[DEV] use normal distance field methode
This commit is contained in:
parent
9c6fe98018
commit
d144c0a65f
@ -15,17 +15,20 @@ varying vec4 f_color;
|
||||
void main(void) {
|
||||
vec4 tmpcolor = texture2D(EW_texID, f_texcoord);
|
||||
vec4 outColor = vec4(0,0,0,0);
|
||||
/*
|
||||
// compare distance with 0.5 that represent the middle ...
|
||||
if (tmpcolor[3]>0.5) {
|
||||
/*
|
||||
if (tmpcolor[0]>0.5) {
|
||||
outColor = f_color;
|
||||
outColor[3] = 1.0;
|
||||
} else if (tmpcolor[3]>0.49) {
|
||||
} else if (tmpcolor[0]>0.49) {
|
||||
// antialiasing :
|
||||
outColor = f_color;
|
||||
outColor[3] = (tmpcolor[3]-0.49)*1.0/0.02;
|
||||
outColor[3] = 0.0;//(tmpcolor[3]-0.49)*1.0/0.02;
|
||||
}
|
||||
*/
|
||||
outColor = f_color;
|
||||
outColor[3] = smoothstep(0.35, 0.65, tmpcolor[0]);
|
||||
/*
|
||||
outColor = f_color;// * tmpcolor[3];
|
||||
if (1==EW_SoftEdge) {
|
||||
outColor[3] = smoothstep(EW_SoftEdgeMin, EW_SoftEdgeMax, tmpcolor[3]);
|
||||
@ -36,8 +39,10 @@ void main(void) {
|
||||
outColor[3] = 0.0;
|
||||
}
|
||||
}
|
||||
*/
|
||||
//outColor = vec4(0,0,0,0);
|
||||
//outColor[3] = tmpcolor[3];
|
||||
gl_FragColor = outColor;
|
||||
//gl_FragColor = tmpcolor;
|
||||
}
|
||||
|
||||
|
@ -1,2 +1,2 @@
|
||||
fontDistanceField/font1.vert
|
||||
fontDistanceField/font1.frag
|
||||
font1.vert
|
||||
font1.frag
|
@ -4,7 +4,7 @@ precision mediump int;
|
||||
#endif
|
||||
|
||||
// Input :
|
||||
attribute vec2 EW_coord2d;
|
||||
attribute vec3 EW_coord3d;
|
||||
attribute vec2 EW_texture2d;
|
||||
attribute vec4 EW_color;
|
||||
uniform mat4 EW_MatrixTransformation;
|
||||
@ -14,7 +14,7 @@ varying vec4 f_color;
|
||||
varying vec2 f_texcoord;
|
||||
|
||||
void main(void) {
|
||||
gl_Position = EW_MatrixTransformation * vec4(EW_coord2d, 0.0, 1.0);
|
||||
gl_Position = EW_MatrixTransformation * vec4(EW_coord3d, 1.0);
|
||||
// set texture output coord
|
||||
f_texcoord = EW_texture2d;
|
||||
// set output color :
|
||||
|
577
external/edtaa3/edtaa3/edtaa3func.c
vendored
Normal file
577
external/edtaa3/edtaa3/edtaa3func.c
vendored
Normal file
@ -0,0 +1,577 @@
|
||||
/*
|
||||
* Copyright 2009 Stefan Gustavson (stefan.gustavson@gmail.com)
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY STEFAN GUSTAVSON ''AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
|
||||
* EVENT SHALL STEFAN GUSTAVSON OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
||||
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
||||
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
* The views and conclusions contained in the software and documentation are
|
||||
* those of the authors and should not be interpreted as representing official
|
||||
* policies, either expressed or implied, of Stefan Gustavson.
|
||||
*
|
||||
*
|
||||
* edtaa3()
|
||||
*
|
||||
* Sweep-and-update Euclidean distance transform of an
|
||||
* image. Positive pixels are treated as object pixels,
|
||||
* zero or negative pixels are treated as background.
|
||||
* An attempt is made to treat antialiased edges correctly.
|
||||
* The input image must have pixels in the range [0,1],
|
||||
* and the antialiased image should be a box-filter
|
||||
* sampling of the ideal, crisp edge.
|
||||
* If the antialias region is more than 1 pixel wide,
|
||||
* the result from this transform will be inaccurate.
|
||||
*
|
||||
* By Stefan Gustavson (stefan.gustavson@gmail.com).
|
||||
*
|
||||
* Originally written in 1994, based on a verbal
|
||||
* description of the SSED8 algorithm published in the
|
||||
* PhD dissertation of Ingemar Ragnemalm. This is his
|
||||
* algorithm, I only implemented it in C.
|
||||
*
|
||||
* Updated in 2004 to treat border pixels correctly,
|
||||
* and cleaned up the code to improve readability.
|
||||
*
|
||||
* Updated in 2009 to handle anti-aliased edges.
|
||||
*
|
||||
* Updated in 2011 to avoid a corner case infinite loop.
|
||||
*
|
||||
*/
|
||||
#include <math.h>
|
||||
|
||||
|
||||
/*
|
||||
* Compute the local gradient at edge pixels using convolution filters.
|
||||
* The gradient is computed only at edge pixels. At other places in the
|
||||
* image, it is never used, and it's mostly zero anyway.
