/******************************************************************************** * ReactPhysics3D physics library, http://www.ephysics.com * * Copyright (c) 2010-2016 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ // Libraries #include openglframework::VertexBufferObject Cone::mVBOVertices(GL_ARRAY_BUFFER); openglframework::VertexBufferObject Cone::mVBONormals(GL_ARRAY_BUFFER); openglframework::VertexBufferObject Cone::mVBOTextureCoords(GL_ARRAY_BUFFER); openglframework::VertexBufferObject Cone::mVBOIndices(GL_ELEMENT_ARRAY_BUFFER); openglframework::VertexArrayObject Cone::mVAO; int32_t Cone::totalNbCones = 0; // Constructor Cone::Cone(float radius, float height, const openglframework::vec3 &position, ephysics::CollisionWorld* world, const etk::String& meshFolderPath) : openglframework::Mesh(), mRadius(radius), mHeight(height) { // Load the mesh from a file openglframework::MeshReaderWriter::loadMeshFromFile(meshFolderPath + "cone.obj", *this); // Calculate the normals of the mesh calculateNormals(); // Compute the scaling matrix m_scalingMatrix = openglframework::Matrix4(mRadius, 0, 0, 0, 0, mHeight, 0, 0, 0, 0, mRadius, 0, 0, 0, 0, 1); // Initialize the position where the cone will be rendered translateWorld(position); // Create the collision shape for the rigid body (cone shape) and do // not forget to delete it at the end mConeShape = new ephysics::ConeShape(mRadius, mHeight); // Initial position and orientation of the rigid body ephysics::vec3 initPosition(position.x(), position.y(), position.z()); ephysics::etk::Quaternion initOrientation = ephysics::Quaternion::identity(); ephysics::etk::Transform3D transform(initPosition, initOrientation); mPreviousetk::Transform3D = transform; // Create a rigid body corresponding to the cone in the dynamics world m_body = world->createCollisionBody(transform); // Add a collision shape to the body and specify the mass of the shape m_proxyShape = m_body->addCollisionShape(mConeShape, ephysics::etk::Transform3D::identity()); m_transformMatrix = m_transformMatrix * m_scalingMatrix; // Create the VBOs and VAO if (totalNbCones == 0) { createVBOAndVAO(); } totalNbCones++; } // Constructor Cone::Cone(float radius, float height, const openglframework::vec3 &position, float mass, ephysics::DynamicsWorld* dynamicsWorld, const etk::String& meshFolderPath) : openglframework::Mesh(), mRadius(radius), mHeight(height) { // Load the mesh from a file openglframework::MeshReaderWriter::loadMeshFromFile(meshFolderPath + "cone.obj", *this); // Calculate the normals of the mesh calculateNormals(); // Compute the scaling matrix m_scalingMatrix = openglframework::Matrix4(mRadius, 0, 0, 0, 0, mHeight, 0, 0, 0, 0, mRadius, 0, 0, 0, 0, 1); // Initialize the position where the cone will be rendered translateWorld(position); // Create the collision shape for the rigid body (cone shape) and do not // forget to delete it at the end mConeShape = new ephysics::ConeShape(mRadius, mHeight); // Initial position and orientation of the rigid body ephysics::vec3 initPosition(position.x(), position.y(), position.z()); ephysics::etk::Quaternion initOrientation = ephysics::Quaternion::identity(); ephysics::etk::Transform3D transform(initPosition, initOrientation); // Create a rigid body corresponding to the cone in the dynamics world ephysics::RigidBody* body = dynamicsWorld->createRigidBody(transform); // Add a collision shape to the body and specify the mass of the shape m_proxyShape = body->addCollisionShape(mConeShape, ephysics::etk::Transform3D::identity(), mass); m_body = body; m_transformMatrix = m_transformMatrix * m_scalingMatrix; // Create the VBOs and VAO if (totalNbCones == 0) { createVBOAndVAO(); } totalNbCones++; } // Destructor Cone::~Cone() { if (totalNbCones == 1) { // Destroy the mesh destroy(); // Destroy the VBOs and VAO mVBOIndices.destroy(); mVBOVertices.destroy(); mVBONormals.destroy(); mVBOTextureCoords.destroy(); mVAO.destroy(); } delete mConeShape; totalNbCones--; } // Render the cone at the correct position and with the correct orientation void Cone::render(openglframework::Shader& shader, const openglframework::Matrix4& worldToCameraMatrix) { // Bind the shader shader.bind(); // Set the model to camera matrix shader.setMatrix4x4Uniform("localToWorldMatrix", m_transformMatrix); shader.setMatrix4x4Uniform("worldToCameraMatrix", worldToCameraMatrix); // Set the normal matrix (inverse transpose of the 3x3 upper-left sub matrix of the // model-view matrix) const openglframework::Matrix4 localToCameraMatrix = worldToCameraMatrix * m_transformMatrix; const openglframework::Matrix3 normalMatrix = localToCameraMatrix.getUpperLeft3x3Matrix().getInverse().getTranspose(); shader.setetk::Matrix3x3Uniform("normalMatrix", normalMatrix, false); // Set the vertex color openglframework::Color currentColor = m_body->isSleeping() ? mSleepingColor : mColor; openglframework::Vector4 color(currentColor.r, currentColor.g, currentColor.b, currentColor.a); shader.setVector4Uniform("vertexColor", color, false); // Bind the VAO mVAO.bind(); mVBOVertices.bind(); // Get the location of shader attribute variables GLint32_t vertexPositionLoc = shader.getAttribLocation("vertexPosition"); GLint32_t vertexNormalLoc = shader.getAttribLocation("vertexNormal", false); glEnableVertexAttribArray(vertexPositionLoc); glVertexAttribPointer(vertexPositionLoc, 3, GL_FLOAT, GL_FALSE, 0, (char*)NULL); mVBONormals.bind(); if (vertexNormalLoc != -1) glVertexAttribPointer(vertexNormalLoc, 3, GL_FLOAT, GL_FALSE, 0, (char*)NULL); if (vertexNormalLoc != -1) glEnableVertexAttribArray(vertexNormalLoc); // For each part of the mesh for (uint32_t i=0; isetTransform(transform); m_body->setIsSleeping(false); // Reset the velocity of the rigid body ephysics::RigidBody* rigidBody = dynamic_cast(m_body); if (rigidBody != NULL) { rigidBody->setLinearVelocity(ephysics::vec3(0, 0, 0)); rigidBody->setAngularVelocity(ephysics::vec3(0, 0, 0)); } updateetk::Transform3D(1.0f); } // Set the scaling of the object void Cone::setScaling(const openglframework::vec3& scaling) { // Scale the collision shape m_proxyShape->setLocalScaling(ephysics::vec3(scaling.x(), scaling.y(), scaling.z())); // Scale the graphics object m_scalingMatrix = openglframework::Matrix4(mRadius * scaling.x(), 0, 0, 0, 0, mHeight * scaling.y(), 0, 0, 0, 0, mRadius * scaling.z(), 0, 0, 0, 0, 1); }