[DEV] better collision

This commit is contained in:
Edouard DUPIN 2020-07-06 00:28:27 +02:00
parent bb9c65bb3e
commit 863a85d562
8 changed files with 616 additions and 594 deletions

7
.checkstyle Normal file
View File

@ -0,0 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<fileset-config file-format-version="1.2.0" simple-config="true" sync-formatter="false">
<fileset name="all" enabled="true" check-config-name="Scenarium" local="false">
<file-match-pattern match-pattern="." include-pattern="true"/>
</fileset>
</fileset-config>

View File

@ -10,8 +10,14 @@
<arguments>
</arguments>
</buildCommand>
<buildCommand>
<name>net.sf.eclipsecs.core.CheckstyleBuilder</name>
<arguments>
</arguments>
</buildCommand>
</buildSpec>
<natures>
<nature>org.eclipse.jdt.core.javanature</nature>
<nature>net.sf.eclipsecs.core.CheckstyleNature</nature>
</natures>
</projectDescription>

View File

@ -19,20 +19,21 @@ public class GuiRenderer {
private GuiShader shader;
public GuiRenderer(Loader loader) {
float[] positions = {-1, 1, -1, -1, 1, 1, 1, -1};
float[] positions = { -1, 1, -1, -1, 1, 1, 1, -1 };
quad = loader.loadToVAO(positions, 2);
shader = new GuiShader();
}
public void render(List<GuiTexture> guis) {
shader.start();
//System.out.println("Render Gui " + guis.size());
// System.out.println("Render Gui " + guis.size());
GL30.glBindVertexArray(quad.getVaoID());
GL20.glEnableVertexAttribArray(0);
OpenGL.enable(OpenGL.Flag.flag_blend);
OpenGL.enable(OpenGL.Flag.flag_cullFace);
OpenGL.enable(OpenGL.Flag.flag_back);
for (GuiTexture gui: guis) {
for (GuiTexture gui : guis) {
GL13.glActiveTexture(GL13.GL_TEXTURE0);
GL11.glBindTexture(GL11.GL_TEXTURE_2D, gui.getTexture());
Matrix4f matrix = Maths.createTransformationMatrix(gui.getPosition(), gui.getScale());