|
||||
*/
|
||||
void computegradient(double *img, int w, int h, double *gx, double *gy)
|
||||
{
|
||||
int i,j,k;
|
||||
double glength;
|
||||
#define SQRT2 1.4142136
|
||||
for(i = 1; i < h-1; i++) { // Avoid edges where the kernels would spill over
|
||||
for(j = 1; j < w-1; j++) {
|
||||
k = i*w + j;
|
||||
if((img[k]>0.0) && (img[k]<1.0)) { // Compute gradient for edge pixels only
|
||||
gx[k] = -img[k-w-1] - SQRT2*img[k-1] - img[k+w-1] + img[k-w+1] + SQRT2*img[k+1] + img[k+w+1];
|
||||
gy[k] = -img[k-w-1] - SQRT2*img[k-w] - img[k+w-1] + img[k-w+1] + SQRT2*img[k+w] + img[k+w+1];
|
||||
glength = gx[k]*gx[k] + gy[k]*gy[k];
|
||||
if(glength > 0.0) { // Avoid division by zero
|
||||
glength = sqrt(glength);
|
||||
gx[k]=gx[k]/glength;
|
||||
gy[k]=gy[k]/glength;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// TODO: Compute reasonable values for gx, gy also around the image edges.
|
||||
// (These are zero now, which reduces the accuracy for a 1-pixel wide region
|
||||
// around the image edge.) 2x2 kernels would be suitable for this.
|
||||
}
|
||||
|
||||
/*
|
||||
* A somewhat tricky function to approximate the distance to an edge in a
|
||||
* certain pixel, with consideration to either the local gradient (gx,gy)
|
||||
* or the direction to the pixel (dx,dy) and the pixel greyscale value a.
|
||||
* The latter alternative, using (dx,dy), is the metric used by edtaa2().
|
||||
* Using a local estimate of the edge gradient (gx,gy) yields much better
|
||||
* accuracy at and near edges, and reduces the error even at distant pixels
|
||||
* provided that the gradient direction is accurately estimated.
|
||||
*/
|
||||
double edgedf(double gx, double gy, double a)
|
||||
{
|
||||
double df, glength, temp, a1;
|
||||
|
||||
if ((gx == 0) || (gy == 0)) { // Either A) gu or gv are zero, or B) both
|
||||
df = 0.5-a; // Linear approximation is A) correct or B) a fair guess
|
||||
} else {
|
||||
glength = sqrt(gx*gx + gy*gy);
|
||||
if(glength>0) {
|
||||
gx = gx/glength;
|
||||
gy = gy/glength;
|
||||
}
|
||||
/* Everything is symmetric wrt sign and transposition,
|
||||
* so move to first octant (gx>=0, gy>=0, gx>=gy) to
|
||||
* avoid handling all possible edge directions.
|
||||
*/
|
||||
gx = fabs(gx);
|
||||
gy = fabs(gy);
|
||||
if(gx<gy) {
|
||||
temp = gx;
|
||||
gx = gy;
|
||||
gy = temp;
|
||||
}
|
||||
a1 = 0.5*gy/gx;
|
||||
if (a < a1) { // 0 <= a < a1
|
||||
df = 0.5*(gx + gy) - sqrt(2.0*gx*gy*a);
|
||||
} else if (a < (1.0-a1)) { // a1 <= a <= 1-a1
|
||||
df = (0.5-a)*gx;
|
||||
} else { // 1-a1 < a <= 1
|
||||
df = -0.5*(gx + gy) + sqrt(2.0*gx*gy*(1.0-a));
|
||||
}
|
||||
}
|
||||
return df;
|
||||
}
|
||||
|
||||
double distaa3(double *img, double *gximg, double *gyimg, int w, int c, int xc, int yc, int xi, int yi)
|
||||
{
|
||||
double di, df, dx, dy, gx, gy, a;
|
||||
int closest;
|
||||
|
||||
closest = c-xc-yc*w; // Index to the edge pixel pointed to from c
|
||||
a = img[closest]; // Grayscale value at the edge pixel
|
||||
gx = gximg[closest]; // X gradient component at the edge pixel
|
||||
gy = gyimg[closest]; // Y gradient component at the edge pixel
|
||||
|
||||
if(a > 1.0) a = 1.0;
|
||||
if(a < 0.0) a = 0.0; // Clip grayscale values outside the range [0,1]
|
||||
if(a == 0.0) return 1000000.0; // Not an object pixel, return "very far" ("don't know yet")
|
||||
|
||||
dx = (double)xi;
|
||||
dy = (double)yi;
|
||||
di = sqrt(dx*dx + dy*dy); // Length of integer vector, like a traditional EDT
|
||||
if(di==0) { // Use local gradient only at edges
|
||||
// Estimate based on local gradient only
|
||||
df = edgedf(gx, gy, a);
|
||||
} else {
|
||||
// Estimate gradient based on direction to edge (accurate for large di)
|
||||
df = edgedf(dx, dy, a);
|
||||
}
|
||||
return di + df; // Same metric as edtaa2, except at edges (where di=0)
|
||||
}
|
||||
|
||||
// Shorthand macro: add ubiquitous parameters dist, gx, gy, img and w and call distaa3()
|
||||
#define DISTAA(c,xc,yc,xi,yi) (distaa3(img, gx, gy, w, c, xc, yc, xi, yi))
|
||||
|
||||
void edtaa3(double *img, double *gx, double *gy, int w, int h, short *distx, short *disty, double *dist)
|
||||
{
|
||||
int x, y, i, c;
|
||||
int offset_u, offset_ur, offset_r, offset_rd,
|
||||
offset_d, offset_dl, offset_l, offset_lu;
|
||||
double olddist, newdist;
|
||||
int cdistx, cdisty, newdistx, newdisty;
|
||||
int changed;
|
||||
double epsilon = 1e-3;
|
||||
|
||||
/* Initialize index offsets for the current image width */
|
||||
offset_u = -w;
|
||||
offset_ur = -w+1;
|
||||
offset_r = 1;
|
||||
offset_rd = w+1;
|
||||
offset_d = w;
|
||||
offset_dl = w-1;
|
||||
offset_l = -1;
|
||||
offset_lu = -w-1;
|
||||
|
||||
/* Initialize the distance images */
|
||||
for(i=0; i<w*h; i++) {
|
||||
distx[i] = 0; // At first, all pixels point to
|
||||
disty[i] = 0; // themselves as the closest known.
