302 lines
11 KiB
C++
302 lines
11 KiB
C++
/** @file
|
|
* @author Edouard DUPIN
|
|
* @copyright 2011, Edouard DUPIN, all right reserved
|
|
* @license MPL v2.0 (see license file)
|
|
*/
|
|
|
|
#include <etk/types.hpp>
|
|
#include <egami/debug.hpp>
|
|
#include <egami/Image.hpp>
|
|
#include <egami/wrapperJPG.hpp>
|
|
#include <etk/uri/uri.hpp>
|
|
extern "C" {
|
|
#include "jpeglib.h"
|
|
}
|
|
#include <setjmp.h>
|
|
|
|
struct my_error_mgr {
|
|
struct jpeg_error_mgr pub; /* "public" fields */
|
|
jmp_buf setjmp_buffer; /* for return to caller */
|
|
};
|
|
|
|
typedef struct my_error_mgr * my_error_ptr;
|
|
|
|
/*
|
|
* Here's the routine that will replace the standard error_exit method:
|
|
*/
|
|
METHODDEF(void) my_error_exit(j_common_ptr _cinfo) {
|
|
// cinfo->err really points to a my_error_mgr struct, so coerce pointer
|
|
my_error_ptr myerr = (my_error_ptr)_cinfo->err;
|
|
// Always display the message.
|
|
// We could postpone this until after returning, if we chose.
|
|
(*_cinfo->err->output_message)(_cinfo);
|
|
// Return control to the setjmp point
|
|
longjmp(myerr->setjmp_buffer, 1);
|
|
}
|
|
|
|
void put_scanline_someplace(const uint8_t* _buffer, int32_t _row_stride) {
|
|
EGAMI_ERROR("plop " << uint64_t(_buffer) << " row=" << _row_stride << " " << (_row_stride/3));
|
|
}
|
|
|
|
|
|
egami::Image egami::loadJPG(const etk::Uri& _uri) {
|
|
auto fileIo = etk::uri::get(_uri);
|
|
if (fileIo == null) {
|
|
EGAMI_ERROR("Can not create the uri: " << _uri);
|
|
return egami::Image();
|
|
}
|
|
if (fileIo->open(etk::io::OpenMode::Read) == false) {
|
|
EGAMI_ERROR("Can not open (r) the file : " << _uri);
|
|
return egami::Image();
|
|
}
|
|
etk::Vector<uint8_t> allData = fileIo->readAll<uint8_t>();
|
|
fileIo->close();
|
|
return egami::loadJPG(allData);
|
|
}
|
|
|
|
egami::Image egami::loadJPG(const etk::Vector<uint8_t>& _buffer) {
|
|
egami::Image out;
|
|
// This struct contains the JPEG decompression parameters and pointers to working space (which is allocated as needed by the JPEG library).
|
|
struct jpeg_decompress_struct cinfo;
|
|
// We use our private extension JPEG error handler. Note that this struct must live as long as the main JPEG parameter struct, to avoid dangling-pointer problems.
|
|
struct my_error_mgr jerr;
|
|
// More stuff
|
|
JSAMPARRAY buffer;
|
|
int row_stride;
|
|
|
|
// Step 1: allocate and initialize JPEG decompression object
|
|
|
|
// We set up the normal JPEG error routines, then override error_exit.
|
|
cinfo.err = jpeg_std_error(&jerr.pub);
|
|
jerr.pub.error_exit = my_error_exit;
|
|
// Establish the setjmp return context for my_error_exit to use.
|
|
if (setjmp(jerr.setjmp_buffer)) {
|
|
// If we get here, the JPEG code has signaled an error. We need to clean up the JPEG object, close the input file, and return.
|
|
jpeg_destroy_decompress(&cinfo);
|
|
return out;
|
|
}
|
|
// Now we can initialize the JPEG decompression object.
|
|
jpeg_create_decompress(&cinfo);
|
|
|
|
// Step 2: specify data source (eg, a file)
|
|
jpeg_mem_src(&cinfo, &_buffer[0], _buffer.size());
|
|
|
|
// Step 3: read file parameters with jpeg_read_header()
|
|
(void)jpeg_read_header(&cinfo, TRUE);
|
|
// We can ignore the return value from jpeg_read_header since
|
|
// (a) suspension is not possible with the stdio data source, and
|
|
// (b) we passed TRUE to reject a tables-only JPEG file as an error.
|
|
// See libjpeg.txt for more info.
|
|
|
|
// Step 4: set parameters for decompression
|
|
// In this example, we don't need to change any of the defaults set by jpeg_read_header(), so we do nothing here.
|
|
|
|
// Step 5: Start decompressor
|
|
(void) jpeg_start_decompress(&cinfo);
|
|
// We can ignore the return value since suspension is not possible with the stdio data source.
|
|
|
|
// We may need to do some setup of our own at this point before reading the data.
|
|
// After jpeg_start_decompress() we have the correct scaled output image dimensions available, as well as the output colormap if we asked for color quantization.
