XXXX. Aditional functions needed for the PortAudio implementation on ASIO
are named Pa_ASIO_XXX. Each external PortAudio API function is implemented using a PaHost_XXXX function
that may use other functions of the PortAudio API. PaHost_XXXX functions call one or several “glue” functions
named Pa_ASIO_XXX that in turn call one or several ASIO API functions.
The following table describes the “mapping “ between “ PortAudio functions and ASIO functions :

External PortAudio API Implementation PortAudio API G lue ASIO API

Pa_In i t ia l ize PaHost_Init , Pa_ASIO_QueryDeviceInfo loadAsioDr iver
Pa_CountDevice ASIOIn i t

ASIOGetChannels
ASIOCanSampleRate
ASIOGetChannel Info

Pa_OpenSteam PaHost_OpenStream Pa_ASIO_loadDevice loadAsioDr iver
ASIOIn i t
ASIOGetChannels
ASIOGetBuf ferSize

PaHost_CalcNumHostBuffers

Pa_ASIO_CreateBuffers ASIOCreateBuf fers
ASIOGetLatenc ies
ASIOSetSampleRate

2

Pa_Sta r tS t ream PaHost_StartOutput
PaHost_StartInput
PaHost_StartEngine ASIOSta r t

Pa_StopSt ream PaHost_StopOutput
PaHost_StopInput
PaHost_StopEngine ASIOStop

Pa_CloseStream PaHost_CloseStream ASIODisposeBuffers
ASIOExi t

Pa_Terminate PaHost_Term removeCur ren tDr i ve r

3.3.1 Opening : getting device information

On Macintosh ASIO drivers are files located in a special folder called “ASIO Drivers” located in the application
folder. These ASIO drivers can easilly be changed simply by moving ASIO drivers files to and from the ASIO
Drivers folder. Some utilities functions are available in the the ASIO SDK :

• loadDriver load an ASIO driver in memory given it’s name

 • getDriverNames returns the name of all available drivers

The internal function Pa_ASIO_QueryDeviceInfo use them to get access to the available ASIO drivers on the
machine.

3.3.2 Configuration

Each ASIO driver has to be loaded, configurated by choosing the number of input/ouput channels, and the size of
ASIO internal buffers. Selection and configuration of the ASIO driver is done in PaHost_OpenStream :

• the ASIO driver corresponding to the selected device is loaded using Pa_ASIO_loadDevice which calls
ASIOInit
• the ASIO driver sample rate is configurated using ASIOSetSampleRate
• the ASIO driver buffer size is computed using PaHost_CalcNumHostBuffers
• ASIO buffers, channels and callback are allocated and configured using Pa_ASIO_CreateBuffers which
calls ASIOCreateBuffers

3.3.3 Start/Stop

The PaHost_StartEngine function directly calls the ASIOStart function to start the audio streaming process.
The PaHost_StopEngine function directly calls the ASIOStop function to stop the audio streaming process.

3.3.4 Closing

The PaHost_CloseStream function will call ASIODisposeBuffers then ASIOExit.

3.3.5 Sample count

ASIO gives the sample position in the audio stream at each callback. This information is directly used to update the
pahsc_NumFramesDone variable that is returned by the PortAudio Pa_StreamTime function.

3.3.6 Audio callback

The ASIO driver calls a bufferSwith or bufferSwitchTimeInfo callback with the index of the double buffer half (0
or 1) which has to be processed, to the application. Upon return of the callback, the application has read all input data
and provided all output data. In this document we will use the name host buffers for ASIO internal buffers and
user buffers for PortAudio buffers.

3

After the initialisation steps, the ASIO callback will basically do the following operations in a full-duplex case :

• transfer samples from the ASIO host input buffer to the PortAudio user input buffer. This
transfer implies interleaving and possible samples conversion in the current implementation.

• if the PortAudio user input buffer is full, call the PortAudio callback which will produce a user output
buffer.

• transfer samples from the PortAudio user ouput buffer into the ASIO host ouput buffer. This transfer
needs “de-interleaving” and possible sample conversion in the current implementation.

These operations may be done several time depending of the ASIO and PortAudio buffer sizes that are used. But at
each ASIO callback, all samples from the host input buffer must be consumed and a complete host ouput buffer
has to be produced.

4 Buffer size adaptation techniques
A PortAudio program opens a stream by defining a buffer size (expressed in frames) that the audio callback must
receive with the exact number of required frames. On the driver side, ASIO gives 3 values : minimum size,
preferred size and maximum size for its internal buffers. Some ASIO drivers give the same value for minimum,
prefered and maximum buffer size and only an external tool can be used to change the host buffer size when the driver
is not running (M Audio Delta 10x10 for example)

The main difference with other implementation or the PortAudio API is that ASIO imposes it’s buffer size, thus in
the general case buffer size adaptation techniques have to be used. We want to use the minimum host buffer size
especially in full-duplex applications when the minimal latency is often necessary.

4.1 Computing host buffer size

Knowing the required user buffer size and the number of buffers, the first step is to compute the host buffer size that
is most adapted using the following method :

• computes the global requested user buffer size = numBuffer * userBufferSize

• if the global requested user size is inside the minimum/maximum host size range, take :
 host buffer size = requested user buffer size

• otherwise

• if requested user buffer size < miminum host buffer size take the first
multiple of requested user size immediatly superior of miminum host buffer size if possible
• otherwise take host buffer size = miminum host buffer size

• if requested user buffer size > maximum host buffer size take the first divisor
of requested user buffer size immediatly inferior of miminum host buffer size if possible
• otherwise take host buffer size = maximum host buffer size

• align host buffer size to be a power of 2 if the ASIO drivers requires it

4.2 Buffer size adapdation techniques

A specific technique that allows to adapt two callback using buffers of different sizes has been developed. It is
explained in detail in [Letz 2001].

