etk/etk/math/Matrix4.cpp

400 lines
10 KiB
C++

/** @file
* @author Edouard DUPIN
*
* @copyright 2011, Edouard DUPIN, all right reserved
*
* @license APACHE v2.0 (see license file)
*/
#include <etk/types.h>
#include <etk/math/Matrix4.h>
#include <etk/debug.h>
#include <math.h>
void etk::Matrix4::identity() {
for(int32_t iii=0; iii<4*4 ; iii++) {
m_mat[iii] = 0;
}
m_mat[0] = 1.0;
m_mat[5] = 1.0;
m_mat[10] = 1.0;
m_mat[15] = 1.0;
}
etk::Matrix4::Matrix4() {
identity();
}
etk::Matrix4::Matrix4(const Matrix4& _obj) {
for(int32_t iii=0; iii<4*4 ; iii++) {
m_mat[iii] = _obj.m_mat[iii];
}
}
etk::Matrix4::Matrix4(float _a1, float _b1, float _c1, float _d1,
float _a2, float _b2, float _c2, float _d2,
float _a3, float _b3, float _c3, float _d3,
float _a4, float _b4, float _c4, float _d4) {
m_mat[0] = _a1;
m_mat[1] = _b1;
m_mat[2] = _c1;
m_mat[3] = _d1;
m_mat[4] = _a2;
m_mat[5] = _b2;
m_mat[6] = _c2;
m_mat[7] = _d2;
m_mat[8] = _a3;
m_mat[9] = _b3;
m_mat[10] = _c3;
m_mat[11] = _d3;
m_mat[12] = _a4;
m_mat[13] = _b4;
m_mat[14] = _c4;
m_mat[15] = _d4;
}
etk::Matrix4::Matrix4(float* _obj) {
if (_obj == nullptr) {
identity();
return;
}
for(int32_t iii=0; iii<4*4 ; ++iii) {
m_mat[iii] = _obj[iii];
}
}
const etk::Matrix4& etk::Matrix4::operator= (const etk::Matrix4& _obj ) {
for(int32_t iii=0; iii<4*4 ; ++iii) {
m_mat[iii] = _obj.m_mat[iii];
}
return *this;
}
bool etk::Matrix4::operator== (const etk::Matrix4& _obj) const {
for(int32_t iii=0; iii<4*4 ; ++iii) {
if(m_mat[iii] != _obj.m_mat[iii]) {
return false;
}
}
return true;
}
bool etk::Matrix4::operator!= (const etk::Matrix4& _obj) const {
for(int32_t iii=0; iii<4*4 ; ++iii) {
if(m_mat[iii] != _obj.m_mat[iii]) {
return true;
}
}
return false;
}
const etk::Matrix4& etk::Matrix4::operator+= (const etk::Matrix4& _obj) {
for(int32_t iii=0; iii<4*4 ; ++iii) {
m_mat[iii] += _obj.m_mat[iii];
}
return *this;
}
etk::Matrix4 etk::Matrix4::operator+ (const etk::Matrix4& _obj) const {
etk::Matrix4 tmpp(*this);
tmpp += _obj;
return tmpp;
}
const etk::Matrix4& etk::Matrix4::operator-= (const etk::Matrix4& _obj) {
for(int32_t iii=0; iii<4*4 ; ++iii) {
m_mat[iii] -= _obj.m_mat[iii];
}
return *this;
}
etk::Matrix4 etk::Matrix4::operator- (const etk::Matrix4& _obj) const {
etk::Matrix4 tmpp(*this);
tmpp += _obj;
return tmpp;
}
const etk::Matrix4& etk::Matrix4::operator*= (const etk::Matrix4& _obj) {
// output Matrix
float matrixOut[4*4];
for(int32_t jjj=0; jjj<4 ; jjj++) {
