egami/egami/wrapperJPG.cpp

302 lines
11 KiB
C++

/** @file
* @author Edouard DUPIN
* @copyright 2011, Edouard DUPIN, all right reserved
* @license MPL v2.0 (see license file)
*/
#include <etk/types.hpp>
#include <egami/debug.hpp>
#include <egami/Image.hpp>
#include <egami/wrapperJPG.hpp>
#include <etk/uri/uri.hpp>
extern "C" {
#include "jpeglib.h"
}
#include <setjmp.h>
struct my_error_mgr {
struct jpeg_error_mgr pub; /* "public" fields */
jmp_buf setjmp_buffer; /* for return to caller */
};
typedef struct my_error_mgr * my_error_ptr;
/*
* Here's the routine that will replace the standard error_exit method:
*/
METHODDEF(void) my_error_exit(j_common_ptr _cinfo) {
// cinfo->err really points to a my_error_mgr struct, so coerce pointer
my_error_ptr myerr = (my_error_ptr)_cinfo->err;
// Always display the message.
// We could postpone this until after returning, if we chose.
(*_cinfo->err->output_message)(_cinfo);
// Return control to the setjmp point
longjmp(myerr->setjmp_buffer, 1);
}
void put_scanline_someplace(const uint8_t* _buffer, int32_t _row_stride) {
EGAMI_ERROR("plop " << uint64_t(_buffer) << " row=" << _row_stride << " " << (_row_stride/3));
}
egami::Image egami::loadJPG(const etk::Uri& _uri) {
auto fileIo = etk::uri::get(_uri);
if (fileIo == null) {
EGAMI_ERROR("Can not create the uri: " << _uri);
return egami::Image();
}
if (fileIo->open(etk::io::OpenMode::Read) == false) {
EGAMI_ERROR("Can not open (r) the file : " << _uri);
return egami::Image();
}
etk::Vector<uint8_t> allData = fileIo->readAll<uint8_t>();
fileIo->close();
return egami::loadJPG(allData);
}
egami::Image egami::loadJPG(const etk::Vector<uint8_t>& _buffer) {
egami::Image out;
// This struct contains the JPEG decompression parameters and pointers to working space (which is allocated as needed by the JPEG library).
struct jpeg_decompress_struct cinfo;
// We use our private extension JPEG error handler. Note that this struct must live as long as the main JPEG parameter struct, to avoid dangling-pointer problems.
struct my_error_mgr jerr;
// More stuff
JSAMPARRAY buffer;
int row_stride;
// Step 1: allocate and initialize JPEG decompression object
// We set up the normal JPEG error routines, then override error_exit.
cinfo.err = jpeg_std_error(&jerr.pub);
jerr.pub.error_exit = my_error_exit;
// Establish the setjmp return context for my_error_exit to use.
if (setjmp(jerr.setjmp_buffer)) {
// If we get here, the JPEG code has signaled an error. We need to clean up the JPEG object, close the input file, and return.
jpeg_destroy_decompress(&cinfo);
return out;
}
// Now we can initialize the JPEG decompression object.
jpeg_create_decompress(&cinfo);
// Step 2: specify data source (eg, a file)
jpeg_mem_src(&cinfo, &_buffer[0], _buffer.size());
// Step 3: read file parameters with jpeg_read_header()
(void)jpeg_read_header(&cinfo, TRUE);
// We can ignore the return value from jpeg_read_header since
// (a) suspension is not possible with the stdio data source, and
// (b) we passed TRUE to reject a tables-only JPEG file as an error.
// See libjpeg.txt for more info.
// Step 4: set parameters for decompression
// In this example, we don't need to change any of the defaults set by jpeg_read_header(), so we do nothing here.
// Step 5: Start decompressor
(void) jpeg_start_decompress(&cinfo);
// We can ignore the return value since suspension is not possible with the stdio data source.
// We may need to do some setup of our own at this point before reading the data.
// After jpeg_start_decompress() we have the correct scaled output image dimensions available, as well as the output colormap if we asked for color quantization.
