etk/math/etk-math/Vector3D.h

510 lines
14 KiB
C++

/**
* @author Edouard DUPIN
*
* @copyright 2011, Edouard DUPIN, all right reserved
*
* @license APACHE v2.0 (see license file)
*/
#include <etk/types.h>
#ifndef __ETK_MATH_VECTOR3D_H__
#define __ETK_MATH_VECTOR3D_H__
#include <etk/debug.h>
#include <math.h>
#ifdef ETK_BUILD_LINEARMATH
#include <LinearMath/btScalar.h>
#include <LinearMath/btMinMax.h>
#include <LinearMath/btVector3.h>
#include <LinearMath/btQuaternion.h>
#else
namespace etk {
template <typename T> class Vector3D;
};
typedef etk::Vector3D<float> btVector3;
#endif
namespace etk {
template <typename T> class Vector3D {
public:
T m_floats[4];
public:
/**
* @brief No initialization constructor (faster ...)
*/
Vector3D() {
#ifdef DEBUG
// in debug mode we set supid value to prevent forget of the inits ...
m_floats[0] = (T)34673363;
m_floats[1] = (T)34523535;
m_floats[2] = (T)43523424;
m_floats[3] = (T)23452345;
#endif
#if ( !defined(__TARGET_OS__MacOs) \
&& !defined(__TARGET_OS__IOs) \
&& defined(ETK_BUILD_LINEARMATH))
// hide a bullet warning
(void)btInfinityMask;
#endif
}
/**
* @brief Constructor from scalars
* @param _x X value
* @param _y Y value
* @param _z Z value
*/
Vector3D(const T& _x, const T& _y, const T& _z) {
m_floats[0] = _x;
m_floats[1] = _y;
m_floats[2] = _z;
m_floats[3] = 0;
}
/**
* @brief Add a vector to this one
* @param _v The vector to add to this one
*/
Vector3D<T>& operator+=(const Vector3D<T>& _v) {
m_floats[0] += _v.m_floats[0];
m_floats[1] += _v.m_floats[1];
m_floats[2] += _v.m_floats[2];
return *this;
}
//! @previous
Vector3D<T> operator+(const Vector3D<T>& _v) {
return Vector3D<T>(m_floats[0] + _v.m_floats[0],
m_floats[1] + _v.m_floats[1],
m_floats[2] + _v.m_floats[2]);
}
/**
* @brief Subtract a vector from this one
* @param _v The vector to subtract
*/
Vector3D<T>& operator-=(const Vector3D<T>& _v) {
m_floats[0] -= _v.m_floats[0];
m_floats[1] -= _v.m_floats[1];
m_floats[2] -= _v.m_floats[2];
return *this;
}
//! @previous
Vector3D<T> operator-(const Vector3D<T>& _v) {
return Vector3D<T>(m_floats[0] - _v.m_floats[0],
m_floats[1] - _v.m_floats[1],
m_floats[2] - _v.m_floats[2]);
}
/**
* @brief Scale the vector
* @param _s Scale factor
*/
Vector3D<T>& operator*=(const T& _s) {
m_floats[0] *= _s;
m_floats[1] *= _s;
m_floats[2] *= _s;
return *this;
}
//! @previous
Vector3D<T> operator*(const T& _s) {
return Vector3D<T>(m_floats[0] * _s,
m_floats[1] * _s,
m_floats[2] * _s);
}
/**
* @brief Inversely scale the vector
* @param _s Scale factor to divide by
*/
Vector3D<T>& operator/=(const Vector3D<T>& _s) {
if (_s != 0) {
return *this *= btScalar(1.0) / _s;
}
return *this;
}
//! @previous
Vector3D<T>& operator/=(const T& _s) {
if (_s != 0) {
m_floats[0] /= _s;
m_floats[1] /= _s;
m_floats[2] /= _s;
return *this;
}
return *this;
}
/**
* @brief Return the dot product
* @param _v The other vector in the dot product
*/
btScalar dot(const Vector3D<T>& _v) const {
return m_floats[0] * _v.m_floats[0]
+ m_floats[1] * _v.m_floats[1]
+ m_floats[2] * _v.m_floats[2];
}
/**
* @brief Return the length of the vector squared
*/
btScalar length2() const {
return dot(*this);
}
/**
* @brief Return the length of the vector
*/
btScalar length() const {
#ifdef ETK_BUILD_LINEARMATH
return btSqrt(length2());
#else
#if __CPP_VERSION__ >= 2011
return std::sqrt(length2());
#else
return sqrt(length2());
#endif
#endif
}
/**
* @brief Return the distance squared between the ends of this and another vector
* This is symantically treating the vector like a point
*/
btScalar distance2(const btVector3& _v) const {
return (_v - *this).length2();
}
/**
* @brief Return the distance between the ends of this and another vector
* This is symantically treating the vector like a point
*/
btScalar distance(const btVector3& _v) const {
return (_v - *this).length();
}
Vector3D<T>& safeNormalize() {
Vector3D<T> absVec = this->absolute();
int maxIndex = absVec.maxAxis();