View File

@ -1,77 +1,56 @@
package org.atriaSoft.etk.math;
import java.util.Arrays;
import org.atriaSoft.gale.test.sample2.Log;
public class Quaternion {
public float x;
public float y;
public float z;
public float w;
/**
* @brief No initialization constructor (faster ...)
*/
/** @brief No initialization constructor (faster ...) */
public Quaternion() {
this.x = 0.0f;
this.y = 0.0f;
this.z = 0.0f;
this.w = 0.0f;
}
/*
void checkValues() {
if ( isinf(this.x) == true
|| isnan(this.x) == true
|| isinf(this.y) == true
|| isnan(this.y) == true
|| isinf(this.z) == true
|| isnan(this.z) == true
|| isinf(this.w) == true
|| isnan(this.w) == true) {
TKCRITICAL(" set transform: (" << this.x << "," << this.y << "," << this.z << "," << this.w << ")");
}
}
*/
/**
* @brief Constructor from scalars.
/* void checkValues() { if ( isinf(this.x) == true || isnan(this.x) == true || isinf(this.y) == true || isnan(this.y) == true || isinf(this.z) == true || isnan(this.z) == true || isinf(this.w) ==
* true || isnan(this.w) == true) { TKCRITICAL(" set transform: (" << this.x << "," << this.y << "," << this.z << "," << this.w << ")"); } } */
/** @brief Constructor from scalars.
* @param xxx X value
* @param yyy Y value
* @param zzz Z value
* @param www W value
*/
* @param www W value */
public Quaternion(float xxx, float yyy, float zzz, float www) {
this.x = xxx;
this.y = yyy;
this.z = zzz;
this.w = www;
}
/**
* @brief Constructor with the component w and a vector 3D.
/** @brief Constructor with the component w and a vector 3D.
* @param www W value
* @param vec 3D vector value
*/
* @param vec 3D vector value */
public Quaternion(float www, Vector3f vec) {
this.x = vec.x;
this.y = vec.y;
this.z = vec.z;
this.w = www;
}
/**
* @brief Constructor with Euler angles (in radians) to a quaternion
* @param eulerAngles list of all euleu angle
*/
/** @brief Constructor with Euler angles (in radians) to a quaternion
* @param eulerAngles list of all euleu angle */
public Quaternion(Vector3f eulerAngles) {
setEulerAngles(eulerAngles);
}
/**
* @brief Create a unit quaternion from a rotation matrix
* @param matrix generic matrix
*/
/** @brief Create a unit quaternion from a rotation matrix
* @param matrix generic matrix */
public Quaternion(Matrix3f matrix) {
float trace = matrix.getTrace();
if (trace < 0.0f) {
if (matrix.mat[4] > matrix.mat[0]) {
if(matrix.mat[8] > matrix.mat[4]) {
if (matrix.mat[8] > matrix.mat[4]) {
float rrr = (float) Math.sqrt(matrix.mat[8] - matrix.mat[0] - matrix.mat[4] + 1.0f);
float sss = 0.5f / rrr;
this.x = (matrix.mat[6] + matrix.mat[2]) * sss;
@ -110,17 +89,17 @@ public class Quaternion {
this.w = 0.5f * rrr;
}
}
public Quaternion(Quaternion obj) {
this.x = obj.x;
this.y = obj.y;
this.z = obj.z;
this.w = obj.w;
}
/**
* @brief Add a vector to this one.
/** @brief Add a vector to this one.
* @param[in] obj The vector to add to this one
* @return Local reference of the vector
*/
* @return Local reference of the vector */
public Quaternion add(Quaternion obj) {
this.x += obj.x;
this.y += obj.y;
@ -128,22 +107,17 @@ public class Quaternion {
this.w += obj.w;
return this;
}
/**
* @brief Add a vector to this one.
/** @brief Add a vector to this one.
* @param[in] obj The vector to add to this one
* @return New vector containing the value
*/
* @return New vector containing the value */
public Quaternion add_new(Quaternion obj) {
return new Quaternion(this.x + obj.x,
this.y + obj.y,
this.z + obj.z,
this.w + obj.w);
return new Quaternion(this.x + obj.x, this.y + obj.y, this.z + obj.z, this.w + obj.w);
}
/**
* @brief Subtract a vector from this one
/** @brief Subtract a vector from this one
* @param obj The vector to subtract
* @return Local reference of the vector
*/
* @return Local reference of the vector */
public Quaternion less(Quaternion obj) {
this.x -= obj.x;
this.y -= obj.y;
@ -151,22 +125,17 @@ public class Quaternion {
this.w -= obj.w;
return this;
}
/**
* @brief Subtract a vector from this one
/** @brief Subtract a vector from this one
* @param obj The vector to subtract
* @return New quaternion containing the value
*/
* @return New quaternion containing the value */
public Quaternion less_new(Quaternion obj) {
return new Quaternion(this.x - obj.x,
this.y - obj.y,
this.z - obj.z,
this.w - obj.w);
return new Quaternion(this.x - obj.x, this.y - obj.y, this.z - obj.z, this.w - obj.w);
}
/**
* @brief Scale the quaternion
/** @brief Scale the quaternion
* @param[in] val Scale factor
* @return Local reference of the quaternion
*/
* @return Local reference of the quaternion */
public Quaternion multiply(float val) {
this.x *= val;
this.y *= val;
@ -174,22 +143,17 @@ public class Quaternion {
this.w *= val;
return this;
}
/**
* @brief Scale the quaternion
/** @brief Scale the quaternion
* @param[in] val Scale factor
* @return New quaternion containing the value
*/
* @return New quaternion containing the value */
public Quaternion multiply_new(float val) {
return new Quaternion(this.x * val,
this.y * val,
this.z * val,
this.w * val);
return new Quaternion(this.x * val, this.y * val, this.z * val, this.w * val);
}
/**
* @brief Inversely scale the quaternion
/** @brief Inversely scale the quaternion
* @param[in] val Scale factor to divide by.
* @return Local reference of the quaternion
*/
* @return Local reference of the quaternion */
public Quaternion devide(float val) {
if (val != 0) {
this.x /= val;
@ -199,49 +163,38 @@ public class Quaternion {
}
return this;
}
/**
* @brief Inversely scale the quaternion
/** @brief Inversely scale the quaternion
* @param[in] val Scale factor to divide by.
* @return New quaternion containing the value
*/
* @return New quaternion containing the value */
public Quaternion devide_new(float val) {
if (val != 0) {
return new Quaternion(this.x / val,
this.y / val,
this.z / val,
this.w / val);
return new Quaternion(this.x / val, this.y / val, this.z / val, this.w / val);
}
return new Quaternion(this);
}
/**
* @brief Return the dot product
/** @brief Return the dot product
* @param obj The other quaternion in the dot product
* @return Dot result value
*/
* @return Dot result value */
public float dot(Quaternion obj) {
return this.x * obj.x
+ this.y * obj.y
+ this.z * obj.z
+ this.w * obj.w;
return this.x * obj.x + this.y * obj.y + this.z * obj.z + this.w * obj.w;
}
/**
* @brief Return the squared length of the quaternion.
* @return Squared length value.
*/
/** @brief Return the squared length of the quaternion.
* @return Squared length value. */
public float length2() {
return dot(this);
}
/**
* @brief Return the length of the quaternion
* @return Length value
*/
/** @brief Return the length of the quaternion
* @return Length value */
public float length() {
return (float) Math.sqrt(length2());
}
/**
* @brief Normalize this quaternion x^2 + y^2 + z^2 + w^2 = 1
* @return Local reference of the quaternion normalized
*/
/** @brief Normalize this quaternion x^2 + y^2 + z^2 + w^2 = 1
* @return Local reference of the quaternion normalized */
public Quaternion normalize() {
float invLength = 1.0f / length();
this.x *= invLength;
@ -250,19 +203,17 @@ public class Quaternion {
this.w *= invLength;
return this;
}
/**
* @brief Return a normalized version of this quaternion
* @return New quaternion containing the value
*/
/** @brief Return a normalized version of this quaternion
* @return New quaternion containing the value */
public Quaternion normalize_new() {
Quaternion tmp = new Quaternion(this);
tmp.normalize();
return tmp;
}
/**
* @brief Normalize this quaternion x^2 + y^2 + z^2 + w^2 = 1
* @return Local reference of the quaternion normalized
*/
/** @brief Normalize this quaternion x^2 + y^2 + z^2 + w^2 = 1
* @return Local reference of the quaternion normalized */
public Quaternion safeNormalize() {
float lengthTmp = length();
if (lengthTmp == 0.0f) {
@ -278,18 +229,16 @@ public class Quaternion {
this.w *= invLength;
return this;
}
/**
* @brief Return a normalized version of this quaternion
* @return New quaternion containing the value
*/
/** @brief Return a normalized version of this quaternion
* @return New quaternion containing the value */
public Quaternion safeNormalize_new() {
Quaternion tmp = new Quaternion(this);
tmp.safeNormalize();
return tmp;
}
/**
* @brief Set the absolute values of each element
*/
/** @brief Set the absolute values of each element */
public Quaternion absolute() {
this.x = Math.abs(this.x);
this.y = Math.abs(this.y);
@ -297,105 +246,84 @@ public class Quaternion {
this.w = Math.abs(this.w);
return this;
}
/**
* @brief Return a quaternion will the absolute values of each element
* @return New quaternion with the absolute value
*/
/** @brief Return a quaternion will the absolute values of each element
* @return New quaternion with the absolute value */
public Quaternion absolute_new() {
return new Quaternion( Math.abs(this.x),
Math.abs(this.y),
Math.abs(this.z),
Math.abs(this.w));
return new Quaternion(Math.abs(this.x), Math.abs(this.y), Math.abs(this.z), Math.abs(this.w));
}
/**
* @brief Get X value
* @return the x value
*/
/** @brief Get X value
* @return the x value */
public float getX() {
return this.x;
}
/**
* @brief Get Y value
* @return the y value
*/
/** @brief Get Y value
* @return the y value */
public float getY() {
return this.y;
}
/**
* @brief Get Z value
* @return the z value
*/
/** @brief Get Z value
* @return the z value */
public float getZ() {
return this.z;
}
/**
* @brief Get W value
* @return the w value
*/
/** @brief Get W value
* @return the w value */
public float getW() {
return this.w;
}
/**
* @brief Set the x value
* @param[in] x New value
*/
/** @brief Set the x value
* @param[in] x New value */
public Quaternion setX(float x) {
this.x = x;
return this;
};
/**
* @brief Set the y value
* @param[in] y New value
*/
/** @brief Set the y value
* @param[in] y New value */
public Quaternion setY(float y) {
this.y = y;
return this;
};
/**
* @brief Set the z value
* @param[in] z New value
*/
/** @brief Set the z value
* @param[in] z New value */
public Quaternion setZ(float z) {
this.z = z;
return this;
};
/**
* @brief Set the w value
* @param[in] w New value
*/
/** @brief Set the w value
* @param[in] w New value */
public Quaternion setW(float w) {
this.w = w;
return this;
}
/**
* @brief Equality compare operator with an other object.
/** @brief Equality compare operator with an other object.
* @param[in] obj Reference on the comparing object
* @return true The Objects are identical
* @return false The Objects are NOT identical
*/
* @return false The Objects are NOT identical */
public boolean isEqual(Quaternion obj) {
return ( (this.w == obj.w)
&& (this.z == obj.z)
&& (this.y == obj.y)
&& (this.x == obj.x));
return ((this.w == obj.w) && (this.z == obj.z) && (this.y == obj.y) && (this.x == obj.x));
}
/**
* @brief In-Equality compare operator with an other object.
/** @brief In-Equality compare operator with an other object.
* @param[in] obj Reference on the comparing object
* @return true The Objects are NOT identical
* @return false The Objects are identical
*/
* @return false The Objects are identical */
public boolean isDifferent(Quaternion obj) {
return ( (this.w != obj.w)
|| (this.z != obj.z)
|| (this.y != obj.y)
|| (this.x != obj.x));
return ((this.w != obj.w) || (this.z != obj.z) || (this.y != obj.y) || (this.x != obj.x));
}
/**
* @brief Multiply this quaternion by the other.
/** @brief Multiply this quaternion by the other.
* @param obj The other quaternion
* @return Local reference of the quaternion
*/
* @return Local reference of the quaternion */
public Quaternion multiply(Quaternion obj) {
Vector3f base = getVectorV();
Vector3f crossValue = base.cross(obj.getVectorV());
@ -406,21 +334,19 @@ public class Quaternion {