5 Implementation

This general algorithm (finding the smallest number of frames for ouput shift) is actually usable in all cases : simple
ones when M and N are multiple or divisors of each other and the more complex ones. In the implementation, several
variables are used during the audio computation :

• pahsc_userInputBufferFrameOffset : position in input user buffer

4

 • pahsc_userOutputBufferFrameOffset : position in output user buffer
 • pahsc_hostOutputBufferFrameOffset : position in output ASIO buffer

At initialization time, a Pa_ASIO_CalcFrameShift function that implements the algorithm is used to compute the
frame number used for the first host ouput buffer :

• when M>N we define pahsc_OutputBufferOffset = Pa_ASIO_CalcFrameShift(M,N). This value is
used to shift the pahsc_hostOutputBufferFrameOffset variable (host ouput write offset)

• when M<N we define pahsc_InputBufferOffset = Pa_ASIO_CalcFrameShift(M,N). This value is
used to shift the pahsc_userInputBufferFrameOffset variable (user input write offset)

5.1 Total Latency

After host buffer creation the ASIOGetLatencies function can be used to know the input and ouput latencies.
Depending on the drivers internal implementation (if it writes directly to a DMA buffer or not) ouput latency will be
1 or 2 blocks. The total I/O latency will be :

ASIO input latency + ASIO output latency + host/user buffers size adaptation latency

5.2 Adtional function description

Here is the description of the most important functions of the PortAudio on ASIO implementation :

• Pa_ASIO_QueryDeviceInfo : load all available ASIO drivers and get information on all of them.

• Pa_ASIO_loadDevice : load the ASIO driver corresponding to the required device number.

• Pa_ASIO_CreateBuffers : create ASIO buffers and initialise ASIO channels.

• Pa_ASIO_Convert_SampleFormat : convert an ASIO native format sample into the corresponding
PortAudio sample format.

• Pa_ASIO_Convert_Inter_Input : convert ASIO native buffers into PortAudio user buffers, do sample
conversion and interleaving.

• Pa_ASIO_Convert_Inter_Ouput : convert PortAudio user buffers into ASIO native buffers, do sample
conversion and “de-interleaving”.

• Pa_ASIO_Callback_Input, Pa_ASIO_Callback_Output : called by the native ASIO callback, do the
buffer adpatation code, host to user buffer conversion, call of the PortAudio callback, production of the host
ouput buffer.

• PaHost_CalcNumHostBuffers : from the userBufferSize and the numOfBuffers values, computes the
most adpated hostBufferSize to be used for ASIO internal buffers creation.

• Input_Int16_Flot32 and functions of the same family : host to user buffer conversion.

• Output_Float32_Int16 and functions of the same family : user to host buffer conversion.

6 Limitations and possible improvements

6.1 Getting the smallest latency

To get minimal latencies in all cases, a better solution would be to allow the PortAudio user to know the host’s
choosen buffer size. Thus, an application that wants small latency and does not care what the user buffer size’s can
take the user buffer size defined in Pa_OpenStream to be exactly equal to the host buffer size.

6.2 Interleaved, non-interleaved mode.

The ASIO buffers are not interleaved. Because PortAudio currently use only interleaved buffers, “de-interleaving” has

5

to be done when converting ASIO buffers into user buffers, and the contrary at the ouput. This process is mixed with
sample conversion.
A possible improvement is to extend PortAudio to allow the use of non-interleaved buffers. Thus de-interleaving is
not longer necessary and fast vector operations can be used on some architectures (Intel SSE or PowerPC Altivec) to
improve to speed of sample conversions.

6.3 Muliple buffers

When opening a PortAudio stream, a number of buffers can be specified. In the current implementation this number is
used when computing the host buffer size. Specifying a small user buffer size and several buffers will result in a
bigger host buffer size but that will always be limited by the maximum possible host buffer size.

6.4 Stream stopping

The current implementation does not distinguish between aborting and stopping the audio stream. Aborting should
immediatly ends the stream and stopping should let the stream playing until the end of all buffers. The current
implementation aborts the stream in all cases.

6.5 Handling multiple audio cards

ASIO does not allow to load and use several drivers at the same time. Thus only one audio stream can be opened
using the currently loaded driver at a given time.

7 Conclusion
A port of the PortAudio API using the ASIO API on Macintosh and Windows has been done sucessfully, thus giving
PortAudio based applications the possibility to be used with professional multi-channel cards on Macintosh and
Windows. The described implementation handles the complete PortAudio API with some limitations that may be
removed by extending the PortAudio API. Thanks to Phil Burk for his help and advice during this work, and to Nick
Dodkovsky, David Viens and Maurice Cameron for testing on Windows.

References
[ASIO 97-99] Asio 2.0 Audio Streaming Input Ouput Developement kit. Steinberg (c) 1997-1999 Steinberg Soft -
und harware GmbH.

[Bencina, Burk 2001] Ross bencina, Phil Burk “PortAudio : an Open Source Cross Platform Audio API”
Proceedings of the International Computer Music Conference 2001, International Computer Music Association, San
Francisco.

[Letz 2001] Stephane Letz “Callback adapdation techniques” GRAME - Computer Music Research Lab. Technical
Note - 01-11-07

6

