/** * @author Edouard DUPIN * * @copyright 2011, Edouard DUPIN, all right reserved * * @license APACHE v2.0 (see license file) */ #include #ifndef __ETK_MATH_VECTOR4D_H__ #define __ETK_MATH_VECTOR4D_H__ #include #include #ifdef ETK_BUILD_LINEARMATH #include #include #include #include #else namespace etk { template class Vector4D; }; #endif namespace etk { template class Vector4D { public: T m_floats[4]; public: /** * @brief No initialization constructor (faster ...) */ Vector4D() { #ifdef DEBUG // in debug mode we set supid value to prevent forget of the inits ... m_floats[0] = (T)34673363; m_floats[1] = (T)34523535; m_floats[2] = (T)43523424; m_floats[3] = (T)23452345; #endif } /** * @brief Constructor from scalars * @param x X value * @param y Y value * @param z Z value */ Vector4D(const T& _x, const T& _y, const T& _z, const T& _w) { m_floats[0] = _x; m_floats[1] = _y; m_floats[2] = _z; m_floats[3] = _w; } /** * @brief Add a vector to this one * @param The vector to add to this one */ Vector4D& operator+=(const Vector4D& v) { m_floats[0] += v.m_floats[0]; m_floats[1] += v.m_floats[1]; m_floats[2] += v.m_floats[2]; m_floats[3] += v.m_floats[3]; return *this; } Vector4D operator+(const Vector4D& v) { return Vector4D(m_floats[0] + v.m_floats[0], m_floats[1] + v.m_floats[1], m_floats[2] + v.m_floats[2], m_floats[3] + v.m_floats[3]); } /** * @brief Subtract a vector from this one * @param The vector to subtract */ Vector4D& operator-=(const Vector4D& v) { m_floats[0] -= v.m_floats[0]; m_floats[1] -= v.m_floats[1]; m_floats[2] -= v.m_floats[2]; m_floats[3] -= v.m_floats[3]; return *this; } Vector4D operator-(const Vector4D& v) { return Vector4D(m_floats[0] - v.m_floats[0], m_floats[1] - v.m_floats[1], m_floats[2] - v.m_floats[2], m_floats[3] - v.m_floats[3]); } /** * @brief Scale the vector * @param s Scale factor */ Vector4D& operator*=(const T& s) { m_floats[0] *= s; m_floats[1] *= s; m_floats[2] *= s; m_floats[3] *= s; return *this; } Vector4D operator*(const T& s) { return Vector4D(m_floats[0] * s, m_floats[1] * s, m_floats[2] * s, m_floats[3] * s); } /** * @brief Inversely scale the vector * @param s Scale factor to divide by */ Vector4D& operator/=(const Vector4D& s) { if (0!=s) { return *this *= 1.0f / s; } return *this; } Vector4D& operator/=(const T& s) { if (0!=s) { m_floats[0]/=s; m_floats[1]/=s; m_floats[2]/=s; m_floats[3]/=s; return *this; } return *this; } /** * @brief Return the dot product * @param v The other vector in the dot product */ float dot(const Vector4D& v) const { return m_floats[0] * v.m_floats[0] + m_floats[1] * v.m_floats[1] + m_floats[2] * v.m_floats[2] + m_floats[3] * v.m_floats[3]; } /** * @brief Return the length of the vector squared */ float length2() const { return dot(*this); } /** * @brief Return the length of the vector */ float length() const { #ifdef ETK_BUILD_LINEARMATH return btSqrt(length2()); #else #if __CPP_VERSION__ >= 2011 return std::sqrt(length2()); #else return sqrt(length2()); #endif #endif } /** * @brief Return the distance squared between the ends of this and another vector * This is symantically treating the vector like a point */ float distance2(const Vector4D& v) const { return (v - *this).length2(); } /** * @brief Return the distance between the ends of this and another vector * This is symantically treating the vector like a point */ float distance(const Vector4D& v) const { return (v - *this).length(); } /* Vector4D& safeNormalize() { Vector4D absVec = this->absolute(); int maxIndex = absVec.maxAxis(); if (absVec[maxIndex]>0) { *this /= absVec[maxIndex]; return *this /= length(); } setValue(1,0,0); return *this; } */ /** * @brief Normalize this vector * x^2 + y^2 + z^2 = 1 */ Vector4D& normalize() { return *this /= length(); } /** * @brief Return a normalized version of this vector */ Vector4D normalized() const { return *this / length(); } /** * @brief Return a rotated version of this vector * @param wAxis The axis to rotate about * @param angle The angle to rotate by */ /* Vector4D rotate( const Vector3D& wAxis, const btScalar angle ) const { Vector4D o = wAxis * wAxis.dot( *this ); Vector4D _x = *this - o; Vector4D _y; _y = wAxis.cross( *this ); return ( o + _x * cosf(angle) + _y * sinf(angle) ); } */ /** * @brief Return the angle between this and another vector * @param v The other vector */ /* btScalar angle(const Vector3D& v) const { btScalar s = sqrtf(length2() * v.length2()); if (0!=s) { return acosf(dot(v) / s); } return 0; } */ /** * @brief Return a vector will the absolute values of each element */ Vector4D absolute() const { return Vector4D( abs(m_floats[0]), abs(m_floats[1]), abs(m_floats[2]), abs(m_floats[3])); } /** * @brief Return the cross product between this and another vector * @param v The other vector */ /* Vector4D cross(const Vector4D& v) const { return Vector4D(m_floats[1] * v.m_floats[2] - m_floats[2] * v.m_floats[1], m_floats[2] * v.m_floats[0] - m_floats[0] * v.m_floats[2], m_floats[0] * v.m_floats[1] - m_floats[1] * v.m_floats[0]); } T triple(const Vector4D& v1, const Vector4D& v2) const { return m_floats[0] * (v1.m_floats[1] * v2.m_floats[2] - v1.m_floats[2] * v2.m_floats[1]) + m_floats[1] * (v1.m_floats[2] * v2.m_floats[0] - v1.m_floats[0] * v2.m_floats[2]) + m_floats[2] * (v1.m_floats[0] * v2.m_floats[1] - v1.m_floats[1] * v2.m_floats[0]); } */ /** * @brief Return the axis with the smallest value * Note return values are 0,1,2 for x, y, or z */ /* int32_t minAxis() const { return m_floats[0] < m_floats[1] ? (m_floats[0] & v0, const Vector4D& v1, T rt) { btScalar s = 1 - rt; m_floats[0] = s * v0.m_floats[0] + rt * v1.m_floats[0]; m_floats[1] = s * v0.m_floats[1] + rt * v1.m_floats[1]; m_floats[2] = s * v0.m_floats[2] + rt * v1.m_floats[2]; m_floats[3] = s * v0.m_floats[3] + rt * v1.m_floats[3]; //don't do the unused w component // m_co[3] = s * v0[3] + rt * v1[3]; } */ /** * @brief Return the linear interpolation between this and another vector * @param v The other vector * @param t The ration of this to v (t = 0 => return this, t=1 => return other) */ /* Vector3D lerp(const Vector4D& v, const btScalar& t) const { return Vector3D(m_floats[0] + (v.m_floats[0] - m_floats[0]) * t, m_floats[1] + (v.m_floats[1] - m_floats[1]) * t, m_floats[2] + (v.m_floats[2] - m_floats[2]) * t, m_floats[3] + (v.m_floats[3] - m_floats[3]) * t); } */ /** * @brief Elementwise multiply this vector by the other * @param v The other vector */ Vector4D& operator*=(const Vector4D& v) { m_floats[0] *= v.m_floats[0]; m_floats[1] *= v.m_floats[1]; m_floats[2] *= v.m_floats[2]; m_floats[3] *= v.m_floats[3]; return *this; } Vector4D operator*(const Vector4D& v) { return