safeNormalize();
return this;
}
/**
* @brief Multiply this quaternion by the other.
/** @brief Multiply this quaternion by the other.
* @param obj The other quaternion
* @return New quaternion containing the value
*/
* @return New quaternion containing the value */
public Quaternion multiply_new(Quaternion obj) {
Quaternion tmp = new Quaternion(this);
tmp.multiply(obj);
return tmp;
}
/**
* @brief Operator* with a vector. This methods rotates a point given the rotation of a quaternion
* @param[in] point Point to move
* @return Point with the updated position
*/
/** @brief Operator* with a vector. This methods rotates a point given the rotation of a quaternion
* @param point Point to move
* @return Point with the updated position */
public Vector3f multiply(Vector3f point) {
Vector3f qvec = getVectorV();
Vector3f uv = qvec.cross(point);
@ -429,85 +355,82 @@ public class Quaternion {
uuv.multiply(2.0f);
return uv.add(point).add(uuv);
}
/**
* @brief Set each element to the max of the current values and the values of another Vector
* @param obj The other Vector to compare with
*/
public Vector3f multiply(float xxx, float yyy, float zzz) {
Vector3f point = new Vector3f(xxx, yyy, zzz);
Vector3f qvec = getVectorV();
Vector3f uv = qvec.cross(point);
Vector3f uuv = qvec.cross(uv);
uv.multiply(2.0f * this.w);
uuv.multiply(2.0f);
return uv.add(point).add(uuv);
}
/** @brief Set each element to the max of the current values and the values of another Vector
* @param obj The other Vector to compare with */
public void setMax(Quaternion obj) {
this.x = (float)Math.max(this.x, obj.x);
this.y = (float)Math.max(this.y, obj.y);
this.z = (float)Math.max(this.z, obj.z);
this.w = (float)Math.max(this.w, obj.w);
this.x = Math.max(this.x, obj.x);
this.y = Math.max(this.y, obj.y);
this.z = Math.max(this.z, obj.z);
this.w = Math.max(this.w, obj.w);
}
/**
* @brief Set each element to the min of the current values and the values of another Vector
* @param obj The other Vector to compare with
*/
/** @brief Set each element to the min of the current values and the values of another Vector
* @param obj The other Vector to compare with */
public void setMin(Quaternion obj) {
this.x = (float)Math.min(this.x, obj.x);
this.y = (float)Math.min(this.y, obj.y);
this.z = (float)Math.min(this.z, obj.z);
this.w = (float)Math.min(this.w, obj.w);
this.x = Math.min(this.x, obj.x);
this.y = Math.min(this.y, obj.y);
this.z = Math.min(this.z, obj.z);
this.w = Math.min(this.w, obj.w);
}
/**
* @brief Set Value on the quaternion
* @param[in] xxx X value.
* @param[in] yyy Y value.
* @param[in] zzz Z value.
* @param[in] www W value.
*/
/** @brief Set Value on the quaternion
* @param xxx X value.
* @param yyy Y value.
* @param zzz Z value.
* @param www W value. */
public void setValue(float xxx, float yyy, float zzz, float www) {
this.x = xxx;
this.y = yyy;
this.z = zzz;
this.w = www;
}
/**
* @brief Set 0 value on all the quaternion
*/
/** @brief Set 0 value on all the quaternion */
public void setZero() {
setValue(0,0,0,0);
setValue(0, 0, 0, 0);
}
/**
* @brief get a 0 value on all a quaternion
* @return a (float)Math. quaternion
*/
/** @brief get a 0 value on all a quaternion
* @return a (float)Math. quaternion */
public static Quaternion zero() {
return new Quaternion(0,0,0,0);
return new Quaternion(0, 0, 0, 0);
}
/**
* @brief Check if the quaternion is equal to (0,0,0,0)
/** @brief Check if the quaternion is equal to (0,0,0,0)
* @return true The value is equal to (0,0,0,0)
* @return false The value is NOT equal to (0,0,0,0)
*/
* @return false The value is NOT equal to (0,0,0,0) */
public boolean isZero() {
return this.x == 0
&& this.y == 0
&& this.z == 0
&& this.w == 0;
return this.x == 0 && this.y == 0 && this.z == 0 && this.w == 0;
}
/**
* @brief Set identity value at the quaternion
*/
/** @brief Set identity value at the quaternion */
public void setIdentity() {
setValue(0,0,0,1);
setValue(0, 0, 0, 1);
}
/**
* @brief get an identity quaternion
* @return an identity quaternion
*/
/** @brief get an identity quaternion
* @return an identity quaternion */
public static Quaternion identity() {
return new Quaternion(0,0,0,1);
return new Quaternion(0, 0, 0, 1);
}
/**
* @brief get x, y, z in a Vector3f
*/
/** @brief get x, y, z in a Vector3f */
public Vector3f getVectorV() {
return new Vector3f(this.x, this.y, this.z);
}
/**
* @brief Inverse the quaternion
*/
/** @brief Inverse the quaternion */
public void inverse() {
float invLengthSquare = 1.0f / length2();
this.x *= -invLengthSquare;
@ -515,159 +438,126 @@ public class Quaternion {
this.z *= -invLengthSquare;
this.w *= invLengthSquare;
}
/**
* @brief Return the inverse of the quaternion
* @return inverted quaternion
*/
/** @brief Return the inverse of the quaternion
* @return inverted quaternion */
public Quaternion inverse_new() {
Quaternion tmp = new Quaternion(this);
tmp.inverse();
return tmp;
}
/**
* @brief Return the unit quaternion
* @return Quaternion unitarised
*/
/** @brief Return the unit quaternion
* @return Quaternion unitarised */
public Quaternion getUnit() {
return normalize_new();
}
/**
* @brief Conjugate the quaternion
*/
/** @brief Conjugate the quaternion */
public void conjugate() {
this.x *= -1.0f;
this.y *= -1.0f;
this.z *= -1.0f;
}
/**
* @brief Return the conjugate of the quaternion
* @return Conjugate quaternion
*/
/** @brief Return the conjugate of the quaternion
* @return Conjugate quaternion */
public Quaternion conjugate_new() {
Quaternion tmp = new Quaternion(this);
tmp.conjugate();
return tmp;
}
/**
* @brief Compute the rotation angle (in radians) and the rotation axis
/** @brief Compute the rotation angle (in radians) and the rotation axis
* @param[out] angle Angle of the quaternion
* @param[out] axis Axis of the quaternion
*/
* @param[out] axis Axis of the quaternion */
public void getAngleAxis(float angle, Vector3f axis) {
Quaternion quaternion = getUnit();
angle = (float)Math.acos(quaternion.w) * 2.0f;
angle = (float) Math.acos(quaternion.w) * 2.0f;
Vector3f rotationAxis = new Vector3f(quaternion.x, quaternion.y, quaternion.z);
rotationAxis = rotationAxis.normalize_new();
axis.setValue(rotationAxis.x, rotationAxis.y, rotationAxis.z);
}
/**
* @brief Get the orientation matrix corresponding to this quaternion
* @return the 3x3 transformation matrix
*/
/** @brief Get the orientation matrix corresponding to this quaternion
* @return the 3x3 transformation matrix */
public Matrix3f getMatrix() {
float nQ = this.x*this.x
+ this.y*this.y
+ this.z*this.z
+ this.w*this.w;
float nQ = this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;
float sss = 0.0f;
if (nQ > 0.0f) {
sss = 2.0f / nQ;
}
float xs = this.x*sss;
float ys = this.y*sss;
float zs = this.z*sss;
float wxs = this.w*xs;
float wys = this.w*ys;
float wzs = this.w*zs;
float xxs = this.x*xs;
float xys = this.x*ys;
float xzs = this.x*zs;
float yys = this.y*ys;
float yzs = this.y*zs;
float zzs = this.z*zs;
return new Matrix3f(1.0f - yys - zzs,
xys - wzs,
xzs + wys,
xys + wzs,
1.0f - xxs - zzs,
yzs - wxs,
xzs - wys,
yzs + wxs,
1.0f - xxs - yys);
float xs = this.x * sss;
float ys = this.y * sss;
float zs = this.z * sss;
float wxs = this.w * xs;
float wys = this.w * ys;
float wzs = this.w * zs;
float xxs = this.x * xs;
float xys = this.x * ys;
float xzs = this.x * zs;
float yys = this.y * ys;
float yzs = this.y * zs;
float zzs = this.z * zs;
return new Matrix3f(1.0f - yys - zzs, xys - wzs, xzs + wys, xys + wzs, 1.0f - xxs - zzs, yzs - wxs, xzs - wys, yzs + wxs, 1.0f - xxs - yys);
}
public Matrix4f getMatrix4() {
float nQ = this.x*this.x
+ this.y*this.y
+ this.z*this.z
+ this.w*this.w;
float nQ = this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;
float sss = 0.0f;
if (nQ > 0.0f) {
sss = 2.0f / nQ;
}
float xs = this.x*sss;
float ys = this.y*sss;
float zs = this.z*sss;
float wxs = this.w*xs;
float wys = this.w*ys;
float wzs = this.w*zs;
float xxs = this.x*xs;
float xys = this.x*ys;
float xzs = this.x*zs;
float yys = this.y*ys;
float yzs = this.y*zs;
float zzs = this.z*zs;
return new Matrix4f(1.0f - yys - zzs,
xys - wzs,
xzs + wys,
0,
xys + wzs,
1.0f - xxs - zzs,
yzs - wxs,
0,
xzs - wys,
yzs + wxs,
1.0f - xxs - yys,
0,
0,0,0,1);
float xs = this.x * sss;
float ys = this.y * sss;
float zs = this.z * sss;
float wxs = this.w * xs;
float wys = this.w * ys;
float wzs = this.w * zs;
float xxs = this.x * xs;
float xys = this.x * ys;
float xzs = this.x * zs;
float yys = this.y * ys;
float yzs = this.y * zs;
float zzs = this.z * zs;
return new Matrix4f(1.0f - yys - zzs, xys - wzs, xzs + wys, 0, xys + wzs, 1.0f - xxs - zzs, yzs - wxs, 0, xzs - wys, yzs + wxs, 1.0f - xxs - yys, 0, 0, 0, 0, 1);
}
/**
* @brief Compute the spherical linear interpolation between two quaternions.
/** @brief Compute the spherical linear interpolation between two quaternions.
* @param[in] obj1 First quaternion
* @param[in] obj2 Second quaternion
* @param[in] ttt linar coefficient interpolation to be such that [0..1]
*/
* @param[in] ttt linar coefficient interpolation to be such that [0..1] */
public static Quaternion slerp(Quaternion obj1, Quaternion obj2, float ttt) {
//TKASSERT(ttt >= 0.0f ttt <= 1.0f, "wrong intermolation");
// TKASSERT(ttt >= 0.0f ttt <= 1.0f, "wrong intermolation");
float invert = 1.0f;
float cosineTheta = obj1.dot(obj2);
if (cosineTheta < 0.0f) {
cosineTheta = -cosineTheta;
invert = -1.0f;
}
if(1-cosineTheta < 0.00001f) {
return obj1.multiply_new(1.0f-ttt).add(obj2.multiply_new(ttt * invert));
if (1 - cosineTheta < 0.00001f) {
return obj1.multiply_new(1.0f - ttt).add(obj2.multiply_new(ttt * invert));
}
float theta = (float)Math.acos(cosineTheta);
float sineTheta = (float)Math.sin(theta);
float coeff1 = (float)Math.sin((1.0f-ttt)*theta) / sineTheta;
float coeff2 = (float)Math.sin(ttt*theta) / sineTheta * invert;
float theta = (float) Math.acos(cosineTheta);
float sineTheta = (float) Math.sin(theta);
float coeff1 = (float) Math.sin((1.0f - ttt) * theta) / sineTheta;
float coeff2 = (float) Math.sin(ttt * theta) / sineTheta * invert;
return obj1.multiply_new(coeff1).add(obj2.multiply_new(coeff2));
}
/**
* @brief Configure the quaternion with euler angles.
* @param[out] angles Eular angle of the quaternion.
*/
/** @brief Configure the quaternion with euler angles.
* @param[out] angles Eular angle of the quaternion. */
public void setEulerAngles(Vector3f angles) {
float angle = angles.x * 0.5f;
float sinX = (float)Math.sin(angle);
float cosX = (float)Math.cos(angle);
float sinX = (float) Math.sin(angle);
float cosX = (float) Math.cos(angle);
angle = angles.y * 0.5f;
float sinY = (float)Math.sin(angle);
float cosY = (float)Math.cos(angle);
float sinY = (float) Math.sin(angle);
float cosY = (float) Math.cos(angle);
angle = angles.z * 0.5f;
float sinZ = (float)Math.sin(angle);
float cosZ = (float)Math.cos(angle);
float sinZ = (float) Math.sin(angle);
float cosZ = (float) Math.cos(angle);
float cosYcosZ = cosY * cosZ;
float sinYcosZ = sinY * cosZ;
float cosYsinZ = cosY * sinZ;
@ -678,13 +568,14 @@ public class Quaternion {
this.w = cosX * cosYcosZ + sinX * sinYsinZ;
normalize();
}
/**
* @brief Clone the current Quaternion.
* @return New Quaternion containing the value
*/
/** @brief Clone the current Quaternion.
* @return New Quaternion containing the value */
@Override
public Quaternion clone() {
return new Quaternion(this);
}
@Override
public String toString() {
return "Quaternion(" + this.x + "," + this.y + "," + this.z + "," + this.w + ")";
@ -692,7 +583,7 @@ public class Quaternion {
// a * diff = b
public static Quaternion diff(Quaternion a, Quaternion b) {
//Log.info("diff " + a + " " + b);
// Log.info("diff " + a + " " + b);
Quaternion inv = a.inverse_new();
return inv.multiply(b);
}