// In this example, we need to make an output work buffer of the right size.
// JSAMPLEs per row in output buffer
row_stride = cinfo.output_width * cinfo.output_components;
// Make a one-row-high sample array that will go away when done with image
buffer = (*cinfo.mem->alloc_sarray)((j_common_ptr) &cinfo, JPOOL_IMAGE, row_stride, 1);
// Step 6: while (scan lines remain to be read) jpeg_read_scanlines(...);
// Resize output image:
out.configure(ivec2(cinfo.output_width,cinfo.output_height), egami::colorType::RGB8);
uint8_t* dataOutPointer = (uint8_t*)out.getTextureDataPointer();
// Here we use the library's state variable cinfo.output_scanline as the loop counter, so that we don't have to keep track ourselves.
int32_t yyy = 0;
while (cinfo.output_scanline < cinfo.output_height) {
// Get a simple line:
(void) jpeg_read_scanlines(&cinfo, buffer, 1);
// Direst push on the output (got output format RGB8)
//uint8_t* tmpp = dataOutPointer + (row_stride*(cinfo.output_height-yyy));
uint8_t* tmpp = dataOutPointer + (row_stride*yyy);
memcpy(tmpp, buffer[0], row_stride);
yyy++;
}
// Step 7: Finish decompression
(void) jpeg_finish_decompress(&cinfo);
// We can ignore the return value since suspension is not possible with the stdio data source.
// Step 8: Release JPEG decompression object
// This is an important step since it will release a good deal of memory.
jpeg_destroy_decompress(&cinfo);
// At this point you may want to check to see whether any corrupt-data warnings occurred (test whether jerr.pub.num_warnings is nonzero).
return out;
}
static etk::Vector<JOCTET> myBuffer;
#define BLOCK_SIZE 16384
void myInitDestination(j_compress_ptr _cinfo) {
myBuffer.resize(BLOCK_SIZE);
_cinfo->dest->next_output_byte = &myBuffer[0];
_cinfo->dest->free_in_buffer = myBuffer.size();
}
boolean myEmptyOutputBuffer(j_compress_ptr _cinfo) {
size_t oldsize = myBuffer.size();
myBuffer.resize(oldsize + BLOCK_SIZE);
_cinfo->dest->next_output_byte = &myBuffer[oldsize];
_cinfo->dest->free_in_buffer = myBuffer.size() - oldsize;
return TRUE;
}
void myTermDestination(j_compress_ptr _cinfo) {
myBuffer.resize(myBuffer.size() - _cinfo->dest->free_in_buffer);
}
bool egami::storeJPG(const etk::Uri& _uri, const egami::Image& _inputImage) {
auto fileIo = etk::uri::get(_uri);
if (fileIo == null) {
EGAMI_ERROR("Can not create the uri: " << _uri);
return false;
}
if (fileIo->open(etk::io::OpenMode::Write) == false) {
EGAMI_ERROR("Can not open (w) the file : " << _uri);
return false;
}
etk::Vector<uint8_t> allData;
bool ret = storeJPG(allData, _inputImage);
fileIo->writeAll(allData);
fileIo->close();
return ret;
}
/*
* IMAGE DATA FORMATS:
*
* The standard input image format is a rectangular array of pixels, with
* each pixel having the same number of "component" values (color channels).
* Each pixel row is an array of JSAMPLEs (which typically are unsigned chars).
* If you are working with color data, then the color values for each pixel
* must be adjacent in the row; for example, R,G,B,R,G,B,R,G,B,... for 24-bit
* RGB color.
*
* For this example, we'll assume that this data structure matches the way
* our application has stored the image in memory, so we can just pass a
* pointer to our image buffer. In particular, let's say that the image is
* RGB color and is described by:
*/
//int quality = 250;
int quality = 200;
bool egami::storeJPG(etk::Vector<uint8_t>& _buffer, const egami::Image& _inputImage) {
_buffer.clear();
/* This struct contains the JPEG compression parameters and pointers to
* working space (which is allocated as needed by the JPEG library).
