/******************************************************************************** * ReactPhysics3D physics library, http://www.ephysics.com * * Copyright (c) 2010-2016 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ // Libraries #include // Constructor ConcaveMesh::ConcaveMesh(const openglframework::vec3 &position, ephysics::CollisionWorld* world, const etk::String& meshPath) : openglframework::Mesh(), mVBOVertices(GL_ARRAY_BUFFER), mVBONormals(GL_ARRAY_BUFFER), mVBOTextureCoords(GL_ARRAY_BUFFER), mVBOIndices(GL_ELEMENT_ARRAY_BUFFER) { // Load the mesh from a file openglframework::MeshReaderWriter::loadMeshFromFile(meshPath, *this); // Calculate the normals of the mesh calculateNormals(); // Initialize the position where the sphere will be rendered translateWorld(position); // Compute the scaling matrix m_scalingMatrix = openglframework::Matrix4::identity(); // For each subpart of the mesh for (uint32_t i=0; icreateCollisionBody(transform); // Add a collision shape to the body and specify the mass of the collision shape m_proxyShape = m_body->addCollisionShape(mConcaveShape, ephysics::etk::Transform3D::identity()); // Create the VBOs and VAO createVBOAndVAO(); m_transformMatrix = m_transformMatrix * m_scalingMatrix; } // Constructor ConcaveMesh::ConcaveMesh(const openglframework::vec3 &position, float mass, ephysics::DynamicsWorld* dynamicsWorld, const etk::String& meshPath) : openglframework::Mesh(), mVBOVertices(GL_ARRAY_BUFFER), mVBONormals(GL_ARRAY_BUFFER), mVBOTextureCoords(GL_ARRAY_BUFFER), mVBOIndices(GL_ELEMENT_ARRAY_BUFFER) { // Load the mesh from a file openglframework::MeshReaderWriter::loadMeshFromFile(meshPath, *this); // Calculate the normals of the mesh calculateNormals(); // Initialize the position where the sphere will be rendered translateWorld(position); // Compute the scaling matrix m_scalingMatrix = openglframework::Matrix4::identity(); // For each subpart of the mesh for (uint32_t i=0; isetIsSmoothMeshCollisionEnabled(false); // Initial position and orientation of the rigid body ephysics::vec3 initPosition(position.x(), position.y(), position.z()); ephysics::etk::Quaternion initOrientation = ephysics::Quaternion::identity(); ephysics::etk::Transform3D transform(initPosition, initOrientation); // Create a rigid body corresponding to the sphere in the dynamics world ephysics::RigidBody* body = dynamicsWorld->createRigidBody(transform); // Add a collision shape to the body and specify the mass of the collision shape m_proxyShape = body->addCollisionShape(mConcaveShape, ephysics::etk::Transform3D::identity(), mass); m_body = body; // Create the VBOs and VAO createVBOAndVAO(); m_transformMatrix = m_transformMatrix * m_scalingMatrix; } // Destructor ConcaveMesh::~ConcaveMesh() { // Destroy the triangle mesh data for the physics engine for (uint32_t i=0; iisSleeping() ? mSleepingColor : mColor; openglframework::Vector4 color(currentColor.r, currentColor.g, currentColor.b, currentColor.a); shader.setVector4Uniform("vertexColor", color, false); // Bind the VAO mVAO.bind(); mVBOVertices.bind(); // Get the location of shader attribute variables GLint32_t vertexPositionLoc = shader.getAttribLocation("vertexPosition"); GLint32_t vertexNormalLoc = shader.getAttribLocation("vertexNormal", false); glEnableVertexAttribArray(vertexPositionLoc); glVertexAttribPointer(vertexPositionLoc, 3, GL_FLOAT, GL_FALSE, 0, (char*)NULL); mVBONormals.bind(); if (vertexNormalLoc != -1) glVertexAttribPointer(vertexNormalLoc, 3, GL_FLOAT, GL_FALSE, 0, (char*)NULL); if (vertexNormalLoc != -1) glEnableVertexAttribArray(vertexNormalLoc); // For each part of the mesh for (uint32_t i=0; isetTransform(transform); m_body->setIsSleeping(false); // Reset the velocity of the rigid body ephysics::RigidBody* rigidBody = dynamic_cast(m_body); if (rigidBody != NULL) { rigidBody->setLinearVelocity(ephysics::vec3(0, 0, 0)); rigidBody->setAngularVelocity(ephysics::vec3(0, 0, 0)); } updateetk::Transform3D(1.0f); } // Set the scaling of the object void ConcaveMesh::setScaling(const openglframework::vec3& scaling) { // Scale the collision shape m_proxyShape->setLocalScaling(ephysics::vec3(scaling.x(), scaling.y(), scaling.z())); // Scale the graphics object m_scalingMatrix = openglframework::Matrix4(scaling.x(), 0, 0, 0, 0, scaling.y(), 0,0, 0, 0, scaling.z(), 0, 0, 0, 0, 1.0f); }