View File

@ -0,0 +1,14 @@
package org.atriaSoft.gameEngine.physics;
import org.atriaSoft.etk.math.Vector3f;
public class ColisionPoints {
public Vector3f position;
public Vector3f force;
public ColisionPoints(Vector3f position, Vector3f force) {
super();
this.position = position;
this.force = force;
}
}

View File

@ -2,71 +2,83 @@ package org.atriaSoft.gameEngine.physics;
import org.atriaSoft.etk.Color;
import org.atriaSoft.etk.math.Matrix4f;
import org.atriaSoft.etk.math.Quaternion;
import org.atriaSoft.etk.math.Transform3D;
import org.atriaSoft.etk.math.Vector3f;
import org.atriaSoft.gale.resource.ResourceColored3DObject;
import org.atriaSoft.gameEngine.sample.LoxelEngine.LoxelApplication;
public class PhysicBox extends PhysicShape {
// Box size property in X, Y and Z
private Vector3f size = new Vector3f(1,1,1);
private Vector3f size = new Vector3f(1, 1, 1);
public PhysicBox() {
super(PhysicShapeType.BOX);
}
public Vector3f getSize() {
return size;
}
public void setSize(Vector3f size) {
this.size = size;
}
@Override
public void updateAABB(Transform3D transformGlobal, PhysicCollisionAABB aabb) {
// store it, many time usefull...
this.transformGlobal = transformGlobal;
// TODO Auto-generated method stub
aabb.update(transformGlobal.multiply(this.transform.multiply(new Vector3f(this.size.x*0.5f,this.size.y*0.5f,this.size.z*0.5f))));
aabb.update(transformGlobal.multiply(this.transform.multiply(new Vector3f(-this.size.x*0.5f,this.size.y*0.5f,this.size.z*0.5f))));
aabb.update(transformGlobal.multiply(this.transform.multiply(new Vector3f(-this.size.x*0.5f,-this.size.y*0.5f,this.size.z*0.5f))));
aabb.update(transformGlobal.multiply(this.transform.multiply(new Vector3f(this.size.x*0.5f,-this.size.y*0.5f,this.size.z*0.5f))));
aabb.update(transformGlobal.multiply(this.transform.multiply(new Vector3f(this.size.x*0.5f,this.size.y*0.5f,-this.size.z*0.5f))));
aabb.update(transformGlobal.multiply(this.transform.multiply(new Vector3f(-this.size.x*0.5f,this.size.y*0.5f,-this.size.z*0.5f))));
aabb.update(transformGlobal.multiply(this.transform.multiply(new Vector3f(-this.size.x*0.5f,-this.size.y*0.5f,-this.size.z*0.5f))));
aabb.update(transformGlobal.multiply(this.transform.multiply(new Vector3f(this.size.x*0.5f,-this.size.y*0.5f,-this.size.z*0.5f))));
aabb.update(transformGlobal.multiply(this.transform.multiply(new Vector3f(this.size.x * 0.5f, this.size.y * 0.5f, this.size.z * 0.5f))));
aabb.update(transformGlobal.multiply(this.transform.multiply(new Vector3f(-this.size.x * 0.5f, this.size.y * 0.5f, this.size.z * 0.5f))));
aabb.update(transformGlobal.multiply(this.transform.multiply(new Vector3f(-this.size.x * 0.5f, -this.size.y * 0.5f, this.size.z * 0.5f))));
aabb.update(transformGlobal.multiply(this.transform.multiply(new Vector3f(this.size.x * 0.5f, -this.size.y * 0.5f, this.size.z * 0.5f))));
aabb.update(transformGlobal.multiply(this.transform.multiply(new Vector3f(this.size.x * 0.5f, this.size.y * 0.5f, -this.size.z * 0.5f))));
aabb.update(transformGlobal.multiply(this.transform.multiply(new Vector3f(-this.size.x * 0.5f, this.size.y * 0.5f, -this.size.z * 0.5f))));
aabb.update(transformGlobal.multiply(this.transform.multiply(new Vector3f(-this.size.x * 0.5f, -this.size.y * 0.5f, -this.size.z * 0.5f))));
aabb.update(transformGlobal.multiply(this.transform.multiply(new Vector3f(this.size.x * 0.5f, -this.size.y * 0.5f, -this.size.z * 0.5f))));
}
// only needed for the narrow phase calculation ...
public Vector3f narrowPhaseGlobalPos;
public Vector3f narrowPhaseAxisX = new Vector3f(1,0,0);
public Vector3f narrowPhaseAxisY = new Vector3f(1,0,0);
public Vector3f narrowPhaseAxisZ = new Vector3f(1,0,0);
public Vector3f narrowPhaseAxisX = new Vector3f(1, 0, 0);
public Vector3f narrowPhaseAxisY = new Vector3f(1, 0, 0);
public Vector3f narrowPhaseAxisZ = new Vector3f(1, 0, 0);
public Vector3f narrowPhaseHalfSize;
@Override
public void updateForNarrowCollision(Transform3D transformGlobal) {
this.narrowPhaseGlobalPos = transformGlobal.multiply(this.transform.multiply(new Vector3f(0,0,0)));
this.narrowPhaseAxisX = transformGlobal.multiply(this.transform.multiply(new Vector3f(1,0,0))).less(this.narrowPhaseGlobalPos);
this.narrowPhaseAxisY = transformGlobal.multiply(this.transform.multiply(new Vector3f(0,1,0))).less(this.narrowPhaseGlobalPos);
this.narrowPhaseAxisZ = transformGlobal.multiply(this.transform.multiply(new Vector3f(0,0,1))).less(this.narrowPhaseGlobalPos);
this.narrowPhaseGlobalPos = transformGlobal.multiply(this.transform.multiply(new Vector3f(0, 0, 0)));
this.narrowPhaseAxisX = transformGlobal.multiply(this.transform.multiply(new Vector3f(1, 0, 0))).less(this.narrowPhaseGlobalPos);
this.narrowPhaseAxisY = transformGlobal.multiply(this.transform.multiply(new Vector3f(0, 1, 0))).less(this.narrowPhaseGlobalPos);
this.narrowPhaseAxisZ = transformGlobal.multiply(this.transform.multiply(new Vector3f(0, 0, 1))).less(this.narrowPhaseGlobalPos);
this.narrowPhaseHalfSize = this.size.multiply_new(0.5f);
}
private void renderPoint(Vector3f subPosition, Transform3D transformGlobal, ResourceColored3DObject debugDrawProperty) {
Matrix4f transformation = transformGlobal.getOpenGLMatrix().multiply_new(this.transform.getOpenGLMatrix()).multiply(Matrix4f.createMatrixTranslate(subPosition));
debugDrawProperty.drawSquare(new Vector3f(0.1f,0.1f,0.1f), transformation, new Color(0,0,1,1));
debugDrawProperty.drawSquare(new Vector3f(0.1f, 0.1f, 0.1f), transformation, new Color(0, 0, 1, 1));
}
private void renderPoint2(Vector3f subPosition, Transform3D transformGlobal, ResourceColored3DObject debugDrawProperty) {
Matrix4f transformation = transformGlobal.getOpenGLMatrix().multiply_new(this.transform.getOpenGLMatrix()).multiply(Matrix4f.createMatrixTranslate(subPosition));
debugDrawProperty.drawSquare(new Vector3f(0.05f,0.05f,0.05f), transformation, new Color(0,1,0,1));
debugDrawProperty.drawSquare(new Vector3f(0.05f, 0.05f, 0.05f), transformation, new Color(0, 1, 0, 1));
}
private void renderPoint3(Vector3f subPosition, Transform3D transformGlobal, ResourceColored3DObject debugDrawProperty) {
Matrix4f transformation = transformGlobal.getOpenGLMatrix().multiply_new(this.transform.getOpenGLMatrix()).multiply(Matrix4f.createMatrixTranslate(subPosition));
debugDrawProperty.drawSquare(new Vector3f(0.05f,0.05f,0.05f), transformation, new Color(1,1,0,1));
debugDrawProperty.drawSquare(new Vector3f(0.05f, 0.05f, 0.05f), transformation, new Color(1, 1, 0, 1));
}
private void renderPoint4(Vector3f subPosition, ResourceColored3DObject debugDrawProperty) {
debugDrawProperty.drawSquare(new Vector3f(0.1f, 0.1f, 0.1f), Matrix4f.identity().multiply(Matrix4f.createMatrixTranslate(subPosition)), new Color(1, 0, 0, 1));
}
@Override
public void renderDebug(Transform3D transformGlobal, ResourceColored3DObject debugDrawProperty) {
debugDrawProperty.drawSquare(this.size.multiply_new(0.5f), this.transform.getOpenGLMatrix().multiply_new(transformGlobal.getOpenGLMatrix()), new Color(0,1,0,0.25f));
debugDrawProperty.drawSquare(this.size.multiply_new(0.5f), this.transform.getOpenGLMatrix().multiply_new(transformGlobal.getOpenGLMatrix()), new Color(0, 1, 0, 0.25f));
Vector3f dimention = this.size.multiply_new(0.5f);
renderPoint2(new Vector3f(+dimention.x, +dimention.y, +dimention.z), transformGlobal, debugDrawProperty);
renderPoint(new Vector3f(-dimention.x, +dimention.y, +dimention.z), transformGlobal, debugDrawProperty);
@ -76,5 +88,10 @@ public class PhysicBox extends PhysicShape {
renderPoint(new Vector3f(-dimention.x, +dimention.y, -dimention.z), transformGlobal, debugDrawProperty);
renderPoint(new Vector3f(+dimention.x, -dimention.y, -dimention.z), transformGlobal, debugDrawProperty);
renderPoint3(new Vector3f(-dimention.x, -dimention.y, -dimention.z), transformGlobal, debugDrawProperty);
if (this.colisionPointTest != null) {
for (int iii = 0; iii < this.colisionPointTest.length; iii++) {
renderPoint4(this.colisionPointTest[iii].position, debugDrawProperty);
}
}
}
}

View File

@ -6,8 +6,9 @@ import org.atriaSoft.etk.math.Vector3f;
import org.atriaSoft.gale.resource.ResourceColored3DObject;
public abstract class PhysicShape {
// protected Quaternion quaternion;
// protected Vector3f origin;
public ColisionPoints[] colisionPointTest;
// protected Quaternion quaternion;
// protected Vector3f origin;
protected Transform3D transform;
protected Transform3D transformGlobal;
protected float mass = 0;
@ -16,55 +17,71 @@ public abstract class PhysicShape {
public PhysicShape(PhysicShapeType type) {
this.type = type;
this.transform = new Transform3D();
// this.quaternion = Quaternion.identity();
// this.origin = Vector3f.zero();
// this.quaternion = Quaternion.identity();
// this.origin = Vector3f.zero();
this.mass = 0;
}
public PhysicShape(PhysicShapeType type, Quaternion quaternion, Vector3f origin, float mass) {
this.type = type;
this.transform = new Transform3D(origin, quaternion);
// this.quaternion = quaternion;
// this.origin = origin;
// this.quaternion = quaternion;
// this.origin = origin;
this.mass = mass;
}
public Quaternion getQuaternionFull() {
return transformGlobal.getOrientation().multiply_new(transform.getOrientation());
}
public Quaternion getQuaternion() {
return transform.getOrientation();
}
public void setQuaternion(Quaternion quaternion) {
this.transform.setOrientation(quaternion);
}
public Vector3f getOrigin() {
return this.transform.getPosition();
}
public void setOrigin(Vector3f origin) {
this.transform.setPosition(origin);
}
public Transform3D getTransform() {
return transform;
}
public void setTransform(Transform3D transform) {
this.transform = transform;
}
public Transform3D getTransformGlobal() {
return transformGlobal;
}
public void setTransformGlobal(Transform3D transform) {
this.transformGlobal = transform;
}
public float getMass() {
return mass;
}
public void setMass(float mass) {
this.mass = mass;
}
public PhysicShapeType getType() {
return type;
}
public abstract void updateAABB(Transform3D transform, PhysicCollisionAABB aabb);
public abstract void updateForNarrowCollision(Transform3D transform);
public abstract void renderDebug(Transform3D transform, ResourceColored3DObject debugDrawProperty);
}