|
||||
if(img[i] <= 0.0)
|
||||
{
|
||||
dist[i]= 1000000.0; // Big value, means "not set yet"
|
||||
}
|
||||
else if (img[i]<1.0) {
|
||||
dist[i] = edgedf(gx[i], gy[i], img[i]); // Gradient-assisted estimate
|
||||
}
|
||||
else {
|
||||
dist[i]= 0.0; // Inside the object
|
||||
}
|
||||
}
|
||||
|
||||
/* Perform the transformation */
|
||||
do
|
||||
{
|
||||
changed = 0;
|
||||
|
||||
/* Scan rows, except first row */
|
||||
for(y=1; y<h; y++)
|
||||
{
|
||||
|
||||
/* move index to leftmost pixel of current row */
|
||||
i = y*w;
|
||||
|
||||
/* scan right, propagate distances from above & left */
|
||||
|
||||
/* Leftmost pixel is special, has no left neighbors */
|
||||
olddist = dist[i];
|
||||
if(olddist > 0) // If non-zero distance or not set yet
|
||||
{
|
||||
c = i + offset_u; // Index of candidate for testing
|
||||
cdistx = distx[c];
|
||||
cdisty = disty[c];
|
||||
newdistx = cdistx;
|
||||
newdisty = cdisty+1;
|
||||
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
||||
if(newdist < olddist-epsilon)
|
||||
{
|
||||
distx[i]=newdistx;
|
||||
disty[i]=newdisty;
|
||||
dist[i]=newdist;
|
||||
olddist=newdist;
|
||||
changed = 1;
|
||||
}
|
||||
|
||||
c = i+offset_ur;
|
||||
cdistx = distx[c];
|
||||
cdisty = disty[c];
|
||||
newdistx = cdistx-1;
|
||||
newdisty = cdisty+1;
|
||||
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
||||
if(newdist < olddist-epsilon)
|
||||
{
|
||||
distx[i]=newdistx;
|
||||
disty[i]=newdisty;
|
||||
dist[i]=newdist;
|
||||
changed = 1;
|
||||
}
|
||||
}
|
||||
i++;
|
||||
|
||||
/* Middle pixels have all neighbors */
|
||||
for(x=1; x<w-1; x++, i++)
|
||||
{
|
||||
olddist = dist[i];
|
||||
if(olddist <= 0) continue; // No need to update further
|
||||
|
||||
c = i+offset_l;
|
||||
cdistx = distx[c];
|
||||
cdisty = disty[c];
|
||||
newdistx = cdistx+1;
|
||||
newdisty = cdisty;
|
||||
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
||||
if(newdist < olddist-epsilon)
|
||||
{
|
||||
distx[i]=newdistx;
|
||||
disty[i]=newdisty;
|
||||
dist[i]=newdist;
|
||||
olddist=newdist;
|
||||
changed = 1;
|
||||
}
|
||||
|
||||
c = i+offset_lu;
|
||||
cdistx = distx[c];
|
||||
cdisty = disty[c];
|
||||
newdistx = cdistx+1;
|
||||
newdisty = cdisty+1;
|
||||
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
||||
if(newdist < olddist-epsilon)
|
||||
{
|
||||
distx[i]=newdistx;
|
||||
disty[i]=newdisty;
|
||||
dist[i]=newdist;
|
||||
olddist=newdist;
|
||||
changed = 1;
|
||||
}
|
||||
|
||||
c = i+offset_u;
|
||||
cdistx = distx[c];
|
||||
cdisty = disty[c];
|
||||
newdistx = cdistx;
|
||||
newdisty = cdisty+1;
|
||||
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
||||
if(newdist < olddist-epsilon)
|
||||
{
|
||||
distx[i]=newdistx;
|
||||
disty[i]=newdisty;
|
||||
dist[i]=newdist;
|
||||
olddist=newdist;
|
||||
changed = 1;
|
||||
}
|
||||
|
||||
c = i+offset_ur;
|
||||
cdistx = distx[c];
|
||||
cdisty = disty[c];
|
||||
newdistx = cdistx-1;
|
||||
newdisty = cdisty+1;
|
||||
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
||||
if(newdist < olddist-epsilon)
|
||||
{
|
||||
distx[i]=newdistx;
|
||||
disty[i]=newdisty;
|
||||
dist[i]=newdist;
|
||||
changed = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* Rightmost pixel of row is special, has no right neighbors */
|
||||
olddist = dist[i];
|
||||
if(olddist > 0) // If not already zero distance
|
||||
{
|
||||
c = i+offset_l;
|
||||
cdistx = distx[c];
|
||||
cdisty = disty[c];
|
||||
newdistx = cdistx+1;
|
||||
newdisty = cdisty;
|
||||
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
||||
if(newdist < olddist-epsilon)
|
||||
{
|
||||
distx[i]=newdistx;
|
||||
disty[i]=newdisty;
|
||||
dist[i]=newdist;
|
||||
olddist=newdist;
|
||||
changed = 1;
|
||||
}
|
||||
|
||||
c = i+offset_lu;
|
||||
cdistx = distx[c];
|
||||
cdisty = disty[c];
|
||||
newdistx = cdistx+1;
|
||||
newdisty = cdisty+1;
|
||||
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
||||
if(newdist < olddist-epsilon)
|
||||
{
|
||||
distx[i]=newdistx;
|
||||
disty[i]=newdisty;
|
||||
dist[i]=newdist;
|
||||
olddist=newdist;
|
||||
changed = 1;
|
||||
}
|
||||
|
||||
c = i+offset_u;
|
||||
cdistx = distx[c];
|
||||
cdisty = disty[c];
|
||||
newdistx = cdistx;
|
||||
newdisty = cdisty+1;
|
||||
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
||||
if(newdist < olddist-epsilon)
|
||||
{
|
||||