if (absVec[maxIndex]>0) {
*this /= absVec[maxIndex];
return *this /= length();
}
setValue(1,0,0);
return *this;
}
/**
* @brief Normalize this vector
* x^2 + y^2 + z^2 = 1
*/
Vector3D<T>& normalize() {
return *this /= length();
}
/**
* @brief Return a normalized version of this vector
*/
Vector3D<T> normalized() const {
Vector3D<T> out = *this;
out /= length();
return out;
}
/**
* @brief Return a rotated version of this vector
* @param _wAxis The axis to rotate about
* @param _angle The angle to rotate by
*/
Vector3D<T> rotate( const Vector3D<T>& _wAxis, const btScalar _angle ) const {
Vector3D<T> o = _wAxis * _wAxis.dot( *this );
Vector3D<T> x = *this - o;
Vector3D<T> y;
y = _wAxis.cross( *this );
return ( o + x * cosf(_angle) + y * sinf(_angle) );
}
/**
* @brief Return the angle between this and another vector
* @param _v The other vector
*/
btScalar angle(const Vector3D<T>& _v) const {
btScalar s = sqrtf(length2() * _v.length2());
if (0!=s) {
return acosf(dot(_v) / s);
}
return 0;
}
/**
* @brief Return a vector will the absolute values of each element
*/
Vector3D<T> absolute() const {
return Vector3D<T>( abs(m_floats[0]),
abs(m_floats[1]),
abs(m_floats[2]));
}
/**
* @brief Return the cross product between this and another vector
* @param _v The other vector
*/
Vector3D<T> cross(const Vector3D<T>& _v) const {
return Vector3D<T>(m_floats[1] * _v.m_floats[2] - m_floats[2] * _v.m_floats[1],
m_floats[2] * _v.m_floats[0] - m_floats[0] * _v.m_floats[2],
m_floats[0] * _v.m_floats[1] - m_floats[1] * _v.m_floats[0]);
}
T triple(const Vector3D<T>& _v1, const Vector3D<T>& _v2) const {
return m_floats[0] * (_v1.m_floats[1] * _v2.m_floats[2] - _v1.m_floats[2] * _v2.m_floats[1])
+ m_floats[1] * (_v1.m_floats[2] * _v2.m_floats[0] - _v1.m_floats[0] * _v2.m_floats[2])
+ m_floats[2] * (_v1.m_floats[0] * _v2.m_floats[1] - _v1.m_floats[1] * _v2.m_floats[0]);
}
/**
* @brief Return the axis with the smallest value
* Note return values are 0,1,2 for x, y, or z
*/
int32_t minAxis() const {
if (m_floats[0] < m_floats[1]) {
return m_floats[0] < m_floats[2] ? 0 : 2;
}
return m_floats[1] < m_floats[2] ? 1 : 2;
}
/**
* @brief Return the axis with the largest value
* Note return values are 0,1,2 for x, y, or z
*/
int32_t maxAxis() const {
if (m_floats[0] < m_floats[1]) {
return m_floats[1] < m_floats[2] ? 2 : 1;
}
return m_floats[0] < m_floats[2] ? 2 : 0;
}
int32_t furthestAxis() const {
return absolute().minAxis();
}
int32_t closestAxis() const {
return absolute().maxAxis();
}
void setInterpolate3(const Vector3D<T>& _v0, const Vector3D<T>& _v1, T _rt) {
btScalar s = 1.0 - _rt;
m_floats[0] = s * _v0.m_floats[0] + _rt * _v1.m_floats[0];
m_floats[1] = s * _v0.m_floats[1] + _rt * _v1.m_floats[1];
m_floats[2] = s * _v0.m_floats[2] + _rt * _v1.m_floats[2];
//don't do the unused w component
// m_co[3] = s * v0[3] + rt * v1[3];
}
/**
* @brief Return the linear interpolation between this and another vector
* @param _v The other vector
* @param _t The ration of this to v (t = 0 => return this, t=1 => return other)
*/
Vector3D<T> lerp(const Vector3D<T>& _v, const btScalar& _t) const {
return Vector3D<T>(m_floats[0] + (_v.m_floats[0] - m_floats[0]) * _t,
m_floats[1] + (_v.m_floats[1] - m_floats[1]) * _t,
m_floats[2] + (_v.m_floats[2] - m_floats[2]) * _t);
}
/**
* @brief Elementwise multiply this vector by the other
* @param _v The other vector
*/
Vector3D<T>& operator*=(const Vector3D<T>& _v) {
m_floats[0] *= _v.m_floats[0];
m_floats[1] *= _v.m_floats[1];
m_floats[2] *= _v.m_floats[2];
return *this;
}
//! @previous
Vector3D<T> operator*(const Vector3D<T>& _v) {
return Vector3D<T>(m_floats[0] * _v.m_floats[0],
m_floats[1] * _v.m_floats[1],
m_floats[2] * _v.m_floats[2]);
}
/**
* @brief Return the x value
*/
const T& getX() const {
return m_floats[0];
}
/**
* @brief Return the y value
*/
const T& getY() const {
return m_floats[1];
}
/**
* @brief Return the z value
*/
const T& getZ() const {