float* tmpLeft = m_mat + jjj*4;
for(int32_t iii=0; iii<4 ; iii++) {
const float* tmpUpper = _obj.m_mat+iii;
float* tmpLeft2 = tmpLeft;
float tmpElement = 0;
for(int32_t kkk=0; kkk<4 ; kkk++) {
tmpElement += *tmpUpper * *tmpLeft2;
tmpUpper += 4;
tmpLeft2++;
}
matrixOut[jjj*4+iii] = tmpElement;
}
}
// set it at the output
for(int32_t iii=0; iii<4*4 ; iii++) {
m_mat[iii] = matrixOut[iii];
}
return *this;
}
etk::Matrix4 etk::Matrix4::operator* (const etk::Matrix4& _obj) const {
etk::Matrix4 tmpp(*this);
tmpp *= _obj;
return tmpp;
}
vec3 etk::Matrix4::operator*(const vec3& _point) const {
return vec3( m_mat[0]*_point.x() + m_mat[1]*_point.y() + m_mat[2]*_point.z() + m_mat[3],
m_mat[4]*_point.x() + m_mat[5]*_point.y() + m_mat[6]*_point.z() + m_mat[7],
m_mat[8]*_point.x() + m_mat[9]*_point.y() + m_mat[10]*_point.z() + m_mat[11] );
}
void etk::Matrix4::transpose() {
float tmpVal = m_mat[1];
m_mat[1] = m_mat[4];
m_mat[4] = tmpVal;
tmpVal = m_mat[2];
m_mat[2] = m_mat[8];
m_mat[8] = tmpVal;
tmpVal = m_mat[6];
m_mat[6] = m_mat[9];
m_mat[9] = tmpVal;
tmpVal = m_mat[3];
m_mat[3] = m_mat[12];
m_mat[12] = tmpVal;
tmpVal = m_mat[7];
m_mat[7] = m_mat[13];
m_mat[13] = tmpVal;
tmpVal = m_mat[11];
m_mat[11] = m_mat[14];
m_mat[14] = tmpVal;
}
void etk::Matrix4::scale(const vec3& _vect) {
scale(_vect.x(), _vect.y(), _vect.z());
}
void etk::Matrix4::scale(float _sx, float _sy, float _sz) {
m_mat[0] *= _sx; m_mat[1] *= _sy; m_mat[2] *= _sz;
m_mat[4] *= _sx; m_mat[5] *= _sy; m_mat[6] *= _sz;
m_mat[8] *= _sx; m_mat[9] *= _sy; m_mat[10] *= _sz;
}
void etk::Matrix4::rotate(const vec3& vect, float angleRad)
{
etk::Matrix4 tmpMat = etk::matRotate(vect, angleRad);
*this *= tmpMat;
}
void etk::Matrix4::translate(const vec3& vect)
{
etk::Matrix4 tmpMat = etk::matTranslate(vect);
*this *= tmpMat;
}
etk::Matrix4 etk::matFrustum(float xmin, float xmax, float ymin, float ymax, float zNear, float zFar)
{
etk::Matrix4 tmp;
for(int32_t iii=0; iii<4*4 ; iii++) {
tmp.m_mat[iii] = 0;
}
// 0 1 2 3
// 4 5 6 7
// 8 9 10 11
// 12 13 14 15
tmp.m_mat[0] = (2.0 * zNear) / (xmax - xmin);
tmp.m_mat[5] = (2.0 * zNear) / (ymax - ymin);
tmp.m_mat[10] = -(zFar + zNear) / (zFar - zNear);
tmp.m_mat[2] = (xmax + xmin) / (xmax - xmin);
tmp.m_mat[6] = (ymax + ymin) / (ymax - ymin);
tmp.m_mat[14] = -1.0;
tmp.m_mat[11] = -(2.0 * zFar * zNear) / (zFar - zNear);
return tmp;
}
etk::Matrix4 etk::matPerspective(float fovx, float aspect, float zNear, float zFar)
