etk/etk/math/Vector4D.h

485 lines
12 KiB
C++

/**
* @author Edouard DUPIN
*
* @copyright 2011, Edouard DUPIN, all right reserved
*
* @license BSD v3 (see license file)
*/
#ifndef __ETK_MATH_VECTOR4D_H__
#define __ETK_MATH_VECTOR4D_H__
#include <etk/types.h>
#include <etk/debug.h>
#include <math.h>
#include <etk/Stream.h>
#include <LinearMath/btScalar.h>
#include <LinearMath/btMinMax.h>
#include <LinearMath/btVector3.h>
#include <LinearMath/btQuaternion.h>
namespace etk
{
template <typename T> class Vector4D
{
public:
T m_floats[4];
public:
/**
* @brief No initialization constructor (faster ...)
*/
Vector4D(void)
{
#ifdef DEBUG
// in debug mode we set supid value to prevent forget of the inits ...
m_floats[0] = (T)34673363;
m_floats[1] = (T)34523535;
m_floats[2] = (T)43523424;
m_floats[3] = (T)23452345;
#endif
}
/**
* @brief Constructor from scalars
* @param x X value
* @param y Y value
* @param z Z value
*/
Vector4D(const T& _x, const T& _y, const T& _z, const T& _w)
{
m_floats[0] = _x;
m_floats[1] = _y;
m_floats[2] = _z;
m_floats[3] = _w;
}
/**
* @brief Add a vector to this one
* @param The vector to add to this one
*/
Vector4D<T>& operator+=(const Vector4D<T>& v)
{
m_floats[0] += v.m_floats[0];
m_floats[1] += v.m_floats[1];
m_floats[2] += v.m_floats[2];
m_floats[3] += v.m_floats[3];
return *this;
}
Vector4D<T> operator+(const Vector4D<T>& v)
{
return Vector4D<T>(m_floats[0] + v.m_floats[0],
m_floats[1] + v.m_floats[1],
m_floats[2] + v.m_floats[2],
m_floats[3] + v.m_floats[3]);
}
/**
* @brief Subtract a vector from this one
* @param The vector to subtract
*/
Vector4D<T>& operator-=(const Vector4D<T>& v)
{
m_floats[0] -= v.m_floats[0];
m_floats[1] -= v.m_floats[1];
m_floats[2] -= v.m_floats[2];
m_floats[3] -= v.m_floats[3];
return *this;
}
Vector4D<T> operator-(const Vector4D<T>& v)
{
return Vector4D<T>(m_floats[0] - v.m_floats[0],
m_floats[1] - v.m_floats[1],
m_floats[2] - v.m_floats[2],
m_floats[3] - v.m_floats[3]);
}
/**
* @brief Scale the vector
* @param s Scale factor
*/
Vector4D<T>& operator*=(const T& s)
{
m_floats[0] *= s;
m_floats[1] *= s;
m_floats[2] *= s;
m_floats[3] *= s;
return *this;
}
Vector4D<T> operator*(const T& s)
{
return Vector4D<T>(m_floats[0] * s,
m_floats[1] * s,
m_floats[2] * s,
m_floats[3] * s);
}
/**
* @brief Inversely scale the vector
* @param s Scale factor to divide by
*/
Vector4D<T>& operator/=(const Vector4D<T>& s)
{
if (0!=s) {
return *this *= 1.0f / s;
}
return *this;
}
Vector4D<T>& operator/=(const T& s)
{
if (0!=s) {
m_floats[0]/=s;
m_floats[1]/=s;
m_floats[2]/=s;
m_floats[3]/=s;
return *this;
}
return *this;
}
/**
* @brief Return the dot product
* @param v The other vector in the dot product
*/
float dot(const Vector4D<T>& v) const
{
return m_floats[0] * v.m_floats[0] +
m_floats[1] * v.m_floats[1] +
m_floats[2] * v.m_floats[2] +
m_floats[3] * v.m_floats[3];
}
/**
* @brief Return the length of the vector squared
*/
float length2() const
{
return dot(*this);
}
/**
* @brief Return the length of the vector
*/
float length() const
{
return btSqrt(length2());
}
/**
* @brief Return the distance squared between the ends of this and another vector
* This is symantically treating the vector like a point
*/
float distance2(const Vector4D<T>& v) const
{
return (v - *this).length2();
}
/**
* @brief Return the distance between the ends of this and another vector
* This is symantically treating the vector like a point
*/
float distance(const Vector4D<T>& v) const
{
return (v - *this).length();
}
/*
Vector4D<T>& safeNormalize()
{
Vector4D<T> absVec = this->absolute();
int maxIndex = absVec.maxAxis();