* It is possible to have several such structures, representing multiple
* compression/decompression processes, in existence at once. We refer
* to any one struct (and its associated working data) as a "JPEG object".
*/
struct jpeg_compress_struct cinfo;
// We use our private extension JPEG error handler. Note that this struct must live as long as the main JPEG parameter struct, to avoid dangling-pointer problems.
struct my_error_mgr jerr;
/* More stuff */
int row_stride; /* physical row width in image buffer */
/* Step 1: allocate and initialize JPEG compression object */
// We set up the normal JPEG error routines, then override error_exit.
cinfo.err = jpeg_std_error(&jerr.pub);
jerr.pub.error_exit = my_error_exit;
/* Now we can initialize the JPEG compression object. */
jpeg_create_compress(&cinfo);
/* Step 2: specify data destination (eg, a file) */
/* Note: steps 2 and 3 can be done in either order. */
/* Here we use the library-supplied code to send compressed data to a
* stdio stream. You can also write your own code to do something else.
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
* requires it in order to write binary files.
*/
#if 0
FILE * outfile; /* target file */
if ((outfile = fopen(filename, "wb")) == NULL) {
fprintf(stderr, "can't open %s\n", filename);
exit(1);
}
jpeg_stdio_dest(&cinfo, outfile);
#else
/*
uint8_t* rgba = null;
unsigned long size = 0;
etk::Vector<uint8_t> buffer.
jpeg_mem_dest(jpegdata, &rgba, &size);
if(size > 0) {
buffer.resize(size);
for(ii=0; iii<size; ++iii) {
buffer[iii] = rgba[iii];
}
free(rgba);
rgba = null;
}
*/
jpeg_stdio_dest(&cinfo, null);
if (cinfo.dest == null) {
EGAMI_ERROR("Can not write the destination property callback");
return false;
}
cinfo.dest->init_destination = &myInitDestination;
cinfo.dest->empty_output_buffer = &myEmptyOutputBuffer;
cinfo.dest->term_destination = &myTermDestination;
#endif
// Step 3: set parameters for compression
// First we supply a description of the input image. Four fields of the cinfo struct must be filled in:
cinfo.image_width = _inputImage.getSize().x();
cinfo.image_height = _inputImage.getSize().y();
// # of color components per pixel
cinfo.input_components = getFormatColorSize(_inputImage.getType());
// colorspace of input image
cinfo.in_color_space = JCS_RGB;
/* Now use the library's routine to set default compression parameters.
* (You must set at least cinfo.in_color_space before calling this,
* since the defaults depend on the source color space.)
*/
jpeg_set_defaults(&cinfo);
/* Now you can set any non-default parameters you wish to.
* Here we just illustrate the use of quality (quantization table) scaling:
*/
jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */);
/* Step 4: Start compressor */
/* TRUE ensures that we will write a complete interchange-JPEG file.
* Pass TRUE unless you are very sure of what you're doing.
*/
jpeg_start_compress(&cinfo, TRUE);
/* Step 5: while (scan lines remain to be written) */
/* jpeg_write_scanlines(...); */
uint8_t * dataPointer = (uint8_t*)_inputImage.getTextureDataPointer();
while (cinfo.next_scanline < cinfo.image_height) {
/* jpeg_write_scanlines expects an array of pointers to scanlines.
* Here the array is only one element long, but you could pass
* more than one scanline at a time if that's more convenient.
*/
JSAMPROW tmp[1];
tmp[0] = &dataPointer[cinfo.next_scanline * cinfo.image_width * getFormatColorSize(_inputImage.getType())];
(void) jpeg_write_scanlines(&cinfo, tmp, 1);
}
/* Step 6: Finish compression */
jpeg_finish_compress(&cinfo);
/* Step 7: release JPEG compression object */
/* This is an important step since it will release a good deal of memory. */
jpeg_destroy_compress(&cinfo);
etk::swap(_buffer, myBuffer);
return true;
}