{
//TK_DEBUG("drax perspective: fovx=" << fovx << "->" << aspect << " " << zNear << "->" << zFar);
float xmax = zNear * tanf(fovx/2.0);
float xmin = -xmax;
float ymin = xmin / aspect;
float ymax = xmax / aspect;
//TK_DEBUG("drax perspective: " << xmin << "->" << xmax << " & " << ymin << "->" << ymax << " " << zNear << "->" << zFar);
return etk::matFrustum(xmin, xmax, ymin, ymax, zNear, zFar);
}
etk::Matrix4 etk::matOrtho(float left, float right, float bottom, float top, float nearVal, float farVal)
{
etk::Matrix4 tmp;
for(int32_t iii=0; iii<4*4 ; iii++) {
tmp.m_mat[iii] = 0;
}
tmp.m_mat[0] = 2.0 / (right - left);
tmp.m_mat[5] = 2.0 / (top - bottom);
tmp.m_mat[10] = -2.0 / (farVal - nearVal);
tmp.m_mat[3] = -1*(right + left) / (right - left);
tmp.m_mat[7] = -1*(top + bottom) / (top - bottom);
tmp.m_mat[11] = -1*(farVal + nearVal) / (farVal - nearVal);
tmp.m_mat[15] = 1;
return tmp;
}
etk::Matrix4 etk::matTranslate(vec3 vect)
{
etk::Matrix4 tmp;
// set translation :
tmp.m_mat[3] = vect.x();
tmp.m_mat[7] = vect.y();
tmp.m_mat[11] = vect.z();
//TK_INFO("Translate :");
//etk::matrix::Display(tmp);
return tmp;
}
etk::Matrix4 etk::matScale(vec3 vect)
{
etk::Matrix4 tmp;
tmp.scale(vect);
/*
// set scale :
tmp.m_mat[0] = vect.x;
tmp.m_mat[5] = vect.y;
tmp.m_mat[10] = vect.z;
*/
//TK_INFO("Scale :");
//etk::matrix::Display(tmp);
return tmp;
}
etk::Matrix4 etk::matRotate(vec3 vect, float angleRad)
{
etk::Matrix4 tmp;
float cosVal = cos(angleRad);
float sinVal = sin(angleRad);
float invVal = 1.0-cosVal;
// set rotation :
tmp.m_mat[0] = vect.x() * vect.x() * invVal + cosVal;
tmp.m_mat[1] = vect.x() * vect.y() * invVal - vect.z() * sinVal;
tmp.m_mat[2] = vect.x() * vect.z() * invVal + vect.y() * sinVal;
tmp.m_mat[4] = vect.y() * vect.x() * invVal + vect.z() * sinVal;
tmp.m_mat[5] = vect.y() * vect.y() * invVal + cosVal;
tmp.m_mat[6] = vect.y() * vect.z() * invVal - vect.x() * sinVal;
tmp.m_mat[8] = vect.z() * vect.x() * invVal - vect.y() * sinVal;
tmp.m_mat[9] = vect.z() * vect.y() * invVal + vect.x() * sinVal;
tmp.m_mat[10] = vect.z() * vect.z() * invVal + cosVal;
return tmp;
}
etk::Matrix4 etk::matRotate2(vec3 vect)
{
return matLookAt(vect, vec3(0,0,0), vec3(0,1,0));
}
etk::Matrix4 etk::matLookAt(const vec3& _eye,
const vec3& _target,
const vec3& _up)
{
etk::Matrix4 tmp;
vec3 forward = _eye;
forward -= _target;
forward.safeNormalize();
vec3 xaxis = _target.cross(_up.normalized());
xaxis.safeNormalize();