if (absVec[maxIndex]>0)
{
*this /= absVec[maxIndex];
return *this /= length();
}
setValue(1,0,0);
return *this;
}
*/
/**
* @brief Normalize this vector
* x^2 + y^2 + z^2 = 1
*/
Vector4D<T>& normalize()
{
return *this /= length();
}
/**
* @brief Return a normalized version of this vector
*/
Vector4D<T> normalized() const
{
return *this / length();
}
/**
* @brief Return a rotated version of this vector
* @param wAxis The axis to rotate about
* @param angle The angle to rotate by
*/
/*
Vector4D<T> rotate( const Vector3D<T>& wAxis, const btScalar angle ) const
{
Vector4D<T> o = wAxis * wAxis.dot( *this );
Vector4D<T> _x = *this - o;
Vector4D<T> _y;
_y = wAxis.cross( *this );
return ( o + _x * cosf(angle) + _y * sinf(angle) );
}
*/
/**
* @brief Return the angle between this and another vector
* @param v The other vector
*/
/*
btScalar angle(const Vector3D<T>& v) const
{
btScalar s = sqrtf(length2() * v.length2());
if (0!=s) {
return acosf(dot(v) / s);
}
return 0;
}
*/
/**
* @brief Return a vector will the absolute values of each element
*/
Vector4D<T> absolute(void) const
{
return Vector4D<T>( abs(m_floats[0]),
abs(m_floats[1]),
abs(m_floats[2]),
abs(m_floats[3]));
}
/**
* @brief Return the cross product between this and another vector
* @param v The other vector
*/
/*
Vector4D<T> cross(const Vector4D<T>& v) const
{
return Vector4D<T>(m_floats[1] * v.m_floats[2] - m_floats[2] * v.m_floats[1],
m_floats[2] * v.m_floats[0] - m_floats[0] * v.m_floats[2],
m_floats[0] * v.m_floats[1] - m_floats[1] * v.m_floats[0]);
}
T triple(const Vector4D<T>& v1, const Vector4D<T>& v2) const
{
return m_floats[0] * (v1.m_floats[1] * v2.m_floats[2] - v1.m_floats[2] * v2.m_floats[1])
+ m_floats[1] * (v1.m_floats[2] * v2.m_floats[0] - v1.m_floats[0] * v2.m_floats[2])
+ m_floats[2] * (v1.m_floats[0] * v2.m_floats[1] - v1.m_floats[1] * v2.m_floats[0]);
}
*/
/**
* @brief Return the axis with the smallest value
* Note return values are 0,1,2 for x, y, or z
*/
/*
int32_t minAxis(void) const
{
return m_floats[0] < m_floats[1] ? (m_floats[0] <m_floats[2] ? 0 : 2) : (m_floats[1] <m_floats[2] ? 1 : 2);
}
*/
/**
* @brief Return the axis with the largest value
* Note return values are 0,1,2 for x, y, or z
*/
/*
int32_t maxAxis(void) const
{
return m_floats[0] < m_floats[1] ? (m_floats[1] <m_floats[2] ? 2 : 1) : (m_floats[0] <m_floats[2] ? 2 : 0);
}
int32_t furthestAxis(void) const
{
return absolute().minAxis();
}
int32_t closestAxis(void) const
{
return absolute().maxAxis();
}
void setInterpolate3(const Vector4D<T>& v0, const Vector4D<T>& v1, T rt)
{
btScalar s = 1 - rt;
m_floats[0] = s * v0.m_floats[0] + rt * v1.m_floats[0];
m_floats[1] = s * v0.m_floats[1] + rt * v1.m_floats[1];
m_floats[2] = s * v0.m_floats[2] + rt * v1.m_floats[2];
m_floats[3] = s * v0.m_floats[3] + rt * v1.m_floats[3];
//don't do the unused w component
// m_co[3] = s * v0[3] + rt * v1[3];
}
*/
/**
* @brief Return the linear interpolation between this and another vector
* @param v The other vector
* @param t The ration of this to v (t = 0 => return this, t=1 => return other)
*/
/*
Vector3D<T> lerp(const Vector4D<T>& v, const btScalar& t) const
{
return Vector3D<T>(m_floats[0] + (v.m_floats[0] - m_floats[0]) * t,
m_floats[1] + (v.m_floats[1] - m_floats[1]) * t,
m_floats[2] + (v.m_floats[2] - m_floats[2]) * t,
m_floats[3] + (v.m_floats[3] - m_floats[3]) * t);
}
*/
/**
* @brief Elementwise multiply this vector by the other
* @param v The other vector
*/
Vector4D<T>& operator*=(const Vector4D<T>& v)
{
m_floats[0] *= v.m_floats[0];
m_floats[1] *= v.m_floats[1];
m_floats[2] *= v.m_floats[2];