return m_floats[2];
}
/**
* @brief Set the x value
*/
void setX(T _x) {
m_floats[0] = _x;
};
/**
* @brief Set the y value
*/
void setY(T _y) {
m_floats[1] = _y;
};
/**
* @brief Set the z value
*/
void setZ(T _z) {
m_floats[2] = _z;
};
/**
* @brief Set the w value
*/
void setW(T _w) {
m_floats[3] = _w;
};
/**
* @brief Return the x value
*/
const T& x() const {
return m_floats[0];
}
/**
* @brief Return the y value
*/
const T& y() const {
return m_floats[1];
}
/**
* @brief Return the z value
*/
const T& z() const {
return m_floats[2];
}
/**
* @brief Return the w value
*/
const T& w() const {
return m_floats[3];
}
operator T *() {
return &m_floats[0];
}
//! @previous
operator const T *() const {
return &m_floats[0];
}
bool operator==(const Vector3D<T>& _other) const {
return ( (m_floats[3] == _other.m_floats[3])
&& (m_floats[2] == _other.m_floats[2])
&& (m_floats[1] == _other.m_floats[1])
&& (m_floats[0] == _other.m_floats[0]));
}
bool operator!=(const Vector3D<T>& _other) const {
return ( (m_floats[3] != _other.m_floats[3])
|| (m_floats[2] != _other.m_floats[2])
|| (m_floats[1] != _other.m_floats[1])
|| (m_floats[0] != _other.m_floats[0]));
}
/**
* @brief Set each element to the max of the current values and the values of another btVector3
* @param _other The other btVector3 to compare with
*/
void setMax(const Vector3D<T>& _other) {
btSetMax(m_floats[0], _other.m_floats[0]);
btSetMax(m_floats[1], _other.m_floats[1]);
btSetMax(m_floats[2], _other.m_floats[2]);
btSetMax(m_floats[3], _other.m_floats[3]);
}
/**
* @brief Set each element to the min of the current values and the values of another btVector3
* @param _other The other btVector3 to compare with
*/
void setMin(const Vector3D<T>& _other) {
btSetMin(m_floats[0], _other.m_floats[0]);
btSetMin(m_floats[1], _other.m_floats[1]);
btSetMin(m_floats[2], _other.m_floats[2]);
btSetMin(m_floats[3], _other.m_floats[3]);
}
void setValue(const T& _x, const T& _y, const T& _z) {
m_floats[0]=_x;
m_floats[1]=_y;
m_floats[2]=_z;
m_floats[3] = 0;
}
void getSkewSymmetricMatrix(Vector3D<T>* _v0,Vector3D<T>* _v1,Vector3D<T>* _v2) const {
_v0->setValue(0. ,-z() ,y());
_v1->setValue(z() ,0. ,-x());
_v2->setValue(-y() ,x() ,0.);
}
void setZero() {
setValue(0,0,0);
}
bool isZero() const {
return m_floats[0] == 0 && m_floats[1] == 0 && m_floats[2] == 0;
}
};
/**
* @brief Debug operator To display the curent element in a Human redeable information
*/
std::ostream& operator <<(std::ostream& _os, const etk::Vector3D<int32_t>& _obj);
//! @previous
std::ostream& operator <<(std::ostream& _os, const etk::Vector3D<uint32_t>& _obj);
//! @previous
std::ostream& operator <<(std::ostream& _os, const etk::Vector3D<bool>& _obj);
};
std::ostream& operator <<(std::ostream& _os, const btVector3& _obj);
// To siplify the writing of the code ==> this permit to have the same name with the glsl language...
#ifdef ETK_BUILD_LINEARMATH
typedef btVector3 vec3;
#else
typedef etk::Vector3D<float> vec3;
#endif
typedef etk::Vector3D<float> ovec3; // specific for OpenGL ... ==> never change this ...
typedef etk::Vector3D<int32_t> ivec3;
// not compatible with glsl ... but it is better to have a same writing
typedef etk::Vector3D<uint32_t> uivec3;
typedef etk::Vector3D<bool> bvec3;
#ifdef ETK_BUILD_LINEARMATH
vec3 quaternionToEulerXYZ(const btQuaternion& quat);
#endif
inline vec3 vec3ClipInt32(const vec3& val) {
return vec3((int32_t)val.x(), (int32_t)val.y(), (int32_t)val.z());
}
inline vec3 vec3ClipInt64(const vec3& val) {
return vec3((int64_t)val.x(), (int64_t)val.y(), (int64_t)val.z());
}
namespace etk {
std::ostream& operator <<(std::ostream& _os, const std::vector<vec3>& _obj);
//! @previous
std::ostream& operator <<(std::ostream& _os, const std::vector<ivec3>& _obj);
//! @previous
std::ostream& operator <<(std::ostream& _os, const std::vector<uivec3>& _obj);
//! @previous
std::ostream& operator <<(std::ostream& _os, const std::vector<bvec3>& _obj);
};
#endif