View File

@ -1,222 +1,182 @@
package org.atriaSoft.gameEngine.physics;
import org.atriaSoft.etk.math.Matrix4f;
import org.atriaSoft.etk.math.Quaternion;
import org.atriaSoft.etk.math.Vector3f;
import org.atriaSoft.gale.test.sample2.Log;
import org.atriaSoft.gameEngine.sample.LoxelEngine.LoxelApplication;
// set the relevant elements of our oriented bounding box
class OBB
{
public Vector3f Pos, AxisX, AxisY, AxisZ, Half_size;
class OBB {
public Vector3f position;
public Vector3f axisX;
public Vector3f axisY;
public Vector3f axisZ;
public Vector3f halfSize;
public OBB() {
Pos = new Vector3f();
AxisX = new Vector3f();
AxisY = new Vector3f();
AxisZ = new Vector3f();
Half_size = new Vector3f();
position = new Vector3f();
axisX = new Vector3f();
axisY = new Vector3f();
axisZ = new Vector3f();
halfSize = new Vector3f();
}
};
public class ToolCollisionOBBWithOBB {
private ToolCollisionOBBWithOBB() {}
// check if there's a separating plane in between the selected axes
private static boolean getSeparatingPlane(Vector3f RPos, Vector3f Plane, OBB box1, OBB box2) {
return (Math.abs(RPos.dot(Plane)) >
(Math.abs(box1.AxisX.multiply_new(box1.Half_size.x).dot(Plane)) +
Math.abs(box1.AxisY.multiply_new(box1.Half_size.y).dot(Plane)) +
Math.abs(box1.AxisZ.multiply_new(box1.Half_size.z).dot(Plane)) +
Math.abs(box2.AxisX.multiply_new(box2.Half_size.x).dot(Plane)) +
Math.abs(box2.AxisY.multiply_new(box2.Half_size.y).dot(Plane)) +
Math.abs(box2.AxisZ.multiply_new(box2.Half_size.z).dot(Plane))
)
);
private static boolean getSeparatingPlane(Vector3f rPos, Vector3f plane, OBB box1, OBB box2) {
return (Math.abs(rPos.dot(plane)) > (Math.abs(box1.axisX.multiply_new(box1.halfSize.x).dot(plane)) + Math.abs(box1.axisY.multiply_new(box1.halfSize.y).dot(plane))
+ Math.abs(box1.axisZ.multiply_new(box1.halfSize.z).dot(plane)) + Math.abs(box2.axisX.multiply_new(box2.halfSize.x).dot(plane))
+ Math.abs(box2.axisY.multiply_new(box2.halfSize.y).dot(plane)) + Math.abs(box2.axisZ.multiply_new(box2.halfSize.z).dot(plane))));
}
// test for separating planes in all 15 axes
private static boolean getCollision(OBB box1, OBB box2) {
Vector3f RPos = box2.Pos.less_new(box1.Pos);
boolean ret =
getSeparatingPlane(RPos, box1.AxisX, box1, box2) ||
getSeparatingPlane(RPos, box1.AxisY, box1, box2) ||
getSeparatingPlane(RPos, box1.AxisZ, box1, box2) ||
getSeparatingPlane(RPos, box2.AxisX, box1, box2) ||
getSeparatingPlane(RPos, box2.AxisY, box1, box2) ||
getSeparatingPlane(RPos, box2.AxisZ, box1, box2) ||
getSeparatingPlane(RPos, box1.AxisX.cross(box2.AxisX), box1, box2) ||
getSeparatingPlane(RPos, box1.AxisX.cross(box2.AxisY), box1, box2) ||
getSeparatingPlane(RPos, box1.AxisX.cross(box2.AxisZ), box1, box2) ||
getSeparatingPlane(RPos, box1.AxisY.cross(box2.AxisX), box1, box2) ||
getSeparatingPlane(RPos, box1.AxisY.cross(box2.AxisY), box1, box2) ||
getSeparatingPlane(RPos, box1.AxisY.cross(box2.AxisZ), box1, box2) ||
getSeparatingPlane(RPos, box1.AxisZ.cross(box2.AxisX), box1, box2) ||
getSeparatingPlane(RPos, box1.AxisZ.cross(box2.AxisY), box1, box2) ||
getSeparatingPlane(RPos, box1.AxisZ.cross(box2.AxisZ), box1, box2);
return ! ret;
Vector3f rPos = box2.position.less_new(box1.position);
boolean ret = getSeparatingPlane(rPos, box1.axisX, box1, box2) || getSeparatingPlane(rPos, box1.axisY, box1, box2) || getSeparatingPlane(rPos, box1.axisZ, box1, box2)
|| getSeparatingPlane(rPos, box2.axisX, box1, box2) || getSeparatingPlane(rPos, box2.axisY, box1, box2) || getSeparatingPlane(rPos, box2.axisZ, box1, box2)
|| getSeparatingPlane(rPos, box1.axisX.cross(box2.axisX), box1, box2) || getSeparatingPlane(rPos, box1.axisX.cross(box2.axisY), box1, box2)
|| getSeparatingPlane(rPos, box1.axisX.cross(box2.axisZ), box1, box2) || getSeparatingPlane(rPos, box1.axisY.cross(box2.axisX), box1, box2)
|| getSeparatingPlane(rPos, box1.axisY.cross(box2.axisY), box1, box2) || getSeparatingPlane(rPos, box1.axisY.cross(box2.axisZ), box1, box2)
|| getSeparatingPlane(rPos, box1.axisZ.cross(box2.axisX), box1, box2) || getSeparatingPlane(rPos, box1.axisZ.cross(box2.axisY), box1, box2)
|| getSeparatingPlane(rPos, box1.axisZ.cross(box2.axisZ), box1, box2);
return !ret;
}
// a quick test to see the code working
public static void main(String[] args) {
// create two obbs
OBB A = new OBB();
OBB B = new OBB();
OBB aaa = new OBB();
OBB bbb = new OBB();
// set the first obb's properties
A.Pos = new Vector3f(0.0f, 0.0f, 0.0f); // set its center position
aaa.position = new Vector3f(0.0f, 0.0f, 0.0f); // set its center position
// set the half size
A.Half_size = new Vector3f(10.0f, 1.0f, 1.0f);
aaa.halfSize = new Vector3f(10.0f, 1.0f, 1.0f);
// set the axes orientation
A.AxisX = new Vector3f(1.0f, 0.0f, 0.0f);
A.AxisY = new Vector3f(0.0f, 1.0f, 0.0f);
A.AxisZ = new Vector3f(0.0f, 0.0f, 1.0f);
aaa.axisX = new Vector3f(1.0f, 0.0f, 0.0f);
aaa.axisY = new Vector3f(0.0f, 1.0f, 0.0f);
aaa.axisZ = new Vector3f(0.0f, 0.0f, 1.0f);
// set the second obb's properties
B.Pos = new Vector3f(20.0f, 0.0f, 0.0f); // set its center position
bbb.position = new Vector3f(20.0f, 0.0f, 0.0f); // set its center position
// set the half size
B.Half_size = new Vector3f(10.0f, 1.0f, 1.0f);
bbb.halfSize = new Vector3f(10.0f, 1.0f, 1.0f);
// set the axes orientation
B.AxisX = new Vector3f(1.0f, 0.0f, 0.0f);
B.AxisY = new Vector3f(0.0f, 1.0f, 0.0f);
B.AxisZ = new Vector3f(0.0f, 0.0f, 1.0f);
bbb.axisX = new Vector3f(1.0f, 0.0f, 0.0f);
bbb.axisY = new Vector3f(0.0f, 1.0f, 0.0f);
bbb.axisZ = new Vector3f(0.0f, 0.0f, 1.0f);
// run the code and get the result as a message
if (getCollision(A, B) == true) {
if (getCollision(aaa, bbb)) {
Log.info("Collision!!!");
} else {
Log.info("NO Collision!!!");
}
}
// check if there's a separating plane in between the selected axes
private static boolean getSeparatingPlane222(Vector3f RPos, Vector3f Plane, PhysicBox box1, PhysicBox box2) {
return (Math.abs(RPos.dot(Plane)) >
(Math.abs(box1.narrowPhaseAxisX.multiply_new(box1.narrowPhaseHalfSize.x).dot(Plane)) +
Math.abs(box1.narrowPhaseAxisY.multiply_new(box1.narrowPhaseHalfSize.y).dot(Plane)) +
Math.abs(box1.narrowPhaseAxisZ.multiply_new(box1.narrowPhaseHalfSize.z).dot(Plane)) +
Math.abs(box2.narrowPhaseAxisX.multiply_new(box2.narrowPhaseHalfSize.x).dot(Plane)) +
Math.abs(box2.narrowPhaseAxisY.multiply_new(box2.narrowPhaseHalfSize.y).dot(Plane)) +
Math.abs(box2.narrowPhaseAxisZ.multiply_new(box2.narrowPhaseHalfSize.z).dot(Plane))
)
);
private static boolean getSeparatingPlane222(Vector3f rPos, Vector3f plane, PhysicBox box1, PhysicBox box2) {
return (Math.abs(rPos.dot(plane)) > (Math.abs(box1.narrowPhaseAxisX.multiply_new(box1.narrowPhaseHalfSize.x).dot(plane))
+ Math.abs(box1.narrowPhaseAxisY.multiply_new(box1.narrowPhaseHalfSize.y).dot(plane)) + Math.abs(box1.narrowPhaseAxisZ.multiply_new(box1.narrowPhaseHalfSize.z).dot(plane))
+ Math.abs(box2.narrowPhaseAxisX.multiply_new(box2.narrowPhaseHalfSize.x).dot(plane)) + Math.abs(box2.narrowPhaseAxisY.multiply_new(box2.narrowPhaseHalfSize.y).dot(plane))
+ Math.abs(box2.narrowPhaseAxisZ.multiply_new(box2.narrowPhaseHalfSize.z).dot(plane))));
}
public static boolean testCollide(PhysicBox box1, PhysicBox box2) {
Vector3f RPos = box2.narrowPhaseGlobalPos.less_new(box1.narrowPhaseGlobalPos);
boolean ret =
getSeparatingPlane222(RPos, box1.narrowPhaseAxisX, box1, box2) ||
getSeparatingPlane222(RPos, box1.narrowPhaseAxisY, box1, box2) ||
getSeparatingPlane222(RPos, box1.narrowPhaseAxisZ, box1, box2) ||
getSeparatingPlane222(RPos, box2.narrowPhaseAxisX, box1, box2) ||
getSeparatingPlane222(RPos, box2.narrowPhaseAxisY, box1, box2) ||