m_floats[3] *= v.m_floats[3];
return *this;
}
Vector4D<T> operator*(const Vector4D<T>& v)
{
return Vector4D<T>(m_floats[0] * v.m_floats[0],
m_floats[1] * v.m_floats[1],
m_floats[2] * v.m_floats[2],
m_floats[3] * v.m_floats[3]);
}
/**
* @brief Return the x value
*/
const T& getX() const { return m_floats[0]; }
/**
* @brief Return the y value
*/
const T& getY() const { return m_floats[1]; }
/**
* @brief Return the z value
*/
const T& getZ() const { return m_floats[2]; }
/**
* @brief Return the z value
*/
const T& getW() const { return m_floats[3]; }
/**
* @brief Set the x value
*/
void setX(T _x) { m_floats[0] = _x;};
/**
* @brief Set the y value
*/
void setY(T _y) { m_floats[1] = _y;};
/**
* @brief Set the z value
*/
void setZ(T _z) { m_floats[2] = _z;};
/**
* @brief Set the w value
*/
void setW(T _w) { m_floats[3] = _w;};
/**
* @brief Return the x value
*/
const T& x() const { return m_floats[0]; }
/**
* @brief Return the y value
*/
const T& y() const { return m_floats[1]; }
/**
* @brief Return the z value
*/
const T& z() const { return m_floats[2]; }
/**
* @brief Return the w value
*/
const T& w() const { return m_floats[3]; }
operator T *() { return &m_floats[0]; }
operator const T *() const { return &m_floats[0]; }
bool operator==(const Vector4D<T>& other) const
{
return ( (m_floats[3]==other.m_floats[3])
&& (m_floats[2]==other.m_floats[2])
&& (m_floats[1]==other.m_floats[1])
&& (m_floats[0]==other.m_floats[0]));
}
bool operator!=(const Vector4D<T>& other) const
{
return ( (m_floats[3]!=other.m_floats[3])
|| (m_floats[2]!=other.m_floats[2])
|| (m_floats[1]!=other.m_floats[1])
|| (m_floats[0]!=other.m_floats[0]));
}
/**
* @brief Set each element to the max of the current values and the values of another btVector3
* @param other The other btVector3 to compare with
*/
void setMax(const Vector4D<T>& other)
{
btSetMax(m_floats[0], other.m_floats[0]);
btSetMax(m_floats[1], other.m_floats[1]);
btSetMax(m_floats[2], other.m_floats[2]);
btSetMax(m_floats[3], other.m_floats[3]);
}
/**
* @brief Set each element to the min of the current values and the values of another btVector3
* @param other The other btVector3 to compare with
*/
void setMin(const Vector4D<T>& other)
{
btSetMin(m_floats[0], other.m_floats[0]);
btSetMin(m_floats[1], other.m_floats[1]);
btSetMin(m_floats[2], other.m_floats[2]);
btSetMin(m_floats[3], other.m_floats[3]);
}
void setValue(const T& _x, const T& _y, const T& _z, const T& _w)
{
m_floats[0]=_x;
m_floats[1]=_y;
m_floats[2]=_z;
m_floats[3]=_w;
}
/*
void getSkewSymmetricMatrix(Vector3D<T>* v0,Vector3D<T>* v1,Vector3D<T>* v2) const
{
v0->setValue(0. ,-z() ,y());
v1->setValue(z() ,0. ,-x());
v2->setValue(-y() ,x() ,0.);
}
*/
void setZero(void)
{
setValue(0,0,0,0);
}
bool isZero(void) const
{
return m_floats[0] == 0 && m_floats[1] == 0 && m_floats[2] == 0 && m_floats[3] == 0;
}
};
/**
* @brief Debug operator To display the curent element in a Human redeable information
*/
etk::CCout& operator <<(etk::CCout &os, const etk::Vector4D<int32_t> obj);
etk::CCout& operator <<(etk::CCout &os, const etk::Vector4D<float> obj);
etk::CCout& operator <<(etk::CCout &os, const etk::Vector4D<uint32_t> obj);
etk::CCout& operator <<(etk::CCout &os, const etk::Vector4D<bool> obj);
};
// To siplify the writing of the code ==> this permit to have the same name with the glsl language...
typedef etk::Vector4D<float> vec4;
typedef etk::Vector4D<int32_t> ivec4;
// not compatible with glsl ... but it is better to have a same writing
typedef etk::Vector4D<uint32_t> uivec4;
typedef etk::Vector4D<bool> bvec4;
#endif