vec3 up2 = xaxis.cross(forward);
xaxis.safeNormalize();
tmp.m_mat[0] = xaxis.x();
tmp.m_mat[1] = up2.x();
tmp.m_mat[2] = forward.x();
tmp.m_mat[3] = _eye.x();
tmp.m_mat[4] = xaxis.y();
tmp.m_mat[5] = up2.y();
tmp.m_mat[6] = forward.y();
tmp.m_mat[7] = _eye.y();
tmp.m_mat[8] = xaxis.z();
tmp.m_mat[9] = up2.z();
tmp.m_mat[10] = forward.z();
tmp.m_mat[11] = _eye.z();
tmp.m_mat[12] = 0.0f;
tmp.m_mat[13] = 0.0f;
tmp.m_mat[14] = 0.0f;
tmp.m_mat[15] = 1.0f;
return tmp;
}
float etk::Matrix4::coFactor(int32_t row, int32_t col) const
{
return ( ( m_mat[((row+1)&3)*4 + ((col+1)&3)] * m_mat[((row+2)&3)*4 + ((col+2)&3)] * m_mat[((row+3)&3)*4 + ((col+3)&3)]
+ m_mat[((row+1)&3)*4 + ((col+2)&3)] * m_mat[((row+2)&3)*4 + ((col+3)&3)] * m_mat[((row+3)&3)*4 + ((col+1)&3)]
+ m_mat[((row+1)&3)*4 + ((col+3)&3)] * m_mat[((row+2)&3)*4 + ((col+1)&3)] * m_mat[((row+3)&3)*4 + ((col+2)&3)] )
- ( m_mat[((row+3)&3)*4 + ((col+1)&3)] * m_mat[((row+2)&3)*4 + ((col+2)&3)] * m_mat[((row+1)&3)*4 + ((col+3)&3)]
+ m_mat[((row+3)&3)*4 + ((col+2)&3)] * m_mat[((row+2)&3)*4 + ((col+3)&3)] * m_mat[((row+1)&3)*4 + ((col+1)&3)]
+ m_mat[((row+3)&3)*4 + ((col+3)&3)] * m_mat[((row+2)&3)*4 + ((col+1)&3)] * m_mat[((row+1)&3)*4 + ((col+2)&3)] )
) * ((row + col) & 1 ? -1.0f : +1.0f);
}
float etk::Matrix4::determinant() const
{
return m_mat[0] * coFactor(0, 0) +
m_mat[1] * coFactor(0, 1) +
m_mat[2] * coFactor(0, 2) +
m_mat[3] * coFactor(0, 3);
}
etk::Matrix4 etk::Matrix4::invert()
{
float det = determinant();
if(fabsf(det) < (1.0e-7f)) {
// The matrix is not invertible! Singular case!
return *this;
}
etk::Matrix4 temp;
float iDet = 1.0f / det;
temp.m_mat[0] = coFactor(0,0) * iDet;
temp.m_mat[1] = coFactor(0,1) * iDet;
temp.m_mat[2] = coFactor(0,2) * iDet;
temp.m_mat[3] = coFactor(0,3) * iDet;
temp.m_mat[4] = coFactor(1,0) * iDet;
temp.m_mat[5] = coFactor(1,1) * iDet;
temp.m_mat[6] = coFactor(1,2) * iDet;
temp.m_mat[7] = coFactor(1,3) * iDet;
temp.m_mat[8] = coFactor(2,0) * iDet;
temp.m_mat[9] = coFactor(2,1) * iDet;
temp.m_mat[10] = coFactor(2,2) * iDet;
temp.m_mat[11] = coFactor(2,3) * iDet;
temp.m_mat[12] = coFactor(3,0) * iDet;
temp.m_mat[13] = coFactor(3,1) * iDet;
temp.m_mat[14] = coFactor(3,2) * iDet;
temp.m_mat[15] = coFactor(3,3) * iDet;
return temp;
}
std::ostream& etk::operator <<(std::ostream& _os, const etk::Matrix4& _obj) {
_os << "matrix4 : (";
for (int32_t iii=0; iii<16; iii++) {
_os << _obj.m_mat[iii];
_os << ",";
}
return _os;
}