|
|
// In this example, we need to make an output work buffer of the right size.
|
|
// JSAMPLEs per row in output buffer
|
|
row_stride = cinfo.output_width * cinfo.output_components;
|
|
// Make a one-row-high sample array that will go away when done with image
|
|
buffer = (*cinfo.mem->alloc_sarray)((j_common_ptr) &cinfo, JPOOL_IMAGE, row_stride, 1);
|
|
|
|
// Step 6: while (scan lines remain to be read) jpeg_read_scanlines(...);
|
|
// Resize output image:
|
|
out.configure(ivec2(cinfo.output_width,cinfo.output_height), egami::colorType::RGB8);
|
|
uint8_t* dataOutPointer = (uint8_t*)out.getTextureDataPointer();
|
|
|
|
|
|
// Here we use the library's state variable cinfo.output_scanline as the loop counter, so that we don't have to keep track ourselves.
|
|
int32_t yyy = 0;
|
|
while (cinfo.output_scanline < cinfo.output_height) {
|
|
// Get a simple line:
|
|
(void) jpeg_read_scanlines(&cinfo, buffer, 1);
|
|
// Direst push on the output (got output format RGB8)
|
|
//uint8_t* tmpp = dataOutPointer + (row_stride*(cinfo.output_height-yyy));
|
|
uint8_t* tmpp = dataOutPointer + (row_stride*yyy);
|
|
memcpy(tmpp, buffer[0], row_stride);
|
|
yyy++;
|
|
}
|
|
// Step 7: Finish decompression
|
|
(void) jpeg_finish_decompress(&cinfo);
|
|
// We can ignore the return value since suspension is not possible with the stdio data source.
|
|
|
|
// Step 8: Release JPEG decompression object
|
|
// This is an important step since it will release a good deal of memory.
|
|
jpeg_destroy_decompress(&cinfo);
|
|
|
|
// At this point you may want to check to see whether any corrupt-data warnings occurred (test whether jerr.pub.num_warnings is nonzero).
|
|
return out;
|
|
}
|
|
|
|
static etk::Vector<JOCTET> myBuffer;
|
|
#define BLOCK_SIZE 16384
|
|
|
|
void myInitDestination(j_compress_ptr _cinfo) {
|
|
myBuffer.resize(BLOCK_SIZE);
|
|
_cinfo->dest->next_output_byte = &myBuffer[0];
|
|
_cinfo->dest->free_in_buffer = myBuffer.size();
|
|
}
|
|
|
|
boolean myEmptyOutputBuffer(j_compress_ptr _cinfo) {
|
|
size_t oldsize = myBuffer.size();
|
|
myBuffer.resize(oldsize + BLOCK_SIZE);
|
|
_cinfo->dest->next_output_byte = &myBuffer[oldsize];
|
|
_cinfo->dest->free_in_buffer = myBuffer.size() - oldsize;
|
|
return TRUE;
|
|
}
|
|
|
|
void myTermDestination(j_compress_ptr _cinfo) {
|
|
myBuffer.resize(myBuffer.size() - _cinfo->dest->free_in_buffer);
|
|
}
|
|
|
|
bool egami::storeJPG(const etk::Uri& _uri, const egami::Image& _inputImage) {
|
|
auto fileIo = etk::uri::get(_uri);
|
|
if (fileIo == null) {
|
|
EGAMI_ERROR("Can not create the uri: " << _uri);
|
|
return false;
|
|
}
|
|
if (fileIo->open(etk::io::OpenMode::Write) == false) {
|
|
EGAMI_ERROR("Can not open (w) the file : " << _uri);
|
|
return false;
|
|
}
|
|
etk::Vector<uint8_t> allData;
|
|
bool ret = storeJPG(allData, _inputImage);
|
|
fileIo->writeAll(allData);
|
|
fileIo->close();
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* IMAGE DATA FORMATS:
|
|
*
|
|
* The standard input image format is a rectangular array of pixels, with
|
|
* each pixel having the same number of "component" values (color channels).
|
|
* Each pixel row is an array of JSAMPLEs (which typically are unsigned chars).
|
|
* If you are working with color data, then the color values for each pixel
|
|
* must be adjacent in the row; for example, R,G,B,R,G,B,R,G,B,... for 24-bit
|
|
* RGB color.
|
|
*
|
|
* For this example, we'll assume that this data structure matches the way
|
|
* our application has stored the image in memory, so we can just pass a
|
|
* pointer to our image buffer. In particular, let's say that the image is
|
|
* RGB color and is described by:
|
|
*/
|
|
|
|
//int quality = 250;
|
|
int quality = 200;
|
|
|
|
bool egami::storeJPG(etk::Vector<uint8_t>& _buffer, const egami::Image& _inputImage) {
|
|
_buffer.clear();
|
|
/* This struct contains the JPEG compression parameters and pointers to
|
|
* working space (which is allocated as needed by the JPEG library).