getSeparatingPlane222(RPos, box2.narrowPhaseAxisZ, box1, box2) ||
getSeparatingPlane222(RPos, box1.narrowPhaseAxisX.cross(box2.narrowPhaseAxisX), box1, box2) ||
getSeparatingPlane222(RPos, box1.narrowPhaseAxisX.cross(box2.narrowPhaseAxisY), box1, box2) ||
getSeparatingPlane222(RPos, box1.narrowPhaseAxisX.cross(box2.narrowPhaseAxisZ), box1, box2) ||
getSeparatingPlane222(RPos, box1.narrowPhaseAxisY.cross(box2.narrowPhaseAxisX), box1, box2) ||
getSeparatingPlane222(RPos, box1.narrowPhaseAxisY.cross(box2.narrowPhaseAxisY), box1, box2) ||
getSeparatingPlane222(RPos, box1.narrowPhaseAxisY.cross(box2.narrowPhaseAxisZ), box1, box2) ||
getSeparatingPlane222(RPos, box1.narrowPhaseAxisZ.cross(box2.narrowPhaseAxisX), box1, box2) ||
getSeparatingPlane222(RPos, box1.narrowPhaseAxisZ.cross(box2.narrowPhaseAxisY), box1, box2) ||
getSeparatingPlane222(RPos, box1.narrowPhaseAxisZ.cross(box2.narrowPhaseAxisZ), box1, box2);
return ! ret;
Vector3f rPos = box2.narrowPhaseGlobalPos.less_new(box1.narrowPhaseGlobalPos);
boolean ret = getSeparatingPlane222(rPos, box1.narrowPhaseAxisX, box1, box2) || getSeparatingPlane222(rPos, box1.narrowPhaseAxisY, box1, box2)
|| getSeparatingPlane222(rPos, box1.narrowPhaseAxisZ, box1, box2) || getSeparatingPlane222(rPos, box2.narrowPhaseAxisX, box1, box2)
|| getSeparatingPlane222(rPos, box2.narrowPhaseAxisY, box1, box2) || getSeparatingPlane222(rPos, box2.narrowPhaseAxisZ, box1, box2)
|| getSeparatingPlane222(rPos, box1.narrowPhaseAxisX.cross(box2.narrowPhaseAxisX), box1, box2)
|| getSeparatingPlane222(rPos, box1.narrowPhaseAxisX.cross(box2.narrowPhaseAxisY), box1, box2)
|| getSeparatingPlane222(rPos, box1.narrowPhaseAxisX.cross(box2.narrowPhaseAxisZ), box1, box2)
|| getSeparatingPlane222(rPos, box1.narrowPhaseAxisY.cross(box2.narrowPhaseAxisX), box1, box2)
|| getSeparatingPlane222(rPos, box1.narrowPhaseAxisY.cross(box2.narrowPhaseAxisY), box1, box2)
|| getSeparatingPlane222(rPos, box1.narrowPhaseAxisY.cross(box2.narrowPhaseAxisZ), box1, box2)
|| getSeparatingPlane222(rPos, box1.narrowPhaseAxisZ.cross(box2.narrowPhaseAxisX), box1, box2)
|| getSeparatingPlane222(rPos, box1.narrowPhaseAxisZ.cross(box2.narrowPhaseAxisY), box1, box2)
|| getSeparatingPlane222(rPos, box1.narrowPhaseAxisZ.cross(box2.narrowPhaseAxisZ), box1, box2);
return !ret;
}
public static void getCollidePoints(PhysicBox box1, PhysicBox box2) {
//Log.info("Try to calculare reverse force ........");
Vector3f RPos1 = box1.narrowPhaseGlobalPos.less_new(box2.narrowPhaseGlobalPos);
Vector3f RPos2 = box2.narrowPhaseGlobalPos.less_new(box1.narrowPhaseGlobalPos);
// Log.info("Try to calculare reverse force ........");
Vector3f rPos1 = box1.narrowPhaseGlobalPos.less_new(box2.narrowPhaseGlobalPos);
Vector3f rPos2 = box2.narrowPhaseGlobalPos.less_new(box1.narrowPhaseGlobalPos);
Quaternion quat1 = box1.getQuaternionFull();
Quaternion quat2 = box2.getQuaternionFull();
// Step 1: set the Box 2 in the repere of the Box 1:
Quaternion quatTransfer1 = Quaternion.diff(quat1, quat2);
Quaternion quatTransfer2 = Quaternion.diff(quat2, quat1);
//quatTransfer.normalize();
// quatTransfer.normalize();
//LoxelApplication.relativeTest = quatTransfer;
//Vector3f tmp = RPos.add_new(new Vector3f(0,0,14));
// LoxelApplication.relativeTestPos.getTransform().setPosition(tmp);
// LoxelApplication.relativeTestPos.getTransform().setOrientation(quatTransfer);
// LoxelApplication.boxTest.setSize(box1.getSize());
//Log.info("" + RPos + quatTransfer1);
// /*res = */getCollidePointsAABBCenteredWithOBB(box1.narrowPhaseHalfSize, box2.narrowPhaseHalfSize, quatTransfer, RPos);
/* res = trenasfert in generic plan the new res ...*/
// LoxelApplication.relativeTest = quatTransfer;
// Vector3f tmp = rPos.add_new(new Vector3f(0,0,14));
// LoxelApplication.relativeTestPos.getTransform().setPosition(tmp);
// LoxelApplication.relativeTestPos.getTransform().setOrientation(quatTransfer);
// LoxelApplication.boxTest.setSize(box1.getSize());
// Log.info("" + rPos + quatTransfer1);
// /*res = */getCollidePointsAABBCenteredWithOBB(box1.narrowPhaseHalfSize, box2.narrowPhaseHalfSize, quatTransfer, rPos);
/* res = trenasfert in generic plan the new res ... */
// test origin AABB with OBB collision
// Step 2: set the Box 1 in the repere of the Box 2:
// test origin AABB with OBB collision
//tmp = RPos.add_new(new Vector3f(0,0,14));
LoxelApplication.testRpos = quat2.inverse_new().getMatrix4().multiply(RPos1);
// tmp = rPos.add_new(new Vector3f(0,0,14));
LoxelApplication.testRpos = quat2.inverse_new().getMatrix4().multiply(rPos1);
LoxelApplication.testQTransfert = quatTransfer2;
LoxelApplication.box1HalfSize = box2.narrowPhaseHalfSize;
LoxelApplication.box2HalfSize = box1.narrowPhaseHalfSize;
// LoxelApplication.relativeTestPos.getTransform().setPosition(tmp);
// LoxelApplication.relativeTestPos.getTransform().setOrientation(quatTransfer);
// LoxelApplication.boxTest.setSize(box1.getSize());
// LoxelApplication.relativeTestPos.getTransform().setPosition(tmp);
// LoxelApplication.relativeTestPos.getTransform().setOrientation(quatTransfer);
// LoxelApplication.boxTest.setSize(box1.getSize());
// foinctionne avec la box qui n'est pas orienter...
//getCollidePointsAABBCenteredWithOBB(box2.narrowPhaseHalfSize, box1.narrowPhaseHalfSize, quatTransfer2, RPos1);
// getCollidePointsAABBCenteredWithOBB(box2.narrowPhaseHalfSize, box1.narrowPhaseHalfSize, quatTransfer2, rPos1);
// fonctionne quand le block est trourner de 90% petit pb de positionnement en hauteur....
//getCollidePointsAABBCenteredWithOBB(box2.narrowPhaseHalfSize, box1.narrowPhaseHalfSize, quatTransfer2, quat2.multiply(RPos2));
/*res = */getCollidePointsAABBCenteredWithOBB(box2.narrowPhaseHalfSize, box1.narrowPhaseHalfSize, quatTransfer2, quat2.inverse_new().getMatrix4().multiply(RPos1));
/* res = trenasfert in generic plan the new res ...*/
// getCollidePointsAABBCenteredWithOBB(box2.narrowPhaseHalfSize, box1.narrowPhaseHalfSize, quatTransfer2, quat2.multiply(rPos2));
ColisionPoints[] collide1 = getCollidePointsAABBCenteredWithOBB(box2.narrowPhaseHalfSize, box1.narrowPhaseHalfSize, quatTransfer2, quat2.inverse_new().getMatrix4().multiply(rPos1));
box1.colisionPointTest = collide1;
// transfer detection point collision in global environement:
if (collide1 != null) {
for (int iii = 0; iii < collide1.length; iii++) {
collide1[iii].position = quat1.multiply(collide1[iii].position).add(box1.narrowPhaseGlobalPos);
}
}
/* res = trenasfert in generic plan the new res ... */
LoxelApplication.testRpos = quat1.inverse_new().getMatrix4().multiply(rPos2);
LoxelApplication.testQTransfert = quatTransfer1;
LoxelApplication.box1HalfSize = box1.narrowPhaseHalfSize;
LoxelApplication.box2HalfSize = box2.narrowPhaseHalfSize;
ColisionPoints[] collide2 = getCollidePointsAABBCenteredWithOBB(box1.narrowPhaseHalfSize, box2.narrowPhaseHalfSize, quatTransfer1, quat1.inverse_new().getMatrix4().multiply(rPos2));
box2.colisionPointTest = collide2;
if (collide2 != null) {
for (int iii = 0; iii < collide2.length; iii++) {
collide2[iii].position = quat2.multiply(collide2[iii].position).add(box2.narrowPhaseGlobalPos);
}
}
}
public static void getCollidePointsAABBCenteredWithOBB(Vector3f box1HalfSize, Vector3f box2HalfSize, Quaternion box2Orientation, Vector3f box2Position) {
public static ColisionPoints[] getCollidePointsAABBCenteredWithOBB(Vector3f box1HalfSize, Vector3f box2HalfSize, Quaternion box2Orientation, Vector3f box2Position) {
// point in AABB
// toune autour de la box ...
// Matrix4f tmp = box2Orientation.getMatrix4();
// Vector3f topBackRight = tmp.multiply_new(Matrix4f.createMatrixTranslate(new Vector3f(+ box2HalfSize.x, + box2HalfSize.y, + box2HalfSize.z))).multiply(box2Position);