distx[i]=newdistx;
|
||||
disty[i]=newdisty;
|
||||
dist[i]=newdist;
|
||||
changed = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* Move index to second rightmost pixel of current row. */
|
||||
/* Rightmost pixel is skipped, it has no right neighbor. */
|
||||
i = y*w + w-2;
|
||||
|
||||
/* scan left, propagate distance from right */
|
||||
for(x=w-2; x>=0; x--, i--)
|
||||
{
|
||||
olddist = dist[i];
|
||||
if(olddist <= 0) continue; // Already zero distance
|
||||
|
||||
c = i+offset_r;
|
||||
cdistx = distx[c];
|
||||
cdisty = disty[c];
|
||||
newdistx = cdistx-1;
|
||||
newdisty = cdisty;
|
||||
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
||||
if(newdist < olddist-epsilon)
|
||||
{
|
||||
distx[i]=newdistx;
|
||||
disty[i]=newdisty;
|
||||
dist[i]=newdist;
|
||||
changed = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Scan rows in reverse order, except last row */
|
||||
for(y=h-2; y>=0; y--)
|
||||
{
|
||||
/* move index to rightmost pixel of current row */
|
||||
i = y*w + w-1;
|
||||
|
||||
/* Scan left, propagate distances from below & right */
|
||||
|
||||
/* Rightmost pixel is special, has no right neighbors */
|
||||
olddist = dist[i];
|
||||
if(olddist > 0) // If not already zero distance
|
||||
{
|
||||
c = i+offset_d;
|
||||
cdistx = distx[c];
|
||||
cdisty = disty[c];
|
||||
newdistx = cdistx;
|
||||
newdisty = cdisty-1;
|
||||
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
||||
if(newdist < olddist-epsilon)
|
||||
{
|
||||
distx[i]=newdistx;
|
||||
disty[i]=newdisty;
|
||||
dist[i]=newdist;
|
||||
olddist=newdist;
|
||||
changed = 1;
|
||||
}
|
||||
|
||||
c = i+offset_dl;
|
||||
cdistx = distx[c];
|
||||
cdisty = disty[c];
|
||||
newdistx = cdistx+1;
|
||||
newdisty = cdisty-1;
|
||||
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
||||
if(newdist < olddist-epsilon)
|
||||
{
|
||||
distx[i]=newdistx;
|
||||
disty[i]=newdisty;
|
||||
dist[i]=newdist;
|
||||
changed = 1;
|
||||
}
|
||||
}
|
||||
i--;
|
||||
|
||||
/* Middle pixels have all neighbors */
|
||||
for(x=w-2; x>0; x--, i--)
|
||||
{
|
||||
olddist = dist[i];
|
||||
if(olddist <= 0) continue; // Already zero distance
|
||||
|
||||
c = i+offset_r;
|
||||
cdistx = distx[c];
|
||||
cdisty = disty[c];
|
||||
newdistx = cdistx-1;
|
||||
newdisty = cdisty;
|
||||
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
||||
if(newdist < olddist-epsilon)
|
||||
{
|
||||
distx[i]=newdistx;
|
||||
disty[i]=newdisty;
|
||||
dist[i]=newdist;
|
||||
olddist=newdist;
|
||||
changed = 1;
|
||||
}
|
||||
|
||||
c = i+offset_rd;
|
||||
cdistx = distx[c];
|
||||
cdisty = disty[c];
|
||||
newdistx = cdistx-1;
|
||||
newdisty = cdisty-1;
|
||||
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
||||
if(newdist < olddist-epsilon)
|
||||
{
|
||||
distx[i]=newdistx;
|
||||
disty[i]=newdisty;
|
||||
dist[i]=newdist;
|
||||
olddist=newdist;
|
||||
changed = 1;
|
||||
}
|
||||
|
||||
c = i+offset_d;
|
||||
cdistx = distx[c];
|
||||
cdisty = disty[c];
|
||||
newdistx = cdistx;
|
||||
newdisty = cdisty-1;
|
||||
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
||||
if(newdist < olddist-epsilon)
|
||||
{
|
||||
distx[i]=newdistx;
|
||||
disty[i]=newdisty;
|
||||
dist[i]=newdist;
|
||||
olddist=newdist;
|
||||
changed = 1;
|
||||
}
|
||||
|
||||
c = i+offset_dl;
|
||||
cdistx = distx[c];
|
||||
cdisty = disty[c];
|
||||
newdistx = cdistx+1;
|
||||
newdisty = cdisty-1;
|
||||
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
||||
if(newdist < olddist-epsilon)
|
||||
{
|
||||
distx[i]=newdistx;
|
||||
disty[i]=newdisty;
|
||||
dist[i]=newdist;
|
||||
changed = 1;
|
||||
}
|
||||
}
|
||||
/* Leftmost pixel is special, has no left neighbors */
|
||||
olddist = dist[i];
|
||||
if(olddist > 0) // If not already zero distance
|
||||
{
|
||||
c = i+offset_r;
|
||||
cdistx = distx[c];
|
||||
cdisty = disty[c];
|
||||
newdistx = cdistx-1;
|
||||
newdisty = cdisty;
|
||||
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
||||
if(newdist < olddist-epsilon)
|
||||
{
|
||||
distx[i]=newdistx;
|
||||
disty[i]=newdisty;
|
||||
dist[i]=newdist;
|
||||
olddist=newdist;
|
||||
changed = 1;
|
||||
}
|
||||
|
||||
c = i+offset_rd;
|
||||
cdistx = distx[c];
|
||||
cdisty = disty[c];
|
||||
newdistx = cdistx-1;
|
||||
newdisty = cdisty-1;
|
||||
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
||||