Vector4D(m_floats[0] * v.m_floats[0], m_floats[1] * v.m_floats[1], m_floats[2] * v.m_floats[2], m_floats[3] * v.m_floats[3]); } /** * @brief Return the x value */ const T& getX() const { return m_floats[0]; } /** * @brief Return the y value */ const T& getY() const { return m_floats[1]; } /** * @brief Return the z value */ const T& getZ() const { return m_floats[2]; } /** * @brief Return the z value */ const T& getW() const { return m_floats[3]; } /** * @brief Set the x value */ void setX(T _x) { m_floats[0] = _x;}; /** * @brief Set the y value */ void setY(T _y) { m_floats[1] = _y;}; /** * @brief Set the z value */ void setZ(T _z) { m_floats[2] = _z;}; /** * @brief Set the w value */ void setW(T _w) { m_floats[3] = _w;}; /** * @brief Return the x value */ const T& x() const { return m_floats[0]; } /** * @brief Return the y value */ const T& y() const { return m_floats[1]; } /** * @brief Return the z value */ const T& z() const { return m_floats[2]; } /** * @brief Return the w value */ const T& w() const { return m_floats[3]; } operator T *() { return &m_floats[0]; } operator const T *() const { return &m_floats[0]; } bool operator==(const Vector4D& other) const { return ( (m_floats[3]==other.m_floats[3]) && (m_floats[2]==other.m_floats[2]) && (m_floats[1]==other.m_floats[1]) && (m_floats[0]==other.m_floats[0])); } bool operator!=(const Vector4D& other) const { return ( (m_floats[3]!=other.m_floats[3]) || (m_floats[2]!=other.m_floats[2]) || (m_floats[1]!=other.m_floats[1]) || (m_floats[0]!=other.m_floats[0])); } /** * @brief Set each element to the max of the current values and the values of another btVector3 * @param other The other btVector3 to compare with */ void setMax(const Vector4D& other) { btSetMax(m_floats[0], other.m_floats[0]); btSetMax(m_floats[1], other.m_floats[1]); btSetMax(m_floats[2], other.m_floats[2]); btSetMax(m_floats[3], other.m_floats[3]); } /** * @brief Set each element to the min of the current values and the values of another btVector3 * @param other The other btVector3 to compare with */ void setMin(const Vector4D& other) { btSetMin(m_floats[0], other.m_floats[0]); btSetMin(m_floats[1], other.m_floats[1]); btSetMin(m_floats[2], other.m_floats[2]); btSetMin(m_floats[3], other.m_floats[3]); } void setValue(const T& _x, const T& _y, const T& _z, const T& _w) { m_floats[0]=_x; m_floats[1]=_y; m_floats[2]=_z; m_floats[3]=_w; } /* void getSkewSymmetricMatrix(Vector3D* v0,Vector3D* v1,Vector3D* v2) const { v0->setValue(0. ,-z() ,y()); v1->setValue(z() ,0. ,-x()); v2->setValue(-y() ,x() ,0.); } */ void setZero() { setValue(0,0,0,0); } bool isZero() const { return m_floats[0] == 0 && m_floats[1] == 0 && m_floats[2] == 0 && m_floats[3] == 0; } }; /** * @brief Debug operator To display the curent element in a Human redeable information */ std::ostream& operator <<(std::ostream& _os, const etk::Vector4D& _obj); std::ostream& operator <<(std::ostream& _os, const etk::Vector4D& _obj); std::ostream& operator <<(std::ostream& _os, const etk::Vector4D& _obj); std::ostream& operator <<(std::ostream& _os, const etk::Vector4D& _obj); }; // To siplify the writing of the code ==> this permit to have the same name with the glsl language... typedef etk::Vector4D vec4; typedef etk::Vector4D ivec4; // not compatible with glsl ... but it is better to have a same writing typedef etk::Vector4D uivec4; typedef etk::Vector4D bvec4; #endif