// Vector3f topBackLeft = tmp.multiply_new(Matrix4f.createMatrixTranslate(new Vector3f(- box2HalfSize.x, + box2HalfSize.y, + box2HalfSize.z))).multiply(box2Position);
// Vector3f topFrontRight = tmp.multiply_new(Matrix4f.createMatrixTranslate(new Vector3f(+ box2HalfSize.x, - box2HalfSize.y, + box2HalfSize.z))).multiply(box2Position);
// Vector3f topFrontLeft = tmp.multiply_new(Matrix4f.createMatrixTranslate(new Vector3f(- box2HalfSize.x, - box2HalfSize.y, + box2HalfSize.z))).multiply(box2Position);
// Vector3f bottomBackRight = tmp.multiply_new(Matrix4f.createMatrixTranslate(new Vector3f(+ box2HalfSize.x, + box2HalfSize.y, - box2HalfSize.z))).multiply(box2Position);
// Vector3f bottomBackLeft = tmp.multiply_new(Matrix4f.createMatrixTranslate(new Vector3f(- box2HalfSize.x, + box2HalfSize.y, - box2HalfSize.z))).multiply(box2Position);
// Vector3f bottomFrontRight = tmp.multiply_new(Matrix4f.createMatrixTranslate(new Vector3f(+ box2HalfSize.x, - box2HalfSize.y, - box2HalfSize.z))).multiply(box2Position);
// Vector3f bottomFrontLeft = tmp.multiply_new(Matrix4f.createMatrixTranslate(new Vector3f(- box2HalfSize.x, - box2HalfSize.y, - box2HalfSize.z))).multiply(box2Position);
// toune autour de la box ...
// Matrix4f tmp = box2Orientation.getMatrix4().multiply(Matrix4f.createMatrixTranslate(box2Position));
// Vector3f topBackRight = tmp.multiply(new Vector3f(+ box2HalfSize.x, + box2HalfSize.y, + box2HalfSize.z));
// Vector3f topBackLeft = tmp.multiply(new Vector3f(- box2HalfSize.x, + box2HalfSize.y, + box2HalfSize.z));
// Vector3f topFrontRight = tmp.multiply(new Vector3f(+ box2HalfSize.x, - box2HalfSize.y, + box2HalfSize.z));
// Vector3f topFrontLeft = tmp.multiply(new Vector3f(- box2HalfSize.x, - box2HalfSize.y, + box2HalfSize.z));
// Vector3f bottomBackRight = tmp.multiply(new Vector3f(+ box2HalfSize.x, + box2HalfSize.y, - box2HalfSize.z));
// Vector3f bottomBackLeft = tmp.multiply(new Vector3f(- box2HalfSize.x, + box2HalfSize.y, - box2HalfSize.z));
// Vector3f bottomFrontRight = tmp.multiply(new Vector3f(+ box2HalfSize.x, - box2HalfSize.y, - box2HalfSize.z));
// Vector3f bottomFrontLeft = tmp.multiply(new Vector3f(- box2HalfSize.x, - box2HalfSize.y, - box2HalfSize.z));
// Matrix4f tmp = Matrix4f.createMatrixTranslate(box2Position).multiply(box2Orientation.getMatrix4());
// Vector3f topBackRight = tmp.multiply(new Vector3f(+ box2HalfSize.x, + box2HalfSize.y, + box2HalfSize.z));
// Vector3f topBackLeft = tmp.multiply(new Vector3f(- box2HalfSize.x, + box2HalfSize.y, + box2HalfSize.z));
// Vector3f topFrontRight = tmp.multiply(new Vector3f(+ box2HalfSize.x, - box2HalfSize.y, + box2HalfSize.z));
// Vector3f topFrontLeft = tmp.multiply(new Vector3f(- box2HalfSize.x, - box2HalfSize.y, + box2HalfSize.z));
// Vector3f bottomBackRight = tmp.multiply(new Vector3f(+ box2HalfSize.x, + box2HalfSize.y, - box2HalfSize.z));
// Vector3f bottomBackLeft = tmp.multiply(new Vector3f(- box2HalfSize.x, + box2HalfSize.y, - box2HalfSize.z));
// Vector3f bottomFrontRight = tmp.multiply(new Vector3f(+ box2HalfSize.x, - box2HalfSize.y, - box2HalfSize.z));
// Vector3f bottomFrontLeft = tmp.multiply(new Vector3f(- box2HalfSize.x, - box2HalfSize.y, - box2HalfSize.z));
// Vector3f topBackRight = box2Orientation.multiply(new Vector3f(box2Position.x + box2HalfSize.x, box2Position.y + box2HalfSize.y, box2Position.z + box2HalfSize.z));
// Vector3f topBackLeft = box2Orientation.multiply(new Vector3f(box2Position.x - box2HalfSize.x, box2Position.y + box2HalfSize.y, box2Position.z + box2HalfSize.z));
// Vector3f topFrontRight = box2Orientation.multiply(new Vector3f(box2Position.x + box2HalfSize.x, box2Position.y - box2HalfSize.y, box2Position.z + box2HalfSize.z));
// Vector3f topFrontLeft = box2Orientation.multiply(new Vector3f(box2Position.x - box2HalfSize.x, box2Position.y - box2HalfSize.y, box2Position.z + box2HalfSize.z));
// Vector3f bottomBackRight = box2Orientation.multiply(new Vector3f(box2Position.x + box2HalfSize.x, box2Position.y + box2HalfSize.y, box2Position.z - box2HalfSize.z));
// Vector3f bottomBackLeft = box2Orientation.multiply(new Vector3f(box2Position.x - box2HalfSize.x, box2Position.y + box2HalfSize.y, box2Position.z - box2HalfSize.z));
// Vector3f bottomFrontRight = box2Orientation.multiply(new Vector3f(box2Position.x + box2HalfSize.x, box2Position.y - box2HalfSize.y, box2Position.z - box2HalfSize.z));
// Vector3f bottomFrontLeft = box2Orientation.multiply(new Vector3f(box2Position.x - box2HalfSize.x, box2Position.y - box2HalfSize.y, box2Position.z - box2HalfSize.z));
Vector3f topBackRight = box2Orientation.multiply(new Vector3f(+ box2HalfSize.x, + box2HalfSize.y, + box2HalfSize.z)).add(box2Position);
Vector3f topBackLeft = box2Orientation.multiply(new Vector3f(- box2HalfSize.x, + box2HalfSize.y, + box2HalfSize.z)).add(box2Position);
Vector3f topFrontRight = box2Orientation.multiply(new Vector3f(+ box2HalfSize.x, - box2HalfSize.y, + box2HalfSize.z)).add(box2Position);
Vector3f topFrontLeft = box2Orientation.multiply(new Vector3f(- box2HalfSize.x, - box2HalfSize.y, + box2HalfSize.z)).add(box2Position);
Vector3f bottomBackRight = box2Orientation.multiply(new Vector3f(+ box2HalfSize.x, + box2HalfSize.y, - box2HalfSize.z)).add(box2Position);
Vector3f bottomBackLeft = box2Orientation.multiply(new Vector3f(- box2HalfSize.x, + box2HalfSize.y, - box2HalfSize.z)).add(box2Position);
Vector3f bottomFrontRight = box2Orientation.multiply(new Vector3f(+ box2HalfSize.x, - box2HalfSize.y, - box2HalfSize.z)).add(box2Position);
Vector3f bottomFrontLeft = box2Orientation.multiply(new Vector3f(- box2HalfSize.x, - box2HalfSize.y, - box2HalfSize.z)).add(box2Position);
Vector3f topBackRight = box2Orientation.multiply(new Vector3f(+box2HalfSize.x, +box2HalfSize.y, +box2HalfSize.z)).add(box2Position);
Vector3f topBackLeft = box2Orientation.multiply(new Vector3f(-box2HalfSize.x, +box2HalfSize.y, +box2HalfSize.z)).add(box2Position);
Vector3f topFrontRight = box2Orientation.multiply(new Vector3f(+box2HalfSize.x, -box2HalfSize.y, +box2HalfSize.z)).add(box2Position);
Vector3f topFrontLeft = box2Orientation.multiply(new Vector3f(-box2HalfSize.x, -box2HalfSize.y, +box2HalfSize.z)).add(box2Position);
Vector3f bottomBackRight = box2Orientation.multiply(new Vector3f(+box2HalfSize.x, +box2HalfSize.y, -box2HalfSize.z)).add(box2Position);
Vector3f bottomBackLeft = box2Orientation.multiply(new Vector3f(-box2HalfSize.x, +box2HalfSize.y, -box2HalfSize.z)).add(box2Position);
Vector3f bottomFrontRight = box2Orientation.multiply(new Vector3f(+box2HalfSize.x, -box2HalfSize.y, -box2HalfSize.z)).add(box2Position);
Vector3f bottomFrontLeft = box2Orientation.multiply(new Vector3f(-box2HalfSize.x, -box2HalfSize.y, -box2HalfSize.z)).add(box2Position);
LoxelApplication.testPoints.clear();
LoxelApplication.testPoints.add(topBackRight);
LoxelApplication.testPoints.add(topBackLeft);
@ -227,56 +187,165 @@ public class ToolCollisionOBBWithOBB {
LoxelApplication.testPoints.add(bottomFrontRight);
LoxelApplication.testPoints.add(bottomFrontLeft);
LoxelApplication.testPointsBox.clear();
LoxelApplication.testPointsBox.add(new Vector3f(+ box1HalfSize.x, + box1HalfSize.y, + box1HalfSize.z));
LoxelApplication.testPointsBox.add(new Vector3f(- box1HalfSize.x, + box1HalfSize.y, + box1HalfSize.z));
LoxelApplication.testPointsBox.add(new Vector3f(+ box1HalfSize.x, - box1HalfSize.y, + box1HalfSize.z));
LoxelApplication.testPointsBox.add(new Vector3f(- box1HalfSize.x, - box1HalfSize.y, + box1HalfSize.z));
LoxelApplication.testPointsBox.add(new Vector3f(+ box1HalfSize.x, + box1HalfSize.y, - box1HalfSize.z));