if(newdist < olddist-epsilon)
|
||||
{
|
||||
distx[i]=newdistx;
|
||||
disty[i]=newdisty;
|
||||
dist[i]=newdist;
|
||||
olddist=newdist;
|
||||
changed = 1;
|
||||
}
|
||||
|
||||
c = i+offset_d;
|
||||
cdistx = distx[c];
|
||||
cdisty = disty[c];
|
||||
newdistx = cdistx;
|
||||
newdisty = cdisty-1;
|
||||
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
||||
if(newdist < olddist-epsilon)
|
||||
{
|
||||
distx[i]=newdistx;
|
||||
disty[i]=newdisty;
|
||||
dist[i]=newdist;
|
||||
changed = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* Move index to second leftmost pixel of current row. */
|
||||
/* Leftmost pixel is skipped, it has no left neighbor. */
|
||||
i = y*w + 1;
|
||||
for(x=1; x<w; x++, i++)
|
||||
{
|
||||
/* scan right, propagate distance from left */
|
||||
olddist = dist[i];
|
||||
if(olddist <= 0) continue; // Already zero distance
|
||||
|
||||
c = i+offset_l;
|
||||
cdistx = distx[c];
|
||||
cdisty = disty[c];
|
||||
newdistx = cdistx+1;
|
||||
newdisty = cdisty;
|
||||
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
||||
if(newdist < olddist-epsilon)
|
||||
{
|
||||
distx[i]=newdistx;
|
||||
disty[i]=newdisty;
|
||||
dist[i]=newdist;
|
||||
changed = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
while(changed); // Sweep until no more updates are made
|
||||
|
||||
/* The transformation is completed. */
|
||||
|
||||
}
|
100
external/edtaa3/edtaa3/edtaa3func.h
vendored
Normal file
100
external/edtaa3/edtaa3/edtaa3func.h
vendored
Normal file
@ -0,0 +1,100 @@
|
||||
/*
|
||||
* Copyright 2009 Stefan Gustavson (stefan.gustavson@gmail.com)
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY STEFAN GUSTAVSON ''AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
|
||||
* EVENT SHALL STEFAN GUSTAVSON OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
||||
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
||||
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
* The views and conclusions contained in the software and documentation are
|
||||
* those of the authors and should not be interpreted as representing official
|
||||
* policies, either expressed or implied, of Stefan Gustavson.
|
||||
*
|
||||
*
|
||||
* edtaa3()
|
||||
*
|
||||
* Sweep-and-update Euclidean distance transform of an
|
||||
* image. Positive pixels are treated as object pixels,
|
||||
* zero or negative pixels are treated as background.
|
||||
* An attempt is made to treat antialiased edges correctly.
|
||||
* The input image must have pixels in the range [0,1],
|
||||
* and the antialiased image should be a box-filter
|
||||
* sampling of the ideal, crisp edge.
|
||||
* If the antialias region is more than 1 pixel wide,
|
||||
* the result from this transform will be inaccurate.
|
||||
*
|
||||
* By Stefan Gustavson (stefan.gustavson@gmail.com).
|
||||
*
|
||||
* Originally written in 1994, based on a verbal
|
||||
* description of the SSED8 algorithm published in the
|
||||
* PhD dissertation of Ingemar Ragnemalm. This is his
|
||||
* algorithm, I only implemented it in C.
|
||||
*
|
||||
* Updated in 2004 to treat border pixels correctly,
|
||||
* and cleaned up the code to improve readability.
|
||||
*
|
||||
* Updated in 2009 to handle anti-aliased edges.
|
||||
*
|
||||
* Updated in 2011 to avoid a corner case infinite loop.
|
||||
*
|
||||
*/
|
||||
#ifndef __EDTAA3FUNC_H__
|
||||
#define __EDTAA3FUNC_H__
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
#include <math.h>
|
||||
|
||||
|
||||
/*
|
||||
* Compute the local gradient at edge pixels using convolution filters.
|
||||
* The gradient is computed only at edge pixels. At other places in the
|
||||
* image, it is never used, and it's mostly zero anyway.
|
||||
*/
|
||||
void computegradient(double *img, int w, int h, double *gx, double *gy);
|
||||
|
||||
/*
|
||||
* A somewhat tricky function to approximate the distance to an edge in a
|
||||
* certain pixel, with consideration to either the local gradient (gx,gy)
|
||||
* or the direction to the pixel (dx,dy) and the pixel greyscale value a.
|
||||
* The latter alternative, using (dx,dy), is the metric used by edtaa2().
|
||||
* Using a local estimate of the edge gradient (gx,gy) yields much better
|
||||
* accuracy at and near edges, and reduces the error even at distant pixels
|
||||
* provided that the gradient direction is accurately estimated.