|
|
* It is possible to have several such structures, representing multiple
|
|
* compression/decompression processes, in existence at once. We refer
|
|
* to any one struct (and its associated working data) as a "JPEG object".
|
|
*/
|
|
struct jpeg_compress_struct cinfo;
|
|
// We use our private extension JPEG error handler. Note that this struct must live as long as the main JPEG parameter struct, to avoid dangling-pointer problems.
|
|
struct my_error_mgr jerr;
|
|
/* More stuff */
|
|
int row_stride; /* physical row width in image buffer */
|
|
|
|
/* Step 1: allocate and initialize JPEG compression object */
|
|
|
|
// We set up the normal JPEG error routines, then override error_exit.
|
|
cinfo.err = jpeg_std_error(&jerr.pub);
|
|
jerr.pub.error_exit = my_error_exit;
|
|
/* Now we can initialize the JPEG compression object. */
|
|
jpeg_create_compress(&cinfo);
|
|
|
|
/* Step 2: specify data destination (eg, a file) */
|
|
/* Note: steps 2 and 3 can be done in either order. */
|
|
|
|
/* Here we use the library-supplied code to send compressed data to a
|
|
* stdio stream. You can also write your own code to do something else.
|
|
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
|
|
* requires it in order to write binary files.
|
|
*/
|
|
#if 0
|
|
FILE * outfile; /* target file */
|
|
if ((outfile = fopen(filename, "wb")) == NULL) {
|
|
fprintf(stderr, "can't open %s\n", filename);
|
|
exit(1);
|
|
}
|
|
jpeg_stdio_dest(&cinfo, outfile);
|
|
#else
|
|
/*
|
|
uint8_t* rgba = null;
|
|
unsigned long size = 0;
|
|
etk::Vector<uint8_t> buffer.
|
|
jpeg_mem_dest(jpegdata, &rgba, &size);
|
|
if(size > 0) {
|
|
buffer.resize(size);
|
|
for(ii=0; iii<size; ++iii) {
|
|
buffer[iii] = rgba[iii];
|
|
}
|
|
free(rgba);
|
|
rgba = null;
|
|
}
|
|
*/
|
|
jpeg_stdio_dest(&cinfo, null);
|
|
if (cinfo.dest == null) {
|
|
EGAMI_ERROR("Can not write the destination property callback");
|
|
return false;
|
|
}
|
|
cinfo.dest->init_destination = &myInitDestination;
|
|
cinfo.dest->empty_output_buffer = &myEmptyOutputBuffer;
|
|
cinfo.dest->term_destination = &myTermDestination;
|
|
#endif
|
|
|
|
// Step 3: set parameters for compression
|
|
// First we supply a description of the input image. Four fields of the cinfo struct must be filled in:
|
|
cinfo.image_width = _inputImage.getSize().x();
|
|
cinfo.image_height = _inputImage.getSize().y();
|
|
// # of color components per pixel
|
|
cinfo.input_components = getFormatColorSize(_inputImage.getType());
|
|
// colorspace of input image
|
|
cinfo.in_color_space = JCS_RGB;
|
|
/* Now use the library's routine to set default compression parameters.
|
|
* (You must set at least cinfo.in_color_space before calling this,
|
|
* since the defaults depend on the source color space.)
|
|
*/
|
|
jpeg_set_defaults(&cinfo);
|
|
/* Now you can set any non-default parameters you wish to.
|
|
* Here we just illustrate the use of quality (quantization table) scaling:
|
|
*/
|
|
jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */);
|
|
|
|
/* Step 4: Start compressor */
|
|
|
|
/* TRUE ensures that we will write a complete interchange-JPEG file.
|
|
* Pass TRUE unless you are very sure of what you're doing.
|
|
*/
|
|
jpeg_start_compress(&cinfo, TRUE);
|
|
|
|
/* Step 5: while (scan lines remain to be written) */
|
|
/* jpeg_write_scanlines(...); */
|
|
uint8_t * dataPointer = (uint8_t*)_inputImage.getTextureDataPointer();
|
|
while (cinfo.next_scanline < cinfo.image_height) {
|
|
/* jpeg_write_scanlines expects an array of pointers to scanlines.
|
|
* Here the array is only one element long, but you could pass
|
|
* more than one scanline at a time if that's more convenient.
|
|
*/
|
|
JSAMPROW tmp[1];
|
|
tmp[0] = &dataPointer[cinfo.next_scanline * cinfo.image_width * getFormatColorSize(_inputImage.getType())];
|
|
(void) jpeg_write_scanlines(&cinfo, tmp, 1);
|
|
}
|
|
|
|
/* Step 6: Finish compression */
|
|
|
|
jpeg_finish_compress(&cinfo);
|
|
/* Step 7: release JPEG compression object */
|
|
|
|
/* This is an important step since it will release a good deal of memory. */
|
|
jpeg_destroy_compress(&cinfo);
|
|
etk::swap(_buffer, myBuffer);
|
|
return true;
|
|
}
|