LoxelApplication.testPointsBox.add(new Vector3f(- box1HalfSize.x, + box1HalfSize.y, - box1HalfSize.z));
LoxelApplication.testPointsBox.add(new Vector3f(+ box1HalfSize.x, - box1HalfSize.y, - box1HalfSize.z));
LoxelApplication.testPointsBox.add(new Vector3f(- box1HalfSize.x, - box1HalfSize.y, - box1HalfSize.z));
boolean insideTopBackRight = pointInAABB(box1HalfSize, topBackRight);
boolean insideTopBackLeft = pointInAABB(box1HalfSize, topBackLeft);
boolean insideTopFrontRight = pointInAABB(box1HalfSize, topFrontRight);
boolean insideTopFrontLeft = pointInAABB(box1HalfSize, topFrontLeft);
boolean insideBottomBackRight = pointInAABB(box1HalfSize, bottomBackRight);
boolean insideBottomBackLeft = pointInAABB(box1HalfSize, bottomBackLeft);
boolean insideBottomFrontRight = pointInAABB(box1HalfSize, bottomFrontRight);
boolean insideBottomFrontLeft = pointInAABB(box1HalfSize, bottomFrontLeft);
LoxelApplication.testPointsBox.add(new Vector3f(+box1HalfSize.x, +box1HalfSize.y, +box1HalfSize.z));
LoxelApplication.testPointsBox.add(new Vector3f(-box1HalfSize.x, +box1HalfSize.y, +box1HalfSize.z));
LoxelApplication.testPointsBox.add(new Vector3f(+box1HalfSize.x, -box1HalfSize.y, +box1HalfSize.z));
LoxelApplication.testPointsBox.add(new Vector3f(-box1HalfSize.x, -box1HalfSize.y, +box1HalfSize.z));
LoxelApplication.testPointsBox.add(new Vector3f(+box1HalfSize.x, +box1HalfSize.y, -box1HalfSize.z));
LoxelApplication.testPointsBox.add(new Vector3f(-box1HalfSize.x, +box1HalfSize.y, -box1HalfSize.z));
LoxelApplication.testPointsBox.add(new Vector3f(+box1HalfSize.x, -box1HalfSize.y, -box1HalfSize.z));
LoxelApplication.testPointsBox.add(new Vector3f(-box1HalfSize.x, -box1HalfSize.y, -box1HalfSize.z));
Vector3f insideTopBackRight = pointDistanceInAABB(box1HalfSize, topBackRight);
Vector3f insideTopBackLeft = pointDistanceInAABB(box1HalfSize, topBackLeft);
Vector3f insideTopFrontRight = pointDistanceInAABB(box1HalfSize, topFrontRight);
Vector3f insideTopFrontLeft = pointDistanceInAABB(box1HalfSize, topFrontLeft);
Vector3f insideBottomBackRight = pointDistanceInAABB(box1HalfSize, bottomBackRight);
Vector3f insideBottomBackLeft = pointDistanceInAABB(box1HalfSize, bottomBackLeft);
Vector3f insideBottomFrontRight = pointDistanceInAABB(box1HalfSize, bottomFrontRight);
Vector3f insideBottomFrontLeft = pointDistanceInAABB(box1HalfSize, bottomFrontLeft);
LoxelApplication.testPointsCollide.clear();
LoxelApplication.testPointsCollide.add(insideTopBackRight);
LoxelApplication.testPointsCollide.add(insideTopBackLeft);
LoxelApplication.testPointsCollide.add(insideTopFrontRight);
LoxelApplication.testPointsCollide.add(insideTopFrontLeft);
LoxelApplication.testPointsCollide.add(insideBottomBackRight);
LoxelApplication.testPointsCollide.add(insideBottomBackLeft);
LoxelApplication.testPointsCollide.add(insideBottomFrontRight);
LoxelApplication.testPointsCollide.add(insideBottomFrontLeft);
if (insideTopBackRight == true
|| insideTopBackLeft == true
|| insideTopFrontRight == true
|| insideTopFrontLeft == true
|| insideBottomBackRight == true
|| insideBottomBackLeft == true
|| insideBottomFrontRight == true
|| insideBottomFrontLeft == true) {
LoxelApplication.testPointsCollide.add(insideTopBackRight == null ? false : true);
LoxelApplication.testPointsCollide.add(insideTopBackLeft == null ? false : true);
LoxelApplication.testPointsCollide.add(insideTopFrontRight == null ? false : true);
LoxelApplication.testPointsCollide.add(insideTopFrontLeft == null ? false : true);
LoxelApplication.testPointsCollide.add(insideBottomBackRight == null ? false : true);
LoxelApplication.testPointsCollide.add(insideBottomBackLeft == null ? false : true);
LoxelApplication.testPointsCollide.add(insideBottomFrontRight == null ? false : true);
LoxelApplication.testPointsCollide.add(insideBottomFrontLeft == null ? false : true);
int count = 0;
if (insideTopBackRight != null) {
count++;
}
if (insideTopBackLeft != null) {
count++;
}
if (insideTopFrontRight != null) {
count++;
}
if (insideTopFrontLeft != null) {
count++;
}
if (insideBottomBackRight != null) {
count++;
}
if (insideBottomBackLeft != null) {
count++;
}
if (insideBottomFrontRight != null) {
count++;
}
if (insideBottomFrontLeft != null) {
count++;
}
ColisionPoints[] out = new ColisionPoints[count];
count = 0;
if (insideTopBackRight != null) {
out[count] = new ColisionPoints(new Vector3f(+box2HalfSize.x, +box2HalfSize.y, +box2HalfSize.z), insideTopBackRight);
count++;
}
if (insideTopBackLeft != null) {
out[count] = new ColisionPoints(new Vector3f(-box2HalfSize.x, +box2HalfSize.y, +box2HalfSize.z), insideTopBackLeft);
count++;
}
if (insideTopFrontRight != null) {
out[count] = new ColisionPoints(new Vector3f(+box2HalfSize.x, -box2HalfSize.y, +box2HalfSize.z), insideTopFrontRight);
count++;
}
if (insideTopFrontLeft != null) {
out[count] = new ColisionPoints(new Vector3f(-box2HalfSize.x, -box2HalfSize.y, +box2HalfSize.z), insideTopFrontLeft);
count++;
}
if (insideBottomBackRight != null) {
out[count] = new ColisionPoints(new Vector3f(+box2HalfSize.x, +box2HalfSize.y, -box2HalfSize.z), insideBottomBackRight);
count++;
}
if (insideBottomBackLeft != null) {
out[count] = new ColisionPoints(new Vector3f(-box2HalfSize.x, +box2HalfSize.y, -box2HalfSize.z), insideBottomBackLeft);
count++;
}
if (insideBottomFrontRight != null) {
out[count] = new ColisionPoints(new Vector3f(+box2HalfSize.x, -box2HalfSize.y, -box2HalfSize.z), insideBottomFrontRight);
count++;
}
if (insideBottomFrontLeft != null) {
out[count] = new ColisionPoints(new Vector3f(-box2HalfSize.x, -box2HalfSize.y, -box2HalfSize.z), insideBottomFrontLeft);
count++;
}
if (count != 0) {
// Find a point inside the BOX ...
Log.info("Detect point inside ... " + insideTopBackRight + " " + insideTopBackLeft + " " + insideTopFrontRight + " " + insideTopFrontLeft
+ " " + insideBottomBackRight + " " + insideBottomBackLeft + " " + insideBottomFrontRight + " " + insideBottomFrontLeft);
Log.info("Detect point inside ... " + insideTopBackRight + " " + insideTopBackLeft + " " + insideTopFrontRight + " " + insideTopFrontLeft + " " + insideBottomBackRight + " "
+ insideBottomBackLeft + " " + insideBottomFrontRight + " " + insideBottomFrontLeft);
return out;
}
// line in AABB
Log.info("Need to detect line inside ...");
return null;
}
public static boolean pointInAABB(Vector3f halfSize, Vector3f point) {
if (point.x > -halfSize.x
&& point.x < halfSize.x
&& point.y > -halfSize.y
&& point.y < halfSize.y
&& point.z > -halfSize.z
&& point.z < halfSize.z) {
if (point.x > -halfSize.x && point.x < halfSize.x && point.y > -halfSize.y && point.y < halfSize.y && point.z > -halfSize.z && point.z < halfSize.z) {
return true;
}
return false;
}
public static Vector3f pointDistanceInAABB(Vector3f halfSize, Vector3f point) {
Vector3f out = new Vector3f();
if (point.x < 0) {
if (point.x > -halfSize.x) {
out.x = -halfSize.x + point.x;
} else {
return null;
}
} else {
if (point.x < halfSize.x) {
out.x = halfSize.x - point.x;
} else {
return null;
}
}
if (point.y < 0) {
if (point.y > -halfSize.y) {
out.y = -halfSize.y + point.y;
} else {
return null;
}
} else {
if (point.y < halfSize.y) {
out.y = halfSize.y - point.y;
} else {
return null;
}
}
if (point.z < 0) {
if (point.z > -halfSize.z) {
out.z = -halfSize.z + point.z;
} else {
return null;
}
} else {
if (point.z < halfSize.z) {
out.z = halfSize.z - point.z;
} else {
return null;
}
}
if (out.x < out.y) {
out.y = 0;
if (out.x < out.z) {
out.z = 0;
return out;
}
out.x = 0;
return out;
}
out.x = 0;
if (out.y < out.z) {
out.z = 0;
return out;
}
out.y = 0;
return out;
}
}