|
||||
*/
|
||||
double edgedf(double gx, double gy, double a);
|
||||
|
||||
|
||||
double distaa3(double *img, double *gximg, double *gyimg, int w, int c, int xc, int yc, int xi, int yi);
|
||||
|
||||
// Shorthand macro: add ubiquitous parameters dist, gx, gy, img and w and call distaa3()
|
||||
#define DISTAA(c,xc,yc,xi,yi) (distaa3(img, gx, gy, w, c, xc, yc, xi, yi))
|
||||
|
||||
void edtaa3(double *img, double *gx, double *gy, int w, int h, short *distx, short *disty, double *dist);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // __EDTAA3FUNC_H__
|
24
external/edtaa3/license_BSD_2_clauses.txt
vendored
Normal file
24
external/edtaa3/license_BSD_2_clauses.txt
vendored
Normal file
@ -0,0 +1,24 @@
|
||||
Copyright 2009 Stefan Gustavson (stefan.gustavson@gmail.com)
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
1. Redistributions of source code must retain the above copyright notice,
|
||||
this list of conditions and the following disclaimer.
|
||||
|
||||
2. Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY STEFAN GUSTAVSON ''AS IS'' AND ANY EXPRESS OR
|
||||
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||||
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
|
||||
EVENT SHALL STEFAN GUSTAVSON OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
||||
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
||||
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
23
external/edtaa3/lutin_edtaa3.py
vendored
Normal file
23
external/edtaa3/lutin_edtaa3.py
vendored
Normal file
@ -0,0 +1,23 @@
|
||||
#!/usr/bin/python
|
||||
import lutinModule as module
|
||||
import lutinTools as tools
|
||||
import lutinTools
|
||||
|
||||
def get_desc():
|
||||
return "edtaa3 library (create distance field from image)"
|
||||
|
||||
def create(target):
|
||||
# module name is 'edn' and type binary.
|
||||
myModule = module.Module(__file__, 'edtaa3', 'LIBRARY')
|
||||
|
||||
# add the file to compile:
|
||||
myModule.add_src_file([
|
||||
'edtaa3/edtaa3func.c'
|
||||
])
|
||||
|
||||
myModule.add_export_path(tools.get_current_path(__file__))
|
||||
|
||||
# add the currrent module at the
|
||||
return myModule
|
||||
|
||||
|
@ -27,7 +27,7 @@ ewol::resource::DistanceFieldFont::DistanceFieldFont(const std::string& _fontNam
|
||||
m_font = NULL;
|
||||
m_lastGlyphPos.setValue(1,1);
|
||||
m_lastRawHeigh = 0;
|
||||
m_size = 15;
|
||||
m_size = 36;
|
||||
std::string localName = _fontName;
|
||||
std::vector<std::string> folderList;
|
||||
if (true == ewol::getContext().getFontDefault().getUseExternal()) {
|
||||
@ -95,7 +95,7 @@ ewol::resource::DistanceFieldFont::DistanceFieldFont(const std::string& _fontNam
|
||||
}
|
||||
m_height = m_font->getHeight(m_size);
|
||||
// TODO : basic font use 512 is better ... == > maybe estimate it with the dpi ???
|
||||
setImageSize(ivec2(512,32));
|
||||
setImageSize(ivec2(256,32));
|
||||
// now we can acces directly on the image
|
||||
m_data.clear(etk::Color<>(0x00000000));
|
||||
|
||||
@ -112,22 +112,106 @@ ewol::resource::DistanceFieldFont::~DistanceFieldFont(void) {
|
||||
ewol::resource::FontFreeType::release(m_font);
|
||||
}
|
||||
|
||||
void ewol::resource::DistanceFieldFont::GenerateSoftDistanceField(const egami::ImageMono& _input, egami::Image& _output) {
|
||||
unsigned char *img = &_input[0];
|
||||
unsigned int width = _input.getSize().x();
|
||||
unsigned int height = _input.getSize().y();
|
||||
std::vector<short> xdist;
|
||||
std::vector<short> ydist;
|
||||
std::vector<double> gx;
|
||||
std::vector<double> gy;
|
||||
std::vector<double> data;
|
||||
std::vector<double> outside;
|
||||
std::vector<double> inside;
|
||||
xdist.resize(width*height, 0);
|
||||
ydist.resize(width*height, 0);
|
||||
gx.resize(width*height, 0.0);
|
||||
gy.resize(width*height, 0.0);
|
||||
data.resize(width*height, 0.0);
|
||||
outside.resize(width*height, 0.0);
|
||||
inside.resize(width*height, 0.0);
|
||||
|
||||
// Convert img into double (data)
|
||||
double img_min = 255, img_max = -255;
|
||||
for(size_t iii = 0; iii < data.size(); ++iii) {
|
||||
double v = img[iii];
|
||||
data[iii] = v;
|
||||
if (v > img_max) {
|
||||
img_max = v;
|
||||
}
|
||||
if (v < img_min) {
|
||||
img_min = v;
|
||||
}
|
||||
}
|
||||
// Rescale image levels between 0 and 1
|
||||
for(size_t iii = 0; iii < data.size(); ++iii) {
|
||||
data[iii] = (img[iii]-img_min)/img_max;
|
||||
}
|
||||
|
||||
// Compute outside = edtaa3(bitmap); % Transform background (0's)
|
||||
computegradient(&data[0], _input.getSize().x(), _input.getSize().y(), &gx[0], &gy[0]);
|
||||
edtaa3(&data[0], &gx[0], &gy[0], _input.getSize().y(), _input.getSize().x(), &xdist[0], &ydist[0], &outside[0]);
|
||||
for(size_t iii = 0; iii < outside.size(); ++iii) {
|
||||
if( outside[iii] < 0 ) {
|
||||
outside[iii] = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
// Compute inside = edtaa3(1-bitmap); % Transform foreground (1's)
|
||||
for(size_t iii = 0; iii < gx.size(); ++iii) {
|
||||
gx[iii] = 0;
|
||||
}
|
||||
for(size_t iii = 0; iii < gy.size(); ++iii) {
|
||||
gy[iii] = 0;
|
||||
}
|
||||
for(size_t iii = 0; iii < data.size(); ++iii) {
|
||||
data[iii] = 1 - data[iii];
|
||||
}
|
||||
computegradient( &data[0], _input.getSize().x(), _input.getSize().y(), &gx[0], &gy[0]);
|
||||
edtaa3(&data[0], &gx[0], &gy[0], _input.getSize().y(), _input.getSize().x(), &xdist[0], &ydist[0], &inside[0]);
|
||||
for(size_t iii = 0; iii < inside.size(); ++iii) {
|
||||
if( inside[iii] < 0 ) {
|
||||
inside[iii] = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
_output.resize(_input.getSize(), etk::Color<>(0));
|
||||
_output.clear(etk::Color<>(0));
|
||||
for (int32_t xxx = 0; xxx < _output.getSize().x(); ++xxx) {
|
||||
for (int32_t yyy = 0; yyy < _output.getSize().y(); ++yyy) {
|
||||
int32_t iii = yyy * _output.getSize().x() + xxx;
|
||||
outside[iii] -= inside[iii];
|
||||
outside[iii] = 128+outside[iii]*16;
|
||||
if( outside[iii] < 0 ) {
|
||||
outside[iii] = 0;
|
||||
}
|
||||
if( outside[iii] > 255 ) {
|
||||
outside[iii] = 255;
|
||||
}
|
||||
uint8_t val = 255 - (unsigned char) outside[iii];
|
||||
// TODO : Remove multiple size of the map ...
