/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2016 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ // Libraries #include openglframework::VertexBufferObject Capsule::mVBOVertices(GL_ARRAY_BUFFER); openglframework::VertexBufferObject Capsule::mVBONormals(GL_ARRAY_BUFFER); openglframework::VertexBufferObject Capsule::mVBOTextureCoords(GL_ARRAY_BUFFER); openglframework::VertexBufferObject Capsule::mVBOIndices(GL_ELEMENT_ARRAY_BUFFER); openglframework::VertexArrayObject Capsule::mVAO; int Capsule::totalNbCapsules = 0; // Constructor Capsule::Capsule(float radius, float height, const openglframework::Vector3& position, reactphysics3d::CollisionWorld* world, const std::string& meshFolderPath) : openglframework::Mesh(), mRadius(radius), mHeight(height) { // Load the mesh from a file openglframework::MeshReaderWriter::loadMeshFromFile(meshFolderPath + "capsule.obj", *this); // Calculate the normals of the mesh calculateNormals(); // Compute the scaling matrix mScalingMatrix = openglframework::Matrix4(mRadius, 0, 0, 0, 0, (mHeight + 2.0f * mRadius) / 3, 0,0, 0, 0, mRadius, 0, 0, 0, 0, 1.0f); // Initialize the position where the sphere will be rendered translateWorld(position); // Create the collision shape for the rigid body (sphere shape) // ReactPhysics3D will clone this object to create an internal one. Therefore, // it is OK if this object is destroyed right after calling RigidBody::addCollisionShape() mCapsuleShape = new rp3d::CapsuleShape(mRadius, mHeight); // Initial position and orientation of the rigid body rp3d::Vector3 initPosition(position.x, position.y, position.z); rp3d::Quaternion initOrientation = rp3d::Quaternion::identity(); rp3d::Transform transform(initPosition, initOrientation); mPreviousTransform = transform; // Create a rigid body corresponding in the dynamics world mBody = world->createCollisionBody(transform); // Add a collision shape to the body and specify the mass of the shape m_proxyShape = mBody->addCollisionShape(mCapsuleShape, rp3d::Transform::identity()); mTransformMatrix = mTransformMatrix * mScalingMatrix; // Create the VBOs and VAO if (totalNbCapsules == 0) { createVBOAndVAO(); } totalNbCapsules++; } // Constructor Capsule::Capsule(float radius, float height, const openglframework::Vector3& position, float mass, reactphysics3d::DynamicsWorld* dynamicsWorld, const std::string& meshFolderPath) : openglframework::Mesh(), mRadius(radius), mHeight(height) { // Load the mesh from a file openglframework::MeshReaderWriter::loadMeshFromFile(meshFolderPath + "capsule.obj", *this); // Calculate the normals of the mesh calculateNormals(); // Compute the scaling matrix mScalingMatrix = openglframework::Matrix4(mRadius, 0, 0, 0, 0, (mHeight + 2.0f * mRadius) / 3.0f, 0,0, 0, 0, mRadius, 0, 0, 0, 0, 1.0f); // Initialize the position where the sphere will be rendered translateWorld(position); // Create the collision shape for the rigid body (sphere shape) // ReactPhysics3D will clone this object to create an internal one. Therefore, // it is OK if this object is destroyed right after calling RigidBody::addCollisionShape() mCapsuleShape = new rp3d::CapsuleShape(mRadius, mHeight); // Initial position and orientation of the rigid body rp3d::Vector3 initPosition(position.x, position.y, position.z); rp3d::Quaternion initOrientation = rp3d::Quaternion::identity(); rp3d::Transform transform(initPosition, initOrientation); // Create a rigid body corresponding in the dynamics world rp3d::RigidBody* body = dynamicsWorld->createRigidBody(transform); // Add a collision shape to the body and specify the mass of the shape m_proxyShape = body->addCollisionShape(mCapsuleShape, rp3d::Transform::identity(), mass); mBody = body; mTransformMatrix = mTransformMatrix * mScalingMatrix; // Create the VBOs and VAO if (totalNbCapsules == 0) { createVBOAndVAO(); } totalNbCapsules++; } // Destructor Capsule::~Capsule() { if (totalNbCapsules == 1) { // Destroy the mesh destroy(); // Destroy the VBOs and VAO mVBOIndices.destroy(); mVBOVertices.destroy(); mVBONormals.destroy(); mVBOTextureCoords.destroy(); mVAO.destroy(); } delete mCapsuleShape; totalNbCapsules--; } // Render the sphere at the correct position and with the correct orientation void Capsule::render(openglframework::Shader& shader, const openglframework::Matrix4& worldToCameraMatrix) { // Bind the shader shader.bind(); // Set the model to camera matrix shader.setMatrix4x4Uniform("localToWorldMatrix", mTransformMatrix); shader.setMatrix4x4Uniform("worldToCameraMatrix", worldToCameraMatrix); // Set the normal matrix (inverse transpose of the 3x3 upper-left sub matrix of the // model-view matrix) const openglframework::Matrix4 localToCameraMatrix = worldToCameraMatrix * mTransformMatrix; const openglframework::Matrix3 normalMatrix = localToCameraMatrix.getUpperLeft3x3Matrix().getInverse().getTranspose(); shader.setMatrix3x3Uniform("normalMatrix", normalMatrix, false); // Set the vertex color openglframework::Color currentColor = mBody->isSleeping() ? mSleepingColor : mColor; openglframework::Vector4 color(currentColor.r, currentColor.g, currentColor.b, currentColor.a); shader.setVector4Uniform("vertexColor", color, false); // Bind the VAO mVAO.bind(); mVBOVertices.bind(); // Get the location of shader attribute variables GLint vertexPositionLoc = shader.getAttribLocation("vertexPosition"); GLint vertexNormalLoc = shader.getAttribLocation("vertexNormal", false); glEnableVertexAttribArray(vertexPositionLoc); glVertexAttribPointer(vertexPositionLoc, 3, GL_FLOAT, GL_FALSE, 0, (char*)NULL); mVBONormals.bind(); if (vertexNormalLoc != -1) glVertexAttribPointer(vertexNormalLoc, 3, GL_FLOAT, GL_FALSE, 0, (char*)NULL); if (vertexNormalLoc != -1) glEnableVertexAttribArray(vertexNormalLoc); // For each part of the mesh for (unsigned int i=0; isetTransform(transform); mBody->setIsSleeping(false); // Reset the velocity of the rigid body rp3d::RigidBody* rigidBody = dynamic_cast(mBody); if (rigidBody != NULL) { rigidBody->setLinearVelocity(rp3d::Vector3(0, 0, 0)); rigidBody->setAngularVelocity(rp3d::Vector3(0, 0, 0)); } updateTransform(1.0f); } // Set the scaling of the object void Capsule::setScaling(const openglframework::Vector3& scaling) { // Scale the collision shape m_proxyShape->setLocalScaling(rp3d::Vector3(scaling.x, scaling.y, scaling.z)); // Scale the graphics object mScalingMatrix = openglframework::Matrix4(mRadius * scaling.x, 0, 0, 0, 0, (mHeight * scaling.y + 2.0f * mRadius * scaling.x) / 3, 0,0, 0, 0, mRadius * scaling.x, 0, 0, 0, 0, 1.0f); }