|
||||
_output.set(ivec2(xxx, yyy), etk::Color<>((int32_t)val,(int32_t)val,(int32_t)val,256));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
class GirdDF {
|
||||
private:
|
||||
std::vector<ivec2> m_data;
|
||||
ivec2 m_size;
|
||||
ivec2 m_error;
|
||||
public:
|
||||
GirdDF(const ivec2& _size, const ivec2& _base = ivec2(0,0)) {
|
||||
GirdDF(const ivec2& _size, const ivec2& _base = ivec2(0,0), const ivec2& _error = ivec2(0,0)) {
|
||||
m_size = _size;
|
||||
m_data.resize(m_size.x()*m_size.y(), _base);
|
||||
m_error = _error;
|
||||
}
|
||||
const ivec2& get(const ivec2& _pos) const {
|
||||
static const ivec2 error(0, 0);
|
||||
if( _pos.x()>0 && _pos.x()<m_size.x()
|
||||
&& _pos.y()>0 && _pos.y()<m_size.y()) {
|
||||
return m_data[_pos.x()+_pos.y()*m_size.x()];
|
||||
}
|
||||
return error;
|
||||
return m_error;
|
||||
}
|
||||
void set(const ivec2& _pos, const ivec2& _data) {
|
||||
if( _pos.x()>0 && _pos.x()<m_size.x()
|
||||
@ -178,9 +262,9 @@ class GirdDF {
|
||||
}
|
||||
};
|
||||
|
||||
void ewol::resource::DistanceFieldFont::GenerateDistanceField(egami::ImageMono _input, egami::Image _output) {
|
||||
GirdDF myGird1(_input.getSize());
|
||||
GirdDF myGird2(_input.getSize());
|
||||
void ewol::resource::DistanceFieldFont::GenerateDistanceField(const egami::ImageMono& _input, egami::Image& _output) {
|
||||
GirdDF myGird1(_input.getSize(), ivec2(0,0), ivec2(0, 0));
|
||||
GirdDF myGird2(_input.getSize(), ivec2(0,0), ivec2(9999, 9999));
|
||||
|
||||
// Reformat gird :
|
||||
for (int32_t xxx = 0; xxx < _input.getSize().x(); ++xxx) {
|
||||
@ -205,8 +289,8 @@ void ewol::resource::DistanceFieldFont::GenerateDistanceField(egami::ImageMono _
|
||||
float dist1 = myGird1.get(ivec2(xxx, yyy)).length();
|
||||
float dist2 = myGird2.get(ivec2(xxx, yyy)).length();
|
||||
float dist = dist1 - dist2;
|
||||
float value = etk_avg(0.0f, dist*3.0f + 128.0f, 256.0f);
|
||||
_output.set(ivec2(xxx, yyy), etk::Color<>((int32_t)value,(int32_t)value,(int32_t)value,255));
|
||||
float value = etk_avg(0.0f, dist*15.0f + 128.0f, 256.0f);
|
||||
_output.set(ivec2(xxx, yyy), etk::Color<>((int32_t)value,(int32_t)value,(int32_t)value,256));
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -243,25 +327,33 @@ bool ewol::resource::DistanceFieldFont::addGlyph(const char32_t& _val) {
|
||||
}
|
||||
}
|
||||
// draw the glyph
|
||||
m_font->drawGlyph(imageGlyphRaw, m_size*10, tmpchar);
|
||||
m_font->drawGlyph(imageGlyphRaw, m_size, tmpchar, 5);
|
||||
|
||||
GenerateDistanceField(imageGlyphRaw, imageGlyphDistanceField);
|
||||
if (_val == 'Z') {
|
||||
for (int32_t yyy = 0; yyy < imageGlyphDistanceField.getSize().y(); ++yyy) {
|
||||
for (int32_t xxx = 0; xxx < imageGlyphDistanceField.getSize().x(); ++xxx) {
|
||||
std::cout << (int)(imageGlyphDistanceField.get(ivec2(xxx, yyy)).r()) << " ";
|
||||
}
|
||||
//std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
m_data.insert(m_lastGlyphPos, imageGlyphDistanceField);
|
||||
|
||||
// set image position
|
||||
tmpchar.m_texturePosStart.setValue( (float)m_lastGlyphPos.x() / (float)m_data.getSize().x(),
|
||||
(float)m_lastGlyphPos.y() / (float)m_data.getSize().y() );
|
||||
tmpchar.m_texturePosSize.setValue( (float)tmpchar.m_sizeTexture.x() / (float)m_data.getSize().x(),
|
||||
(float)tmpchar.m_sizeTexture.y() / (float)m_data.getSize().y() );
|
||||
tmpchar.m_texturePosSize.setValue( (float)imageGlyphRaw.getSize().x() / (float)m_data.getSize().x(),
|
||||
(float)imageGlyphRaw.getSize().y() / (float)m_data.getSize().y() );
|
||||
|
||||
// update the maximum of the line hight :
|
||||
if (m_lastRawHeigh < tmpchar.m_sizeTexture.y()) {
|
||||
if (m_lastRawHeigh < imageGlyphRaw.getSize().y()) {
|
||||
// note : +1 is for the overlapping of the glyph (Part 2)
|
||||
m_lastRawHeigh = tmpchar.m_sizeTexture.y()+1;
|
||||
m_lastRawHeigh = imageGlyphRaw.getSize().y()+1;
|
||||
}
|
||||
// note : +1 is for the overlapping of the glyph (Part 3)
|
||||
// update the Bitmap position drawing :
|
||||
m_lastGlyphPos += ivec2(tmpchar.m_sizeTexture.x()+1, 0);
|
||||
m_lastGlyphPos += ivec2(imageGlyphRaw.getSize().x()+1, 0);
|
||||
} else {
|
||||
EWOL_WARNING("Did not find char : '" << _val << "'=" << _val);
|
||||
tmpchar.setNotExist();
|
||||
|
@ -86,7 +86,7 @@ namespace ewol {
|
||||
*/
|
||||
bool addGlyph(const char32_t& _val);
|
||||
|
||||
void GenerateDistanceField(egami::ImageMono _input, egami::Image _output);
|
||||
void GenerateDistanceField(const egami::ImageMono& _input, egami::Image& _output);
|
||||
};
|
||||
};
|
||||
};
|
||||
|
@ -224,7 +224,8 @@ bool ewol::resource::FontFreeType::drawGlyph(egami::Image& _imageOut,
|
||||
|
||||
bool ewol::resource::FontFreeType::drawGlyph(egami::ImageMono& _imageOut,
|
||||
int32_t _fontSize,
|
||||
ewol::GlyphProperty& _property) {
|
||||
ewol::GlyphProperty& _property,
|
||||
int32_t _borderSize) {
|
||||
if(false == m_init) {
|
||||
return false;
|
||||
}
|
||||
@ -254,13 +255,13 @@ bool ewol::resource::FontFreeType::drawGlyph(egami::ImageMono& _imageOut,
|
||||
return false;
|
||||
}
|
||||
// resize output image :
|
||||
_imageOut.resize(ivec2(slot->bitmap.width, slot->bitmap.rows), 0);
|
||||
_imageOut.resize(ivec2(slot->bitmap.width+2*_borderSize, slot->bitmap.rows+2*_borderSize), 0);
|
||||
|
||||
for(int32_t jjj=0; jjj < slot->bitmap.rows;jjj++) {
|
||||
for(int32_t iii=0; iii < slot->bitmap.width; iii++){
|
||||
uint8_t valueColor = slot->bitmap.buffer[iii + slot->bitmap.width*jjj];
|
||||
// real set of color
|
||||
_imageOut.set(ivec2(iii, jjj), valueColor );
|
||||
_imageOut.set(ivec2(_borderSize+iii, _borderSize+jjj), valueColor );
|
||||
}
|
||||
}
|
||||
return true;
|
||||
|
@ -44,7 +44,8 @@ namespace ewol {
|
||||
|
||||
bool drawGlyph(egami::ImageMono& _imageOut,
|
||||
int32_t _fontSize,
|
||||
ewol::GlyphProperty& _property);
|
||||
ewol::GlyphProperty& _property,
|
||||
int32_t _borderSize = 0);
|
||||
|
||||
vec2 getSize(int32_t _fontSize, const std::string& _unicodeString);
|
||||
|
||||
|
@ -37,7 +37,8 @@ namespace ewol {
|
||||
|
||||
virtual bool drawGlyph(egami::ImageMono& _imageOut,
|
||||
int32_t _fontSize,
|
||||
ewol::GlyphProperty& _property) = 0;
|
||||
ewol::GlyphProperty& _property,
|
||||
int32_t _borderSize = 0) = 0;
|
||||
|
||||
virtual vec2 getSize(int32_t _fontSize, const std::string& _unicodeString) = 0;
|
||||
|
||||
|
@ -160,9 +160,10 @@ def create(target):
|
||||
myModule.copy_folder('../data/color3.*','')
|
||||
myModule.copy_folder('../data/textured3D2.*','')
|
||||
myModule.copy_folder('../data/textured3D.*','')
|
||||
myModule.copy_folder('../data/fontDistanceField/*','fontDistanceField')
|
||||
|
||||
# name of the dependency
|
||||
myModule.add_module_depend(['etk', 'freetype', 'exml', 'ejson', 'egami', 'date'])
|
||||
myModule.add_module_depend(['etk', 'freetype', 'exml', 'ejson', 'egami', 'edtaa3', 'date'])
|
||||
|
||||
myModule.add_export_path(tools.get_current_path(__file__))
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user